JPH0423740B2 - - Google Patents

Info

Publication number
JPH0423740B2
JPH0423740B2 JP1684385A JP1684385A JPH0423740B2 JP H0423740 B2 JPH0423740 B2 JP H0423740B2 JP 1684385 A JP1684385 A JP 1684385A JP 1684385 A JP1684385 A JP 1684385A JP H0423740 B2 JPH0423740 B2 JP H0423740B2
Authority
JP
Japan
Prior art keywords
light
level
intensity
snowfall
pulses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1684385A
Other languages
Japanese (ja)
Other versions
JPS61175550A (en
Inventor
Iesato Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meisei Electric Co Ltd
Original Assignee
Meisei Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meisei Electric Co Ltd filed Critical Meisei Electric Co Ltd
Priority to JP1684385A priority Critical patent/JPS61175550A/en
Publication of JPS61175550A publication Critical patent/JPS61175550A/en
Publication of JPH0423740B2 publication Critical patent/JPH0423740B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、気象観測業務に於いて、降雨又は降
雪強度を光学的手段によつて降雨、降雪別に計測
する方法とその装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method and apparatus for measuring the intensity of rainfall or snowfall separately by optical means in meteorological observation work. .

〔従来の技術〕[Conventional technology]

従来の降雨又は降雪強度の計測方法は、設定時
間長の間の雨量又は積雪量を測定することによつ
て行なう方法が公知である。また、雨雪判別は強
度の計測とは別個に行なわれるのが通常であり、
この雨雪判別方法としては、例えば空中に一対
(2枚)の導電板を、相互間に僅かな隙間を設け
ることにより電気的に離隔して配置し、上記隙間
に上記一対の導電板を橋絡して乗つた雨滴又は雪
片の電気伝導度を測定し、その違いによつて判別
する方法が公知である。
A conventional method for measuring rainfall or snowfall intensity is known by measuring the amount of rain or snowfall over a set length of time. In addition, rain and snow discrimination is usually performed separately from intensity measurement.
This rain/snow discrimination method involves, for example, placing a pair (two sheets) of conductive plates in the air electrically separated from each other by creating a small gap between them, and placing the pair of conductive plates in the gap as a bridge. A known method is to measure the electrical conductivity of raindrops or snowflakes that have fallen on each other, and to discriminate based on the difference in electrical conductivity.

〔発明が解明しようとする問題点〕[Problems that the invention attempts to solve]

上記従来の降雨又は降雪強度計測方法は、基本
的には雨量又は積雪量の測定であるため、現時点
から前記設定時間を遡つた過去のデータしか得ら
れず、現時点での瞬間的降雨又は降雪強度を得る
には難がある。
The conventional rainfall or snowfall intensity measurement method described above basically measures the amount of rainfall or snowfall, so it can only obtain past data going back to the set time from the current moment, and the instantaneous rainfall or snowfall intensity at the present moment can only be obtained. It is difficult to obtain.

また、強度を降雨、降雪別に計測する必要があ
るときは、強度測定と雨雪判別を別個の測定手段
で行なう必要があり、計測装置が大型、かつ複雑
となる。加えて、この場合の雨雪判別は接触的手
段によつているため、雪片の溶解による降雪であ
ることの判断の遅れ、霧雨時又は粉雪時に於い
て、雨滴又は雪片が前記導電板間の隙間より細か
いことによる降雨又は降雪の判断の遅れ等により
現時点での瞬間的強度の降雨、降雪別計測に難が
あり、更に雨雪判別手段では原理的に電気的接触
面(導電板)を空気中に露出させておく必要があ
ることから当該電気的接触面の汚れ、腐蝕等によ
つて長期間の間初期性能が保てない等の問題点が
ある。
Further, when it is necessary to measure the intensity of rainfall and snowfall separately, it is necessary to measure the intensity and distinguish between rain and snow using separate measuring means, which makes the measuring device large and complicated. In addition, since rain and snow discrimination in this case is based on contact means, there may be a delay in determining whether it is snowfall due to melting of snowflakes, or raindrops or snowflakes may be caused by gaps between the conductive plates during drizzle or powdery snow. At present, it is difficult to measure the instantaneous intensity of rainfall and snowfall due to delays in determining rain or snowfall due to finer details, and furthermore, rain/snow discrimination means in principle require electrical contact surfaces (conductive plates) to be placed in the air. Since it is necessary to expose the electrical contact surface to air, there are problems such as the initial performance cannot be maintained for a long period of time due to dirt, corrosion, etc. on the electrical contact surface.

本発明は、以上に述べた従来の問題点を解決す
べく提案するもので、降雨又は降雪強度を過去に
遡ることなく現時点で瞬時に把握でき、かつ雨雪
判別も同時に行なえる降雨・降雪強度計測方法と
その装置を得ることを目的とする。
The present invention is proposed to solve the above-mentioned conventional problems, and is capable of instantly grasping the rainfall or snowfall intensity at the present time without having to look back into the past, and also capable of simultaneously distinguishing between rain and snowfall. The purpose is to obtain a measurement method and device.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するため、本発明は、雨滴又
は雪片に光を投射したとき、当該雨滴又は雪片か
ら反射して返つてくる反射パルスの数とレベルと
が、雨滴又は雪片の降下密度に対して一定の相関
関係を呈すること、及び雪片又は雨滴に光を投射
したときの光の拡散方向特性が互に異ることに着
目し、空間に光を投射し、その投射光の雨滴又は
雪片からの反射光パルスを受光して、その受光パ
ルスの数及びレベルから降雨又は降雪の強度を演
算し、かつ上記受光パルスのレベルから雨雪判別
を行ない、もつて降雨、降雪別に強度を計測する
方法を提供するものであり、また、この方法によ
る降雨・降雪強度計測装置として本発明は、空間
に光を投射する投光手段と、光軸が上記投光手段
の光軸に対して異つた角度で交差する方向にそれ
ぞれ設定され、上記投光手段からの投射光が雨滴
又は雪片で反射した反射光パルスをそれぞれ受光
する第1及び第2の受光手段と、該第1及び第2
の受光手段での受光パルスの数を測定する計数手
段と、当該受光パルスのレベルを測定するレベル
測定手段と、当該双方の受光パルスのレベルを比
較するレベル比較手段と、上記計数手段、レベル
測定手段及びレベル比較手段からそれぞれ出力さ
れる出力情報に基いて降雨、降雪別にその強度を
演算する演算手段でなる降雨・降雪強度計測装
置、又は上記2つの受光手段に代え、1つの受光
手段と、光の進路に設定した偏光手段とを設け、
演算手段は上記受光手段による受光パルスの数及
びレベルから降雨、降雪別にその強度の演算を行
なうようにした降雨・降雪強度計測装置を提供す
るものである。
In order to solve the above problems, the present invention provides that, when light is projected onto raindrops or snowflakes, the number and level of reflected pulses reflected from the raindrops or snowflakes are proportional to the falling density of the raindrops or snowflakes. Focusing on the fact that light exhibits a certain correlation between snowflakes and raindrops, and that the diffusion direction characteristics of light differ from each other when light is projected onto snowflakes or raindrops, we projected light into space and analyzed the effects of raindrops or snowflakes from the projected light. A method of receiving reflected light pulses, calculating the intensity of rain or snowfall from the number and level of the received light pulses, and determining whether it is rain or snow based on the level of the received light pulses, thereby measuring the intensity of each rain or snowfall. Further, as a rain/snowfall intensity measuring device using this method, the present invention provides a light projecting means for projecting light into space, and an optical axis having a different angle with respect to the optical axis of the light projecting means. first and second light receiving means respectively set in directions intersecting with each other and receiving reflected light pulses obtained by reflecting the projected light from the light projecting means on raindrops or snowflakes;
a counting means for measuring the number of light pulses received by the light receiving means; a level measuring means for measuring the level of the light receiving pulse; a level comparing means for comparing the levels of both of the light receiving pulses; A rainfall/snowfall intensity measuring device comprising a calculation means for calculating the intensity of rainfall and snowfall based on the output information respectively output from the means and the level comparison means, or a single light receiving means instead of the above two light receiving means, and a polarizing means set in the path of the light,
The calculating means provides a rainfall/snowfall intensity measuring device which calculates the intensity of rain and snowfall separately from the number and level of light pulses received by the light receiving means.

〔実施例の構成〕[Configuration of Example]

第1図及び第2図はそれぞれ本発明の第1及び
第2実施例を示すブロツク図である。
1 and 2 are block diagrams showing first and second embodiments of the present invention, respectively.

まず、第1実施例の構成を説明する。 First, the configuration of the first embodiment will be explained.

第1図に於いて、1は投光器、2はドライバ、
3は第1受光器、4は第2受光器、5及び6はア
ンプ、7及び8は同期検波器、9はレベル検出
器、10はレベル比較器、11はパルス計数器、
12は演算器であり、aは投光器1の光軸を、b
は第1受光器3の光軸を、cは第2受光器4の光
軸を、dは光時a,b及びcの交差点をそれぞれ
示している。
In Figure 1, 1 is a floodlight, 2 is a driver,
3 is a first light receiver, 4 is a second light receiver, 5 and 6 are amplifiers, 7 and 8 are synchronous detectors, 9 is a level detector, 10 is a level comparator, 11 is a pulse counter,
12 is a computing unit, a indicates the optical axis of the projector 1, and b
indicates the optical axis of the first photodetector 3, c indicates the optical axis of the second photodetector 4, and d indicates the intersection of optical times a, b, and c, respectively.

投光器1は、空間に光を投射するもので、発光
素子、投光用光学レンズ等でなる。
The light projector 1 projects light into space, and includes a light emitting element, a light projecting optical lens, and the like.

ドライバ2は、投光器1の発光素子を発光駆動
するもので、発光電力供給部、該発光電力供給部
からの出力電力を変調する変調部、上記発光素子
の発光強度を気温等環境条件の変化にかかわらず
一定に保つために上記発光電力供給部からの出力
電力を制御する自動電力制御部等でなる。
The driver 2 drives the light emitting element of the floodlight 1 to emit light, and includes a light emitting power supply section, a modulation section that modulates the output power from the light emitting power supply section, and a driver 2 that controls the light emission intensity of the light emitting element according to changes in environmental conditions such as temperature. It consists of an automatic power control section, etc., which controls the output power from the light emitting power supply section to keep it constant regardless of the lighting conditions.

第1受光器3及び第2受光器4は、それぞれ投
光器1から投射された光の雨滴又は雪片での反射
光パルスを受光して受光強度に対応した受光パル
ス信号(電気信号)を出力するもので、それぞれ
受光用光学レンズ、受光素子でなり、当該第1受
光器3及び第2受光器4は、それぞれの光軸b及
びcが投光器1の光軸aとそれぞれ角度θ1及び角
度θ2(θ1≠θ2)を有して、理想的には同一の交差
点dで交差するようにそれぞれの指向方向が設定
されている。
The first light receiver 3 and the second light receiver 4 each receive the reflected light pulse of the light projected from the light projector 1 on raindrops or snowflakes, and output a light reception pulse signal (electrical signal) corresponding to the received light intensity. The first light receiver 3 and the second light receiver 4 each include a light receiving optical lens and a light receiving element, and the optical axes b and c of the first light receiver 3 and the second light receiver 4 are at an angle θ 1 and an angle θ 2 with respect to the optical axis a of the projector 1, respectively. (θ 1 ≠θ 2 ), and ideally the respective pointing directions are set so that they intersect at the same intersection d.

アンプ5及びアンプ6は、それぞれ第1受光器
3及び第2受光器4から出力される受光信号を増
巾するものである。
The amplifier 5 and the amplifier 6 amplify the light reception signals output from the first light receiver 3 and the second light receiver 4, respectively.

同期検波器7及び同期検波器8は、それぞれア
ンプ5及びアンプ6を経て第1受光器3及び第2
受光器4から入力された受光信号を検出するもの
で、上記受光信号を投光器1から放射される光の
変調信号により同期検波し、上記受光信号の強度
に比例したレベルのパルス信号を出力する。
The synchronous detector 7 and the synchronous detector 8 are connected to the first optical receiver 3 and the second optical receiver via the amplifier 5 and the amplifier 6, respectively.
It detects the light reception signal inputted from the light receiver 4, synchronously detects the light reception signal with the modulation signal of the light emitted from the light projector 1, and outputs a pulse signal with a level proportional to the intensity of the light reception signal.

レベル検出器9は同期検波器7及び8から出力
されるレベル信号の平均的レベルを検出するもの
である。
The level detector 9 detects the average level of the level signals output from the synchronous detectors 7 and 8.

レベル比較器10は、同期検波器7から出力さ
れるパルス信号のレベルと同期検波器8から出力
されるパルス信号のレベルを比較するものであ
る。
The level comparator 10 compares the level of the pulse signal output from the synchronous detector 7 and the level of the pulse signal output from the synchronous detector 8.

パルス計数器11は、同期検波器7,8を介し
て出力される受光パルス信号を計数するものであ
る。
The pulse counter 11 counts the received light pulse signals outputted via the synchronous detectors 7 and 8.

演算器12は、レベル検出器9、レベル比較器
10及びパルス計数器11からそれぞれ出力され
る出力情報を、予め投入されているデータに照ら
して演算し、降雨又は降雪の強度を算出するとと
もに降雨/降雪の判別をするもので、マイクロプ
ロセツサ(CPU)と、それに投入された雨雪判
定及び強度演算プログラムでなる。
The calculator 12 calculates the output information outputted from the level detector 9, the level comparator 10, and the pulse counter 11 by comparing it with the data inputted in advance, and calculates the intensity of rain or snowfall. /It detects snowfall and consists of a microprocessor (CPU) and a rain/snow detection and intensity calculation program installed in it.

第1実施例に於いて、レベル検出器9及びパル
ス計数器10は降雨、降雪強度測定のためのも
の、レベル比較器10は雨雪判別のためのもの、
その他の各部は降雨、降雪強度測定と雨雪判別と
で共用されるものである。但し、2系統ある受光
系のうちのいずれか1系統は機能的には雨雪判別
のために設けられたものである。
In the first embodiment, the level detector 9 and the pulse counter 10 are for measuring the intensity of rainfall and snowfall, the level comparator 10 is for distinguishing between rain and snow,
The other parts are shared by rainfall and snowfall intensity measurement and rain/snow detection. However, one of the two light receiving systems is functionally provided for determining whether it is rain or snow.

次に、第2実施例の構成を説明する。 Next, the configuration of the second embodiment will be explained.

第2図に於いて、13は偏光手段であり、他の
記号については前記第1実施例(第1図)と同様
である。但し、第2実施例は受光系が1系統であ
るので、受光系の記号は前記第1実施例の第1受
光系(第1受光器3が属する系)の記号を使用し
た。
In FIG. 2, 13 is a polarizing means, and other symbols are the same as those in the first embodiment (FIG. 1). However, since the second embodiment has one light receiving system, the symbol of the first light receiving system (the system to which the first light receiver 3 belongs) of the first embodiment is used as the symbol of the light receiving system.

偏光手段13は、交差点dに於いて投光器1の
光軸aから角度θの方向への反射光の例えば横方
向の波動のみを通過させるもので、例えば光学的
偏光フイルタでなる。
The polarizing means 13 is configured to pass only, for example, a horizontal wave of the reflected light in a direction at an angle θ from the optical axis a of the projector 1 at the intersection d, and is formed of, for example, an optical polarizing filter.

以上に説明したもの以外は、第1実施例の該当
記号のものと同様の機能のものである。
The functions other than those described above are the same as those of the corresponding symbols in the first embodiment.

第2実施例に於いて、パルス計数器11は降
雨、降雪強度測定のためのもの、その他の各部は
降雨、降雪強度測定と雨雪判別とで共用されるも
のである。但し、偏光手段(偏光フイルタ13
は、機能的には雨雪判別のために設けられたもの
である。
In the second embodiment, the pulse counter 11 is used to measure the intensity of rainfall and snowfall, and the other parts are commonly used to measure the intensity of rain and snowfall and to discriminate between rain and snow. However, the polarizing means (polarizing filter 13
Functionally, it is provided to distinguish between rain and snow.

〔実施例の作用〕[Effect of the embodiment]

まず、第1実施例の作用を説明する。 First, the operation of the first embodiment will be explained.

ドライバ2は、投光器1中の発光素子を発光駆
動させるための駆動信号を常時出力している。こ
の駆動信号は変調された信号であり、かつその出
力電力は温度等の環境条件によつて制御されてお
り、従つて投光器1は発光強度が常時一定である
ように制御された変調光を常時投射している。投
射光を変調しているのは、第1受光器3及び第2
受光器4で反射光を受光する際、正規の反射光と
背光とを区別し、正規の反射光のみに感応するよ
うにするためである。
The driver 2 constantly outputs a drive signal for driving the light emitting element in the projector 1 to emit light. This drive signal is a modulated signal, and its output power is controlled by environmental conditions such as temperature. Therefore, the floodlight 1 always emits modulated light whose emission intensity is always constant. It is projecting. The first receiver 3 and the second receiver modulate the projected light.
This is to distinguish between regular reflected light and backlight when the light receiver 4 receives reflected light, and to be sensitive to only regular reflected light.

降雨又は降雪がないときには、投光器1から投
射された光の反射がないので(実際には空中に浮
遊する塵等による反射があるが、この反射は小さ
く限定された測定エリア内では雨滴又は雪片での
反射に比較して極めて僅かである。)、第1受光器
3及び第2受光器4は受感しない。
When there is no rain or snow, there is no reflection of the light projected from the projector 1 (in reality, there is reflection from dust floating in the air, but this reflection is caused by raindrops or snowflakes within a small and limited measurement area). ), the first light receiver 3 and the second light receiver 4 do not sense the reflected light.

降雨又は降雪があると、投光器1から投射され
た光は光軸aに沿つて直進し、交差点dを降下す
る雨滴又は雪片に反射して第1受光器3及び第2
受光器4に上記反射による反射光がパルス状で入
射される。
When it rains or snows, the light projected from the projector 1 travels straight along the optical axis a, is reflected by raindrops or snowflakes descending at the intersection d, and is transmitted to the first receiver 3 and the second receiver 3.
The reflected light is incident on the light receiver 4 in the form of a pulse.

第1受光器3又は第2受光器4は、上記反射光
に感応してその強度に比例した電気信号(パルス
信号)を出力し、この信号はアンプ5又はアンプ
6で増巾されたのち、同期検波器7又は同期検波
器8で同期検波される。同期検波器7及び同期検
波器8は、それぞれ第1受光器3及び第2受光器
4に入感した反射光パルスの強度に比例したレベ
ルのパルス信号を出力する。同期検波器7と同期
検波器8から出力されたパルス信号はレベル検出
器9に入力されて加算され、当該パルス信号の平
均的レベルの算出が行なわれるとともにレベル比
較器10に入力されてレベル比較が行なわれる。
The first light receiver 3 or the second light receiver 4 outputs an electric signal (pulse signal) proportional to the intensity of the reflected light in response to the reflected light, and after this signal is amplified by the amplifier 5 or 6, The signal is synchronously detected by the synchronous detector 7 or 8. The synchronous detector 7 and the synchronous detector 8 output pulse signals at a level proportional to the intensity of the reflected light pulses that have entered the first optical receiver 3 and the second optical receiver 4, respectively. The pulse signals output from the synchronous detector 7 and the synchronous detector 8 are input to the level detector 9 and added, and the average level of the pulse signals is calculated.The pulse signals are also input to the level comparator 10 for level comparison. will be carried out.

また、第1受光器3及び第2受光器4に入感す
る反射光パルスの数がいずれかのポイントで計数
されるが、本実施例ではパルス計数器11をレベ
ル比較器10の出力端子に接続して当該出力端子
を反射光パルスの計数ポイントとしている。計数
ポイントをレベル比較器10の出力端子としたの
は、後述するように当該出力端子には、一方の同
期検波器7の出力信号レベルを双方の同期検波器
7及び8の出力信号レベルの和で割つた信号が出
力されるので、降雨又は降雪強度が大巾に変動し
ても変動巾の少ないパスス信号が当該出力端子に
得られ、その結果、パルス信号の計数動作が正確
に行なえる(例えば受光器への入感レベルが低い
反射光パルスも脱落なく計数される。)からであ
る。
Further, the number of reflected light pulses that enter the first photoreceiver 3 and the second photoreceiver 4 is counted at any point, but in this embodiment, the pulse counter 11 is connected to the output terminal of the level comparator 10. The output terminal is used as a counting point for reflected light pulses. The reason why the output terminal of the level comparator 10 is used as the counting point is that, as will be described later, the output terminal has the output signal level of one synchronous detector 7 as the sum of the output signal levels of both synchronous detectors 7 and 8. Since the signal divided by For example, even reflected light pulses with a low level of incidence on the light receiver are counted without being omitted.)

以上のようにして、レベル検出器9から出力さ
れる反射光パルスのレベル情報、レベル比較器1
0から出力される異つた2方向からの反射光パル
スのレベル比較情報及びパルス計数器11から出
力される反射光パルスの計数情報を受けて演算器
12は降雨、降雪の判断及び降雨又は降雪の強度
の演算を行なう。
As described above, the level information of the reflected light pulse output from the level detector 9, the level comparator 1
Receiving the level comparison information of the reflected light pulses from two different directions output from the pulse counter 11 and the count information of the reflected light pulses output from the pulse counter 11, the calculator 12 determines whether it is raining or snowing and determines whether it is raining or snowing. Perform strength calculations.

次に上記3種の出力情報によつて雨雪判別及び
強度演算が可能となることについて説明する。
Next, it will be explained that rain/snow discrimination and intensity calculation are possible using the above three types of output information.

まず、雨雪判別について述べると、降雨の場合
と降雪の場合とでは、上記2つの受光器3及び4
での反射光パルスの受光レベル比率が著しく異な
る。すなわち、第3図Aに示すように、雨滴はそ
れが非晶質液体であることによつて特定の形状で
落下し、一方向からの投射光の当該雨滴による光
拡散特性は、特性の方向に極小点及び極大点を有
する特性となる。一方、第3図Bに示すように、
雪片は、それが結晶質固体であり、かつ回転して
落下するため、時間巾をもつて観察すればほぼ球
形と等価の形状で落下することとなり、当該雪片
による光拡散特性は雨滴の場合のような極小点及
び極大点を有する特性とはならない。
First, regarding rain and snow discrimination, the two light receivers 3 and 4 are used in the case of rain and snow.
The received light level ratio of the reflected light pulses differs markedly. That is, as shown in FIG. 3A, raindrops fall in a specific shape because they are amorphous liquids, and the light diffusion characteristics of the raindrops of projected light from one direction are determined by the direction of the characteristics. It is a characteristic that has a local minimum point and a local maximum point. On the other hand, as shown in Figure 3B,
Since snowflakes are crystalline solids and fall while rotating, if observed over a period of time, they fall in a shape that is almost equivalent to a sphere, and the light diffusion properties of the snowflakes are similar to those of raindrops. The characteristic does not have such minimum and maximum points.

従つて、第1受光器3の光軸b及び第2受光器
4の光軸c方向を互に異ならせて設定すれば、す
なわち、それぞれの光軸b又はcが投光器1の光
軸aとなす角度θ1とθ2とを互に異つた角度とすれ
ば、第1受光器3の反射光の入射強度と第2受光
器4の反射光の入射強度との比率は降雨時と降雪
時とでは異なることとなり、この入射強度の違い
は同期検波器7及び8からの出力パルス信号のレ
ベルを比較することで検出することができる。
Therefore, if the optical axis b of the first light receiver 3 and the optical axis c of the second light receiver 4 are set in different directions, that is, the respective optical axes b or c are aligned with the optical axis a of the projector 1. If the angles θ 1 and θ 2 are different from each other, the ratio between the incident intensity of the reflected light on the first receiver 3 and the incident intensity of the reflected light on the second receiver 4 will be different during rain and snow. This difference in incident intensity can be detected by comparing the levels of the output pulse signals from the synchronous detectors 7 and 8.

光軸bの光軸aとなす角度θ1は雨滴による光拡
散レベル分布特性の極大点にできるだけ近づく大
きさに、また光軸cの光軸aとなす角度θ2は雨滴
による光拡散レベル分布特性の極小点にできるだ
け近づく大きさにそれぞれ設定するのが望まし
い。すなわち、レベル比較器10でのレベル比較
動作に於いて、両者のレベル差が大きい程比較し
易いからである。
The angle θ 1 between the optical axis b and the optical axis a is set to a size that approaches the maximum point of the light diffusion level distribution characteristics due to raindrops, and the angle θ 2 between the optical axis c and the optical axis a is set to a value that is as close as possible to the maximum point of the light diffusion level distribution characteristics due to raindrops. It is desirable to set each to a size as close as possible to the minimum point of the characteristic. That is, in the level comparison operation in the level comparator 10, the larger the difference in level between the two, the easier the comparison.

レベル比較器10でのレベル比較は、第1受光
系の出力レベル(同期検波器7の出力レベル)を
l1、第2受光系の出力レベル(同期検波器8の出
力レベル)をl2とすると、例えば次式 K=l1/l1+l2 の演算によつて行なう。第3図A又はBで明らか
なように上記Kの値は降雨のときは降雪のときに
比べて大きくなる。従つてレベル比較器10から
の出力情報を演算器12に於いて設定値と比較演
算することによつて降雨又は降雪の判定をするこ
とができる。
The level comparison by the level comparator 10 is based on the output level of the first light receiving system (output level of the synchronous detector 7).
Letting l 1 be the output level of the second light receiving system (output level of the synchronous detector 8) as l 2 , this is performed, for example, by calculating the following equation: K=l 1 /l 1 +l 2 . As is clear from FIG. 3A or B, the value of K becomes larger when it is raining than when it is snowing. Therefore, by comparing and calculating the output information from the level comparator 10 with a set value in the calculator 12, it is possible to determine whether it is raining or snowing.

次に、降雨又は降雪の強度測定について述べる
と、第1受光器3及び第2受光器4に入射する反
射光パルスの数とレベルは降雨又は降雪強度に対
して相関関係を有する。この相関関係は第4図に
示すようになる。
Next, regarding the measurement of the intensity of rain or snowfall, the number and level of reflected light pulses incident on the first light receiver 3 and the second light receiver 4 have a correlation with the intensity of rain or snowfall. This correlation is shown in FIG.

第4図は降雨、降雪強度の実証データからグラ
フ化したもので降雨の場合と降雪の場合とでは同
じパルス数、同じレベルでの強度は異なるが、変
化の傾向(特性の勾配等)は双方ともほぼ同一で
ある。
Figure 4 is a graph based on empirical data on rainfall and snowfall intensity.Although the number of pulses is the same and the intensity at the same level is different in the case of rain and snowfall, the tendency of change (gradient of characteristics, etc.) is different for both cases. Both are almost the same.

第4図から明らかなように、反射光パルスの数
が同じであつてもそのレベルが高い程、降雨また
は降雪強度が大きいことがわかる。これは雨滴又
は雪片の粒子が大きい程、投射された光が多く反
射されることから了解される。
As is clear from FIG. 4, even if the number of reflected light pulses is the same, the higher the level, the greater the intensity of rainfall or snowfall. This is understood because the larger the particles of raindrops or snowflakes, the more of the projected light is reflected.

演算器12には、第4図に示すデータが演算処
理マツプとして予め投入されており、従つてレベ
ル検出器9からのレベル情報(la,lb,lc…)、
パルス計数器11からの計数情報Nによつて演算
器12は降雨又は降雪強度を演算し、強度データ
を出力する。
The data shown in FIG. 4 is input into the calculator 12 in advance as a calculation processing map, and therefore the level information (la, lb, lc...) from the level detector 9,
Based on the count information N from the pulse counter 11, the calculator 12 calculates the intensity of rainfall or snowfall and outputs intensity data.

また。上記強度データは、前記雨雪判定のデー
タを基に、降雨、降雪別に出力される。
Also. The intensity data is output separately for rain and snow based on the rain and snow determination data.

次に、第2実施例の作用を説明する。 Next, the operation of the second embodiment will be explained.

第2実施例は、受光系が1系統のみであるこ
と、及び光の進行路、例えば受光器3の受光面前
方の光軸b上に偏光手段、例えば光学的偏光フイ
ルタ11が設けられている点で前記第1実施例と
異つている。この相違点は雨雪判別動作に係る相
違点であり、強度測定動作は前記第1実施例と同
様の動作で行なわれる。
In the second embodiment, there is only one light receiving system, and a polarizing means, for example, an optical polarizing filter 11 is provided on the light traveling path, for example, on the optical axis b in front of the light receiving surface of the light receiver 3. This is different from the first embodiment in this point. This difference is related to the rain/snow discrimination operation, and the intensity measurement operation is performed in the same manner as in the first embodiment.

第2実施例の雨雪判別について説明する。 Rain/snow discrimination in the second embodiment will be explained.

光の雨滴又は雪片による反射光を観察すると、
雨滴による場合には第5図Aに示すように特定の
方向に偏光して反射するが、雪片の場合には第5
図Bに示すように全方向に反射する。これは雨滴
の表面に鏡面が形成されて投射光が特定方向に強
く反射するのに対し、雪片の表面には鏡面が形成
されず、投射光が乱反射するためである。
Observing the light reflected by raindrops or snowflakes,
In the case of raindrops, the light is polarized and reflected in a specific direction as shown in Figure 5A, but in the case of snowflakes, the light is reflected in the 5th direction.
It is reflected in all directions as shown in Figure B. This is because a mirror surface is formed on the surface of a raindrop and the projected light is strongly reflected in a specific direction, whereas a mirror surface is not formed on the surface of a snowflake and the projected light is diffusely reflected.

そこで偏光フイルタ13の偏光面方向を、雨滴
による反射光の偏光方向と直角の方向に設定する
と、当該偏光フイルタ13を透過する反射光の量
は降雨の場合に於いて少なく(透過率小)、降雪
の場合に於いて多く(透過率大)となる。
Therefore, if the direction of the polarization plane of the polarizing filter 13 is set perpendicular to the polarizing direction of the light reflected by raindrops, the amount of reflected light that passes through the polarizing filter 13 is small in the case of rain (low transmittance); It increases (transmittance is high) in the case of snowfall.

以上のことにより、同期検波器7が出力する信
号のレベルは降雨の場合に於いては小さく、降雪
の場合に於いて大きい。従つてレベル検出器12
で上記同期検波器7の出力信号のレベルを検出
し、このレベル情報に基いて演算器10で演算す
ることにより降雨、降雪の判定をすることができ
る。
As a result of the above, the level of the signal output from the synchronous detector 7 is low when it is raining, and high when it is snowing. Therefore the level detector 12
By detecting the level of the output signal of the synchronous detector 7 and performing calculations in the arithmetic unit 10 based on this level information, it is possible to determine whether it is raining or snowing.

また、第2実施例の降雨又は降雪強度は、同期
検波器7から出力される反射光の受信パルスをパ
ルス計数器11で計数して計数情報を得、レベル
検出器9から出力されるレベル情報とともに演算
器12に入力され、当該演算器12は前記第1実
施例と同様にして降雨又は降雪強度の演算を行な
う。
The intensity of rainfall or snowfall in the second embodiment can be determined by counting received pulses of reflected light output from the synchronous detector 7 using a pulse counter 11 to obtain count information, and level information output from the level detector 9. The calculated value is also input to the calculator 12, and the calculator 12 calculates the rainfall or snowfall intensity in the same manner as in the first embodiment.

尚、偏光フイルタ13の設定位置は投光器1の
投光面前方であつてもよい。すなわち、投射光を
特定の方向に偏光させることで、雨滴からの反射
量に比べて雪片からの反射量を多くすることがで
きるからである。
Incidentally, the setting position of the polarizing filter 13 may be in front of the light projection surface of the light projector 1. That is, by polarizing the projected light in a specific direction, the amount of reflection from snowflakes can be increased compared to the amount of reflection from raindrops.

〔発明の効果〕〔Effect of the invention〕

以上、詳細に説明したように、本発明は、投射
光の雨滴又は雪片による反射光パルスを把えて、
その反射光パルスの数及び受光レベルから降雨、
降雪別に強度を計測するようにした方法または装
置を提供するものであり、降雨又は降雪の程度に
かかわらず、現時点での降雨又は降雪強度が降
雨、降雪別に瞬時に把握できるばかりか、装置の
各部の殆んどを雨雪判別と強度測定に共用できる
ので、装置構成が簡単であり、また空気中(外
気)に曝露しておく電気回路部分が不必要である
ので、長期にわたつて初期特性が保てる等、本発
明は極めて大きな効果を奏するものである。
As explained above in detail, the present invention grasps the reflected light pulse of the projected light by raindrops or snowflakes,
Rainfall, based on the number of reflected light pulses and the level of received light.
It provides a method or device that measures the intensity of each type of snowfall, and not only can the current intensity of rainfall or snowfall be determined instantly regardless of the degree of rainfall or snowfall, but also can be used to measure the intensity of each part of the device. Since most of the information can be used for rain/snow discrimination and intensity measurement, the device configuration is simple, and there is no need for electrical circuits that are exposed to the air (outside air), so the initial characteristics can be maintained over a long period of time. The present invention has extremely significant effects, such as being able to maintain the following properties.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図はそれぞれ本発明の第1実施
例及び第2実施例を示すブロツク図、第3図A,
B、第4図及び第5図A,Bはそれぞれ第1実施
例及び第2実施例の測定原理を説明する図であ
る。 1……投光器、3,4……受光器、7,8……
同期検波器、9……レベル検出器、10……レベ
ル比較器、11……パルス計数器、12……演算
器、13……偏光手段(偏光フイルタ)。
1 and 2 are block diagrams showing a first embodiment and a second embodiment of the present invention, respectively, and FIG. 3A,
B, FIG. 4, and FIGS. 5A and 5B are diagrams for explaining the measurement principle of the first embodiment and the second embodiment, respectively. 1... Emitter, 3, 4... Receiver, 7, 8...
Synchronous detector, 9... Level detector, 10... Level comparator, 11... Pulse counter, 12... Arithmetic unit, 13... Polarizing means (polarizing filter).

Claims (1)

【特許請求の範囲】 1 空間に光を投射し、該投射光の雨滴又は雪片
からの反射光パルスを受光して、その受光パルス
の数及びレベルを測定し、上記受光パルスのレベ
ルの違いによつて雨雪判別を判断するとともに、
上記受光パルスの数及びレベルに基いて降雨又は
降雪の強度を演算し、もつて降雨、降雪別に強度
を計測するようにした光学的降雨・降雪強度計測
方法。 2 空間に光を投射する投光手段と、光軸が上記
投光手段の光軸に対して互に異つた角度で交差す
る方向にそれぞれ設定され、上記投光手段からの
投射光が雨滴又は雪片で反射した反射光パルスを
それぞれ受光する第1の受光手段及び第2の受光
手段と、該第1の受光手段及び第2の受光手段で
の受光パルスの数を測定する計数手段と、当該受
光パルスのレベルを測定するレベル測定手段と、
当該双方の受光パルスのレベルを比較するレベル
比較手段と、上記計数手段、レベル測定手段及び
レベル比較手段からそれぞれ出力される出力情報
に基いて降雨、降雪別にその強度を演算する演算
手段でなる光学的降雨・降雪強度計測装置。 3 空間に光を投射する投光手段と、該投光手段
からの投射光が雨滴又は雪片で反射した反射光パ
ルスを受光する受光手段と、上記投光手段の投光
面前方又は上記受光手段の受光面前方に透光面が
光軸と交差するようにして設けられた偏光手段
と、上記受光手段での受光パルスの数を測定する
計数手段と、当該受光パルスのレベルを測定する
レベル測定手段と、上記計数手段及び上記レベル
測定手段からそれぞれ出力される出力情報に基い
て降雨、降雪別にその強度を演算する演算手段で
なる光学的降雨・降雪強度計測装置。
[Claims] 1. Project light into space, receive reflected light pulses of the projected light from raindrops or snowflakes, measure the number and level of the received light pulses, and calculate the difference in the level of the received light pulses. In addition to determining whether it is rain or snow,
An optical rainfall/snowfall intensity measuring method that calculates the intensity of rainfall or snowfall based on the number and level of the received light pulses, and measures the intensity of each rainfall and snowfall. 2. A light projecting means for projecting light into space, the optical axes of which are set in directions that intersect at different angles with respect to the optical axis of the light projecting means, and the projected light from the light projecting means is a first light receiving means and a second light receiving means for respectively receiving reflected light pulses reflected by snowflakes; a counting means for measuring the number of light pulses received by the first light receiving means and the second light receiving means; Level measuring means for measuring the level of the received light pulse;
An optical system comprising a level comparing means for comparing the levels of both of the received light pulses, and a calculating means for calculating the intensity of rain and snowfall separately based on the output information output from the counting means, the level measuring means and the level comparing means, respectively. Rainfall/snowfall intensity measuring device. 3. A light projecting means for projecting light into space, a light receiving means for receiving reflected light pulses obtained by reflecting the projected light from the light projecting means on raindrops or snowflakes, and a light receiving means in front of the light projecting surface of the light projecting means or the above light receiving means. polarizing means provided in front of the light-receiving surface of the light-receiving surface so that the light-transmitting surface intersects with the optical axis; a counting means for measuring the number of light pulses received by the light-receiving means; and a level measurement means for measuring the level of the light-receiving pulses. an optical rainfall/snowfall intensity measuring device comprising: means; and calculating means for calculating the intensity of rainfall and snowfall separately based on output information respectively output from the counting means and the level measuring means.
JP1684385A 1985-01-31 1985-01-31 Optical measuring method and apparatus for intensity of rain and snow falling Granted JPS61175550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1684385A JPS61175550A (en) 1985-01-31 1985-01-31 Optical measuring method and apparatus for intensity of rain and snow falling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1684385A JPS61175550A (en) 1985-01-31 1985-01-31 Optical measuring method and apparatus for intensity of rain and snow falling

Publications (2)

Publication Number Publication Date
JPS61175550A JPS61175550A (en) 1986-08-07
JPH0423740B2 true JPH0423740B2 (en) 1992-04-23

Family

ID=11927486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1684385A Granted JPS61175550A (en) 1985-01-31 1985-01-31 Optical measuring method and apparatus for intensity of rain and snow falling

Country Status (1)

Country Link
JP (1) JPS61175550A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0774780B2 (en) * 1988-09-21 1995-08-09 日本無線株式会社 Rainfall snowfall discrimination sensor
JPH02300688A (en) * 1989-05-16 1990-12-12 Japan Radio Co Ltd Rainfall and snowfall measuring instrument
JPH0619479B2 (en) * 1990-11-08 1994-03-16 日本無線株式会社 Rain, snow and fog identification method and device
JP4701222B2 (en) * 2007-09-25 2011-06-15 新潟電機株式会社 Snowfall intensity measuring method and snowfall intensity measuring apparatus
JP2009290694A (en) * 2008-05-30 2009-12-10 Fujifilm Corp Imaging device
CN113721306B (en) * 2021-09-28 2023-08-25 重庆宗申通用动力机械有限公司 Weather judging device
JP7154459B1 (en) * 2021-12-14 2022-10-17 三菱電機株式会社 sensor system

Also Published As

Publication number Publication date
JPS61175550A (en) 1986-08-07

Similar Documents

Publication Publication Date Title
US4855608A (en) Laser curtain having an array of parabolic mirrors each focusing radiation on a corresponding detector positioned in mirror's focal point
WO1998016801A1 (en) Intelligent vehicle highway multi-lane sensor
WO2008152095A1 (en) Method for contamination detection in a tof range camera
KR102017257B1 (en) Small-sized optical fine dust sensor capable of counting by particle size
JPH0423740B2 (en)
CN110987872B (en) Forward scatter sensor
EP0749574A1 (en) Method and apparatus for detecting impurities on plate surface
JPH0324636B2 (en)
JPH0423739B2 (en)
US6421132B1 (en) Method and apparatus for rapid range imaging
JPH10105868A (en) Vehicle measuring device/method
JPH09318766A (en) Freeze sensing system
EP3633414B1 (en) A forward scatter sensor
KR101893501B1 (en) Integrated weather detector
JPH0543997B2 (en)
JPH0619479B2 (en) Rain, snow and fog identification method and device
JPH1096791A (en) Raindrop detecting device
JPH06249970A (en) Visibility measuring method, rainfall/snowfall deciding method, method and system for measuring intensity of rainfall/snowfall
JP2936074B2 (en) Optical distance measuring device
JP2577234Y2 (en) Laser rangefinder
JP3096795B2 (en) Tracking ranging system
JPS5914756Y2 (en) Photoelectric road moisture detection device
JPH01292203A (en) Length measuring apparatus
JPH09170983A (en) Sensor apparatus for judging gloss
CN115656970A (en) Laser radar device, equipment and system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term