JPH0619479B2 - Rain, snow and fog identification method and device - Google Patents

Rain, snow and fog identification method and device

Info

Publication number
JPH0619479B2
JPH0619479B2 JP2303342A JP30334290A JPH0619479B2 JP H0619479 B2 JPH0619479 B2 JP H0619479B2 JP 2303342 A JP2303342 A JP 2303342A JP 30334290 A JP30334290 A JP 30334290A JP H0619479 B2 JPH0619479 B2 JP H0619479B2
Authority
JP
Japan
Prior art keywords
light
snow
fog
rain
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2303342A
Other languages
Japanese (ja)
Other versions
JPH04175687A (en
Inventor
聡 小笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP2303342A priority Critical patent/JPH0619479B2/en
Publication of JPH04175687A publication Critical patent/JPH04175687A/en
Publication of JPH0619479B2 publication Critical patent/JPH0619479B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、大気中に存在する散乱反射体が雨、雪、霧の
いずれであるかを識別する雨、雪及び霧の識別方法及び
装置に関し、特に投受光面の汚損等の影響を排除する手
段に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention relates to a rain, snow and fog discrimination method and apparatus for discriminating whether a scattering reflector existing in the atmosphere is rain, snow or fog. In particular, the present invention relates to means for eliminating the influence of stains on the light emitting / receiving surface.

[従来の技術] 一般に、気象状態の観測は社会的乃至産業的要請の高い
観測事業であり、その自動化は、かかる重要な観測を迅
速安価に行なうことを可能にする年で、重要な技術であ
る。
[Prior Art] In general, observation of meteorological conditions is an observation project that is highly demanded by society and industry, and its automation is an important technology in a year that makes it possible to perform such important observations quickly and inexpensively. is there.

観測の対象となる気象現象としては、例えば降雨、降
雪、霧の発生等がある。雨、雪、霧の検出は、例えば、
これらを構成する水滴等による光線の散乱現象を利用し
て実現できる。
The meteorological phenomenon to be observed includes, for example, rainfall, snowfall, fog, and the like. For detection of rain, snow, and fog, for example,
This can be realized by utilizing the scattering phenomenon of light rays by the water droplets or the like that compose them.

すなわち、大気中に赤外線等の光線を投光すると、この
光線が雨、雪、霧等により散乱反射される。散乱する光
線のうち、任意の一方向に散乱される光線の量(具体的
には受光素子の受光量)に注目すると、この受光量は散
乱反射体の種類に応じて異なる。従って、受光される光
線(以下、後方散乱光という)の受光量を観測すれば、
現在雨が降っているのか、雪が降っているのか、霧が発
生しているのかを識別できる。
That is, when light rays such as infrared rays are projected into the atmosphere, the light rays are scattered and reflected by rain, snow, fog and the like. Focusing on the amount of light rays scattered in one arbitrary direction among the scattered light rays (specifically, the amount of light received by the light receiving element), the amount of light received differs depending on the type of the scattering reflector. Therefore, observing the amount of received light (hereinafter referred to as backscattered light),
It is possible to identify whether it is currently raining, snowing, or foggy.

[発明が解決しようとする課題] しかしながら、後方散乱光の受光量を評価する技術で
は、投受光面の汚損等が発生した場合に識別困難又は不
能となる。すなわち、投受光面の汚損は後方散乱光の受
光量を減衰させ、雨、雪、霧のいずれであるかの識別に
おける障害となる。
[Problems to be Solved by the Invention] However, in the technique for evaluating the amount of received backscattered light, it becomes difficult or impossible to identify when the light emitting / receiving surface is contaminated. That is, the contamination of the light projecting / receiving surface attenuates the amount of backscattered light received, which becomes an obstacle in identifying whether it is rain, snow, or fog.

このような識別不能状態を回避するためには、投受光面
の汚損の度合いを検出し、汚損の度合いに応じて投光量
を制御する等の機能を有する自動補正回路が必要とな
る。従って、従来の装置は、構成が複雑であった。
In order to avoid such an unidentifiable state, an automatic correction circuit having a function of detecting the degree of contamination of the light emitting / receiving surface and controlling the amount of light emission according to the degree of contamination is required. Therefore, the conventional device has a complicated configuration.

本発明は、このような問題点を解決することを課題とし
てなされたものであり、自動補正回路等の冗長な回路構
成を必要とせずに、投受光面の汚損が発生している場合
においても雨、雪、霧を好適に識別可能とすることを目
的とする。
The present invention has been made to solve such a problem, and even in the case where the light emitting / receiving surface is contaminated without requiring a redundant circuit configuration such as an automatic correction circuit. The purpose is to make it possible to suitably identify rain, snow, and fog.

[課題を解決するための手段] このような目的を達成するために、本願出願人は、次の
ような構成の雨、雪及び霧の識別方法及び装置を提供す
る。
[Means for Solving the Problems] In order to achieve such an object, the applicant of the present application provides a rain, snow and fog identifying method and device having the following configurations.

まず、本発明の雨、雪及び霧の識別方法は、大気中に光
線を投光し、散乱反射体による後方散乱光の受光量の時
系列的観測により所定期間についての受光量の平均値μ
及び偏差値σを求め、変異係数Kをσ/μとして求め、
変異係数Kの値により、大気中に存在する散乱反射体が
雨、雪、霧のいずれであるかを識別することを特徴とす
る。
First, the rain, snow and fog identification method of the present invention is a method of projecting light rays into the atmosphere and observing the amount of backscattered light received by a scattering reflector in time series to obtain an average value μ of the amount of received light for a predetermined period.
And the deviation value σ, and the variation coefficient K as σ / μ,
The variation coefficient K is characterized by identifying whether the scattering reflector existing in the atmosphere is rain, snow, or fog.

次に、本発明の雨、雪及び霧の識別装置は、タイミング
クロックを発生させるタイミングクロック発生回路と、
タイミングクロックに応じて光線を前方に投光する投光
手段と、大気中に存在する散乱反射体からの後方散乱光
を受光する受光手段と、所定回数の受光について後方散
乱光の受光量の平均値μ及び偏差値σを求め、変異係数
Kをσ/μとして求める演算部と、変異係数Kを雨、
雪、霧それぞれに対応設定される所定の識別基準値と比
較して、現在大気中に存在する散乱反射体が雨、雪、霧
のいずれであるかを識別する比較部と、を有することを
特徴とする。
Next, the rain, snow and fog discriminating apparatus of the present invention includes a timing clock generation circuit for generating a timing clock,
A light projecting unit that projects a light beam forward according to a timing clock, a light receiving unit that receives backscattered light from a scattering reflector existing in the atmosphere, and an average of the amount of backscattered light received for a predetermined number of times of light reception. A calculation unit for obtaining the value μ and the deviation value σ, and the variation coefficient K as σ / μ;
A comparison unit that compares the predetermined identification reference value set corresponding to each of snow and fog with rain, snow, or fog to determine whether the scattering reflector present in the atmosphere is rain, snow, or fog. Characterize.

[作用] 本発明においては、後方散乱光が時系列的に観測され
る。
[Operation] In the present invention, backscattered light is observed in time series.

すなわち、所定タイミングで光線の投受光が実行され、
i時点での受光量Viが得られると、この受光量Viを
用いてi=1〜n(n:整数)の期間についての受光量
Viの平均値μ及び偏差値σが求められる。
That is, light projection and reception of light rays are executed at a predetermined timing,
When the received light amount Vi at the time point i is obtained, the average value μ and the deviation value σ of the received light amount Vi for the period of i = 1 to n (n: integer) are obtained using this received light amount Vi.

平均値μは、受光量Viの平均値であり、散乱反射体の
粒子密度、散乱断面積に比例し、距離の自乗に反比例す
る値である。
The average value μ is an average value of the received light amount Vi, and is a value that is proportional to the particle density and scattering cross-sectional area of the scattering reflector and inversely proportional to the square of the distance.

偏差値σ(ばらつき)は、受光量Viの時間的変化が大
きな程、大きな値をとる。従って、霧のように時間的変
化が非常に緩やかな散乱反射体の場合、偏差値σは非常
に小さくなる。また、雨と雪の比較でいえば、雪よりも
雨のほうが時間的変化が大であり、偏差値σは大きくな
る。
The deviation value σ (variation) takes a larger value as the temporal change of the received light amount Vi is larger. Therefore, the deviation value σ becomes very small in the case of a scattering reflector whose time change is very gentle like fog. In comparison between rain and snow, rain has a greater temporal change than snow, and the deviation value σ is large.

平均値μ及び偏差値σは、周知の演算法則により、それ
ぞれ次の式で表すことができる。
The average value μ and the deviation value σ can be expressed by the following equations according to a well-known calculation law.

次に、本発明においては、変異係数Kが求められる。変
異係数Kは、次の式で求められる。
Next, in the present invention, the variation coefficient K is calculated. The variation coefficient K is calculated by the following equation.

K=σ/μ 変異係数Kは、散乱反射体が雨、雪、霧のいずれである
かを表す指標となる。すなわち、平均値μ及び偏差値σ
については、次鵜のような大小関係が成り立ち、 平均値μ:雪、霧>雨 偏差値σ:雨、雪>霧 従って、変異係数Kについては、次のような大小関係が
成り立つ。
K = σ / μ The variation coefficient K is an index showing whether the scattering reflector is rain, snow or fog. That is, the average value μ and the deviation value σ
The following magnitude relationship holds for the mean value μ: snow, fog> rain deviation value σ: rain, snow> fog Therefore, the following magnitude relationship holds for the variation coefficient K.

変異係数K:雨>雪>霧 (3) 本発明においては、この事実を利用し、変異係数Kによ
り大気中に存在する散乱反射体が雨、雪、霧のいずれで
あるかを識別する。
Mutation coefficient K: rain>snow> fog (3) In the present invention, this fact is utilized to identify whether the scattering reflector existing in the atmosphere is rain, snow or fog.

このような方法によって識別を実行すると、投受光面の
汚損等によって受光量の減衰が生じていても、この減衰
の影響を受けずに良好な識別を行える。例えば、減衰時
の平均値をμatt、偏差値をσattとすると、両者にそれ
ぞれ減衰の影響が比例的に含まれる。
When identification is performed by such a method, even if the amount of received light is attenuated due to stains on the light emitting / receiving surface or the like, good identification can be performed without being affected by this attenuation. For example, if the average value at the time of damping is μ att and the deviation value is σ att , then the effects of damping are proportionally included in both.

この事を、数式により検証すると以下のようになる。ま
ず、減衰が生じていない場合の受光量をViとすると、
減衰時の受光量Vattiは、 Vatti=αVi と表せる。ただし、αは減衰率である。n回の受光を実
行する期間においては、この減衰率αは一定と見なすこ
とができ、従って、平均値μattは次のように表せる。
When this is verified by a mathematical formula, it becomes as follows. First, letting Vi be the amount of light received when no attenuation has occurred,
The received light amount V att i at the time of attenuation can be expressed as V att i = αVi. However, α is the attenuation rate. The attenuation rate α can be regarded as constant during the period of executing the light reception n times, and therefore the average value μ att can be expressed as follows.

ただし、μは減衰がないときの平均値である。同様にし
て、偏差値σattは、 となる。ただし、σが減衰がないときの偏差値である。
まとめると、 μatt=αμ σatt=ασ (4) となる。
However, μ is an average value when there is no attenuation. Similarly, the deviation value σ att is Becomes However, σ is a deviation value when there is no attenuation.
In summary, μ att = α μ σ att = ασ (4)

(4)式に基づき、このときの変異係数Kattを求める
と、 Katt=σatt/μatt =ασ/αμ =σ/μ =K (5) となり、減衰がないときの変異係数Kに一致する。
When the variation coefficient K att at this time is obtained based on the equation (4), K att = σ att / μ att = ασ / α μ = σ / μ = K (5), and the variation coefficient K when there is no attenuation is obtained. Match.

このように、本発明においては、冗長な回路構成を採用
すること無く、投受光面の汚損等の発生時にも雨、雪、
霧が正確に識別される。
As described above, the present invention does not employ a redundant circuit configuration, and rain, snow,
The fog is accurately identified.

次に、請求項(2)記載の装置においては、請求項
(1)記載の方式における時系列的観測がタイミングク
ロックに応じて簡易に実行され、雨、雪、霧のいずれで
あるかの識別が、雨、雪、霧それぞれに対応設定されて
いる所定の識別基準値との比較により、実現される。
Next, in the apparatus according to claim (2), the time-series observation in the method according to claim (1) is simply executed according to the timing clock, and it is discriminated whether it is rain, snow, or fog. Is realized by comparison with predetermined identification reference values set corresponding to rain, snow, and fog, respectively.

[実施例] 以下、本発明の好適な実施例について図面に基づき説明
する。
[Embodiment] A preferred embodiment of the present invention will be described below with reference to the drawings.

第1図には、本発明の一実施例に係る雨、雪及び霧の識
別装置の構成が示されている。
FIG. 1 shows the configuration of a rain, snow and fog discriminating apparatus according to an embodiment of the present invention.

この図に示される装置10は、赤外線を投受光する手段
として、送信回路12及び受信回路14、赤外線発光素
子16及び赤外線受光素子18,2枚の光学レンズ20
並びに2枚の透明保護板22を備えている。
The device 10 shown in this figure has a transmitting circuit 12 and a receiving circuit 14, an infrared light emitting element 16, an infrared light receiving element 18, and two optical lenses 20 as means for projecting and receiving infrared rays.
In addition, two transparent protective plates 22 are provided.

送信回路12は、タイミングクロックに応じて同一繰り
返し周期を有するパルス列を発生させる。タイミングク
ロックは、タイミングクロック発生回路24において生
成される。タイミングクロックが送信回路12に一定周
期で供給されることにより、送信回路12は、パルス列
を一定周期で発生させる。送信回路12において発生し
たパルス列は、赤外線発光素子16に送信信号として印
加される。
The transmission circuit 12 generates a pulse train having the same repetition period according to the timing clock. The timing clock is generated in the timing clock generation circuit 24. When the timing clock is supplied to the transmission circuit 12 at a constant cycle, the transmission circuit 12 generates a pulse train at a constant cycle. The pulse train generated in the transmission circuit 12 is applied to the infrared light emitting element 16 as a transmission signal.

赤外線発光素子16は、送信信号の印加により赤外線を
発生させる。発光したパルス状の赤外線は、光学レンズ
20及び透明保護板22を介して前方に投光される。な
お、光学レンズ20及び透明保護板22は、投受光両側
に1枚づつ配置されており、光学レンズ20は投受光に
係る範囲を決定し、投明保護板22は装置10の内部構
成を外気等から保護する。
The infrared light emitting element 16 generates infrared light by applying a transmission signal. The emitted pulsed infrared rays are projected forward through the optical lens 20 and the transparent protective plate 22. The optical lens 20 and the transparent protective plate 22 are arranged one by one on both sides of the light projecting and receiving, the optical lens 20 determines the range relating to the light projecting and receiving, and the light projecting protective plate 22 sets the internal configuration of the device 10 to the outside Protect from the like.

投光された光線は、図中縦線ハッチングで示す領域に存
在する散乱反射体100により散乱反射される。この領
域は、赤外線発光素子16ににより投光が行われ、か
つ、反射光を赤外線受光素子18による受光が可能な領
域、すなわち視野である。
The projected light beam is scattered and reflected by the scattering reflector 100 existing in the area shown by vertical hatching in the figure. This region is a region where the infrared light emitting element 16 projects light and reflected light can be received by the infrared light receiving element 18, that is, a visual field.

散乱反射体100による反射光のうち後方散乱光は、透
明保護板22及び光学レンズ20を介して赤外線受光素
子18に受光される。赤外線受光素子18は、その出力
を受信回路14に供給する。
The backscattered light of the light reflected by the scattering reflector 100 is received by the infrared light receiving element 18 via the transparent protective plate 22 and the optical lens 20. The infrared light receiving element 18 supplies its output to the receiving circuit 14.

受信回路14は、赤外線受光素子18における受光量を
示す信号を演算部26に出力する。この実施例において
は、雨、雪、霧の識別演算を行う構成として演算部26
及び比較部28が設けられている。
The receiving circuit 14 outputs a signal indicating the amount of light received by the infrared light receiving element 18 to the computing unit 26. In this embodiment, the calculation unit 26 is configured as a configuration for performing a discrimination calculation of rain, snow, and fog.
And a comparison unit 28 are provided.

演算部26は、受信回路14から信号を受信して、受光
量の平均値及び偏差値を演算する。この演算は、前述の
(1)及び(2)式に従って実行される。演算の結果求
められた変異係数は、比較部28に入力される。比較部
28は、所定の識別基準値とこの変異係数とを比較し
て、散乱反射体100が雨であるか、雪であるか、霧で
あるかを識別する。
The calculation unit 26 receives the signal from the reception circuit 14 and calculates the average value and the deviation value of the received light amount. This calculation is executed according to the above-mentioned equations (1) and (2). The variation coefficient obtained as a result of the calculation is input to the comparison unit 28. The comparison unit 28 compares a predetermined identification reference value with this variation coefficient to identify whether the scattering reflector 100 is rain, snow, or fog.

この識別に当たっては、散乱反射体100の種別毎に識
別基準値が設定される。通常、前述の(3)式のような
関係が成り立つため、本実施例においてもこの関係を考
慮して識別基準値が設定される。
In this identification, an identification reference value is set for each type of scattering reflector 100. Normally, the relationship as expressed by the above-mentioned expression (3) is established, and therefore in this embodiment as well, the identification reference value is set in consideration of this relationship.

例えば、霧の場合、密度が高く受光量の時間的変化が小
さいため、変異係数はほぼ0となる。また、雪の場合に
は、霧に比べ粒子密度が小さく、移動速度が速いため時
間的変化が大きい。雨と雪とを比較すると、雨のほうが
雪よりも時間的変化が大きい。従って、前述のような関
係が成立する。
For example, in the case of fog, since the density is high and the temporal change in the amount of received light is small, the variation coefficient is almost zero. Further, in the case of snow, the particle density is smaller and the moving speed is faster than in the fog, so that the temporal change is large. Comparing rain and snow, rain has a greater temporal change than snow. Therefore, the relationship as described above is established.

従って、前述の原理により、本実施例においては投受光
面の汚損等の影響を排除できる。これは、(5)式によ
り、減衰の影響が平均値と偏差値の除算により相殺され
るからである。
Therefore, according to the above-mentioned principle, in the present embodiment, it is possible to eliminate the influence of the contamination of the light emitting / receiving surface. This is because the effect of the attenuation is canceled by the division of the average value and the deviation value by the equation (5).

[発明の効果] 以上説明したように、本発明によれば、受光量の平均値
μと偏差値σの比である変異係数Kに基づき雨、雪、霧
の識別を行うようにしたため、投受光面の汚損等による
減衰の影響が排除され、より正確に識別を行うことがで
きる。また、このために冗長な装置構成を採用する必要
がなく、簡易、小型で安価な装置を実現できる。
[Effects of the Invention] As described above, according to the present invention, rain, snow, and fog are discriminated based on the variation coefficient K which is the ratio of the average value μ and the deviation value σ of the amount of received light. The effect of attenuation due to stains on the light receiving surface is eliminated, and more accurate identification can be performed. Further, for this reason, it is not necessary to employ a redundant device configuration, and it is possible to realize a simple, compact and inexpensive device.

また、請求項(2)によれば、このような装置をタイミ
ングクロックの発生及び比較によって簡易に実現でき
る。
According to claim (2), such a device can be easily realized by generating and comparing timing clocks.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の一実施例に係る雨、雪及び霧の識別
装置の構成を示すブロック図である。 10……雨、雪及び霧の識別装置 12……送信回路 14……受信回路 16……赤外線発光素子 18……赤外線受光素子 20……光学レンズ 22……透明保護板 24……タイミングクロック発生回路 26……演算部 28……比較部 100……散乱反射体(雨、雪、霧)
FIG. 1 is a block diagram showing the configuration of a rain, snow and fog discriminating apparatus according to an embodiment of the present invention. 10: Rain, snow and fog identification device 12 ... Transmission circuit 14 ... Reception circuit 16 ... Infrared light emitting element 18 ... Infrared light receiving element 20 ... Optical lens 22 ... Transparent protective plate 24 ... Timing clock generation Circuit 26 …… Calculator 28 …… Comparison 100 100 …… Scattering reflector (rain, snow, fog)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】大気中に光線を投光し、 散乱反射体による後方散乱光の受光量の時系列的観測に
より所定期間についての受光量の平均値μ及び偏差値σ
を求め、 変異係数Kをσ/μとして求め、 変異係数Kの値により、大気中に存在する散乱反射体が
雨、雪、霧のいずれであるかを識別することを特徴とす
る雨、雪及び霧の識別方法。
1. An average value μ and a deviation value σ of the amount of received light for a predetermined period by observing the amount of backscattered light received by a scattering reflector by projecting a light beam into the atmosphere.
The variation coefficient K is determined as σ / μ, and the value of the variation coefficient K identifies whether the scattering reflector existing in the atmosphere is rain, snow, or fog. And fog identification method.
【請求項2】タイミングクロックを発生させるタイミン
グクロック発生回路と、 タイミングクロックに応じて光線を前方に投光する投光
手段と、 大気中に存在する散乱反射体からの後方散乱光を受光す
る受光手段と、 所定回数の受光について後方散乱光の受光量の平均値μ
及び偏差値σを求め、変異係数Kをσ/μとして求める
演算部と、 変異係数Kを雨、雪、霧それぞれに対応設定される所定
の識別基準値と比較して、現在大気中に存在する散乱反
射体が雨、雪、霧のいずれであるかを識別する比較部
と、 を有することを特徴とする雨、雪及び霧の識別装置。
2. A timing clock generation circuit for generating a timing clock, a light projecting means for projecting a light beam forward according to the timing clock, and a light receiving device for receiving backscattered light from a scattering reflector existing in the atmosphere. Means, and the average value μ of the amount of backscattered light received for a predetermined number of times of light reception
And the deviation value σ is calculated, and the variation coefficient K is calculated as σ / μ, and the variation coefficient K is compared with predetermined identification reference values set corresponding to rain, snow, and fog, respectively, and present in the atmosphere. A rain, snow, and fog identifying device, comprising: a comparing unit that identifies whether the scattering reflector is rain, snow, or fog.
JP2303342A 1990-11-08 1990-11-08 Rain, snow and fog identification method and device Expired - Fee Related JPH0619479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2303342A JPH0619479B2 (en) 1990-11-08 1990-11-08 Rain, snow and fog identification method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2303342A JPH0619479B2 (en) 1990-11-08 1990-11-08 Rain, snow and fog identification method and device

Publications (2)

Publication Number Publication Date
JPH04175687A JPH04175687A (en) 1992-06-23
JPH0619479B2 true JPH0619479B2 (en) 1994-03-16

Family

ID=17919820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2303342A Expired - Fee Related JPH0619479B2 (en) 1990-11-08 1990-11-08 Rain, snow and fog identification method and device

Country Status (1)

Country Link
JP (1) JPH0619479B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11271469A (en) * 1998-03-23 1999-10-08 Mitsubishi Electric Corp Fog observation method and fog observation radar system
JP2019101031A (en) * 2017-11-28 2019-06-24 ゾディアック エアロテクニクス Method of detecting presence of ice crystals in environment

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2617662B2 (en) * 1992-10-01 1997-06-04 日本無線株式会社 Rain, snow and fog identification device
DE19530289A1 (en) * 1995-08-17 1997-02-20 Bosch Gmbh Robert Sensor for determining visibility and rain cover
DE10302970A1 (en) * 2003-01-25 2004-08-05 Valeo Schalter Und Sensoren Gmbh Sensor for the detection of fog-like media
JP6665497B2 (en) * 2015-11-16 2020-03-13 株式会社デンソーウェーブ Method for detecting snow on laser radar device, snow detection device, and snow detection program

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61175550A (en) * 1985-01-31 1986-08-07 Meisei Electric Co Ltd Optical measuring method and apparatus for intensity of rain and snow falling

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11271469A (en) * 1998-03-23 1999-10-08 Mitsubishi Electric Corp Fog observation method and fog observation radar system
JP2019101031A (en) * 2017-11-28 2019-06-24 ゾディアック エアロテクニクス Method of detecting presence of ice crystals in environment

Also Published As

Publication number Publication date
JPH04175687A (en) 1992-06-23

Similar Documents

Publication Publication Date Title
US7212278B2 (en) Method and device for recording a three-dimensional distance-measuring image
US8339584B2 (en) Velocity measuring system
US3519354A (en) System for measuring extinction coefficients in the atmosphere utilizing backscattered signals
US5914776A (en) Method for an automated visual range measurement by means of a LIDAR system
CN110006848B (en) Method and device for obtaining extinction coefficient of aerosol
CN108828616B (en) Photon counting laser radar capable of realizing monopulse ranging and constant false alarm control method
CA2510975A1 (en) System and method for traffic monitoring, speed determination, and traffic light violation detection and recording
EP0422415B1 (en) Imaging lidar method and apparatus
SE455541B (en) PROCEDURE FOR CONTROL OF ENERGY BY METS SIGNALS FROM A CLOUD HEIGHT METER AND CLOUD HEAD METERS FOR IMPLEMENTATION OF THE PROCEDURE
US20220196810A1 (en) Time of flight ranging system and ranging method thereof
GB2276998A (en) Lidar with smear detector
WO2019181518A1 (en) Distance measuring device, distance measuring system, distance measuring method, and program
US5751410A (en) Method for measuring flow vectors in gas flows
CN110987872B (en) Forward scatter sensor
JPH0619479B2 (en) Rain, snow and fog identification method and device
Leonard et al. Experimental remote sensing of subsurface temperature in natural ocean water
TUDOR et al. LiDAR sensors used for improving safety of electronic-controlled vehicles
JPH0423740B2 (en)
RU2691978C1 (en) Optical dust meter
SU1430926A1 (en) Contact-free method of determining water attenuation index
Ranefjärd Matched Filters for Direct-Detection LiDAR in Non-Perpendicular Measurement Scenes
RU2116633C1 (en) Pulse photometer
JPH04147037A (en) Device for measuring density of object floating in space
SU1000984A1 (en) Atmosphere transparance determination method
KR960035056A (en) Distance measuring device and method capable of distance error correction

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees