JPH04147037A - Device for measuring density of object floating in space - Google Patents

Device for measuring density of object floating in space

Info

Publication number
JPH04147037A
JPH04147037A JP2269507A JP26950790A JPH04147037A JP H04147037 A JPH04147037 A JP H04147037A JP 2269507 A JP2269507 A JP 2269507A JP 26950790 A JP26950790 A JP 26950790A JP H04147037 A JPH04147037 A JP H04147037A
Authority
JP
Japan
Prior art keywords
value
circuit
target
voltage
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2269507A
Other languages
Japanese (ja)
Other versions
JPH0623693B2 (en
Inventor
Hitoshi Godai
五代 均
Kazuo Suzuki
一雄 鈴木
Satoshi Ogasawara
聡 小笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP2269507A priority Critical patent/JPH0623693B2/en
Publication of JPH04147037A publication Critical patent/JPH04147037A/en
Publication of JPH0623693B2 publication Critical patent/JPH0623693B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To obtain an accurate measurement result constantly by performing relative evaluation of average power in reference to a detected maximum power from received power which is obtained by collecting time-series waves scattered to the rear. CONSTITUTION:A light-emitting element 6 is driven through a timing clock generation circuit 8 and a transmission circuit 7 and pulse-shaped infrared rays from the element 6 are emitted to a target W through a transparent protection plate 3. Then, scattering light which is scattered by the target W is received by a light-receiving element 9 through a transparent protection plate 2 and an optical lens 4. Reception voltage for each pulse hit from the element 9 is integrated at a reception circuit 10 and a reception pulse integration voltage V (V1 - Vn) which is integrated for each specified cycle is sampling-output. In a maximum value detection circuit 11, a maximum reception pulse integration voltage value Vm out of an integration voltage V is detected and an average value Va of the integration voltage V is detected at an average value detection circuit 12. Then, a ratio Q with the average value Va is obtained in a division circuit 13 in reference to a voltage value Vm and a measurement value is converted to a decibel value in a logarithmic conversion circuit 14.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は空間浮遊物体の密度測定装置に関し、さらに
詳しくは時系列のパルス状エネルギー波を測定空間に放
射し該空間に浮遊する標的からの後方散乱波を受信する
ことで標的密度を測定する空間浮遊物体の密度測定装置
に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a device for measuring the density of objects floating in space, and more specifically, it emits time-series pulsed energy waves into a measurement space to detect the density of objects floating in the space. The present invention relates to a density measuring device for objects floating in space that measures target density by receiving backscattered waves.

[従来の技術1 測定空間に時系列のパルス状エネルギー波を放射し該空
間に浮遊する雨、雪等の標的からの後方散乱波を受信す
ると、その受信パルス積分電圧の平均値は標的密度の時
系列変化に対応することか知られている。そこで、従来
は、この受信パルス積分電圧の平均値を直接求めたり、
またはこの平均値か一定以上継続した時間幅を計数する
ことで降水強度等を測定していた。すなわち、従来は受
信データの絶対値に基づいて標的密度をを測定していた
[Prior art 1] When a time-series pulsed energy wave is emitted into a measurement space and backscattered waves from a target such as rain or snow floating in the measurement space are received, the average value of the received pulse integrated voltage is equal to the target density. It is known that it responds to changes over time. Therefore, in the past, the average value of this received pulse integrated voltage was directly calculated,
Alternatively, rainfall intensity, etc., was measured by counting this average value or the time span that continued for a certain period of time. That is, conventionally, target density was measured based on the absolute value of received data.

ところで、この種の装置はパルス状エネルギー波の送/
受信部を有しており、しかもこの部分は外部にさらされ
るので、ここに汚損や損傷が生じるとそのために送/受
信信号が減衰し、従来のような絶対値による評価では測
定誤差を生じてしまう。例えば、光パルスの投/受光面
が汚損すると、これによって後方散乱波の受光レベルが
低下してしまうから、従来の装置では正しい値よりも低
降水量と測定してしまう。しかも、このような汚損や損
傷か進行すると、受光レベルはさらに低下し、装置の測
定レンジは極端に狭くなってしまう。
By the way, this type of device transmits/transmits pulsed energy waves.
It has a receiving section, and this part is exposed to the outside, so if it gets dirty or damaged, the transmitted/received signal will be attenuated, and conventional evaluation using absolute values will cause measurement errors. Put it away. For example, if the light pulse emitting/receiving surface becomes dirty, this will lower the level of received backscattered waves, causing conventional devices to measure a lower amount of precipitation than the correct value. Moreover, as such contamination or damage progresses, the received light level further decreases, and the measurement range of the device becomes extremely narrow.

また、一般に標的の後方散乱波の受信電力は粒子の散乱
係数(主として誘電率)に支配されることか知られてい
るか、従来のように受信電力の絶対値で評価をすると、
仮に同一粒径、同一粒子密度を持った標的であってもそ
の散乱係数が異なれば、標的密度の測定値が異なってし
まう。
Also, is it generally known that the received power of backscattered waves from a target is controlled by the scattering coefficient (mainly dielectric constant) of particles?
Even if targets have the same particle size and particle density, if their scattering coefficients differ, the measured values of the target densities will differ.

[発明が解決しようとする課題] 上記のような従来の空間浮遊物体の密度測定は以上のよ
うに行われ、標的密度の測定を受信電力の絶対値で行う
ので、その測定値は送/受信部の汚損や標的粒子の散乱
係数の相違による誤差を含んでしまっていた。
[Problems to be Solved by the Invention] Conventional density measurement of objects floating in space as described above is performed as described above, and since the target density is measured using the absolute value of the received power, the measured value is transmitted/received. This included errors due to soiling of the parts and differences in the scattering coefficients of the target particles.

この発明はかかる課題を解決するためになされたもので
、エネルギー波の送/受信部に汚損や損傷が生じても、
または標的粒子の散乱係数が相違しても、常に正確な標
的密度の測定が行える空間浮遊物体の密度測定装置の提
供を目的としている。
This invention was made to solve this problem, and even if the energy wave transmitting/receiving section is contaminated or damaged,
Another object of the present invention is to provide a density measuring device for objects floating in space that can always accurately measure target density even if the scattering coefficients of target particles differ.

[課題を解決するための手段] この発明にかかる空間浮遊物体の密度測定装置は、時系
列のパルス状エネルギー波を測定空間に放射し該空間に
浮遊する標的からの後方散乱波を受信することで標的密
度を測定する空間浮遊物体の密度測定装置において、時
系列の後方散乱波を所定時間収集してn個の受信電力を
得る受信手段と、このn個の受信電力の中から最大電力
を検出する最大電力検出手段と、このn個の受信電力の
平均電力を検出する平均電力検出手段と、前記検出した
最大電力を基準として前記検出した平均電力を相対評価
する標的密度の評価手段とを備える。
[Means for Solving the Problems] A device for measuring the density of objects floating in space according to the present invention emits time-series pulsed energy waves into a measurement space and receives backscattered waves from a target floating in the space. In a space-floating object density measuring device that measures target density at a maximum power detection means for detecting, an average power detection means for detecting the average power of the n received powers, and a target density evaluation means for relatively evaluating the detected average power with reference to the detected maximum power. Be prepared.

[作用1 この発明における空間浮遊物体の密度測定装置は、時系
列の後方散乱波を一定時間収集してn個の受信電力値(
P、)を得るとともに、これらの受信電力値(P、)に
基づいてその最大電力(Po)と平均電力(P8)とを
求め、得られた最大電力(P、n)を基準として平均電
力(P6)を相対評価するものであり、これによって、
例えば送/受信部の着雪や@滴によってその分受信電力
値(P、)が減衰を受けても、最大電力(P、、 )と
平均電力(P8)とは夫々同程度の減衰を受けるので、
これを相対評価する(例えば比をとる)ことで減衰の影
響は相殺される。
[Operation 1] The device for measuring the density of objects floating in space according to the present invention collects time-series backscattered waves for a certain period of time and calculates n received power values (
P, ), the maximum power (Po) and average power (P8) are determined based on these received power values (P,), and the average power is calculated based on the obtained maximum power (P, n). It is a relative evaluation of (P6), and by this,
For example, even if the received power value (P,) is attenuated by snow accretion or drops on the transmitting/receiving section, the maximum power (P, , ) and the average power (P8) are attenuated to the same extent. So,
By performing a relative evaluation (for example, taking a ratio), the effects of attenuation can be canceled out.

[実施例1 以下、この発明の一実施例を図面を用いて説明する。第
1図は本発明による実施例の降雪強度計のブロック図で
、図において(1)は降雪強度計の本体、(2)、(3
)は透明の保護板、(4)、(5)は光学レンズ、(6
)は赤外線の発光素子、(7)は送信回路、(8)はタ
イミングクロック発生回路、(9)は赤外線の受光素子
、(10)は受信回路、(11)は最大値検出回路、(
12)は平均値検出回路、(13)は除算回路、(14
)は対数変換回路である。
[Embodiment 1] An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram of a snowfall intensity meter according to an embodiment of the present invention. In the figure, (1) is the main body of the snowfall intensity meter, (2), (3)
) is a transparent protective plate, (4) and (5) are optical lenses, (6
) is an infrared light emitting element, (7) is a transmitting circuit, (8) is a timing clock generation circuit, (9) is an infrared light receiving element, (10) is a receiving circuit, (11) is a maximum value detection circuit, (
12) is an average value detection circuit, (13) is a division circuit, (14)
) is a logarithmic conversion circuit.

また、図の斜線で囲まれたエリアはこの降雪強度計の視
野であって、(W)は降雪(標的)である。
Further, the area surrounded by diagonal lines in the figure is the field of view of this snowfall intensity meter, and (W) is the snowfall (target).

次に動作について説明する。第2図は第1図の装置の動
作タイミングチャートで、図においてタイミングクロッ
ク発生回路(8)は所定周期(t2)毎に例えば38K
H2の送信パルスを時間(tl)の区間だけ発生し、こ
れを所定時間(to)にわたって繰り返す。送信回路(
7)は送信パルスの信号に従って発光素子(6)を駆動
し、この発光素子(6)からのパルス状の赤外光は光学
レンズ(5)及び透明の保護板(3)を通して標的(W
)に向け、放射される。
Next, the operation will be explained. FIG. 2 is an operation timing chart of the device shown in FIG.
A transmission pulse of H2 is generated for a period of time (tl), and this is repeated for a predetermined time (to). Transmission circuit (
7) drives a light emitting element (6) according to the transmission pulse signal, and the pulsed infrared light from this light emitting element (6) passes through the optical lens (5) and the transparent protection plate (3) to the target (W).
) is radiated towards.

一方、標的(W)で散乱した後方散乱光は透明の保護板
(2)及び光学レンズ(4)を通して受光素子(9)で
受信される。この受信波は視野内の個々の粒子(降雪)
からの反射波の合成波であるから、降雪のランダムな配
列と夫々の運動とによりパルスヒツト毎の夫々の粒子か
らの反射波の位相が変動し、その受信電力(すなわち受
信電圧)は時々刻々と変動する。そこで、受信回路(1
0)はパルスヒツト毎の受信電圧を積分するとともに、
所定周期(t2)毎にその区間の受信電圧を積分した受
信パルス積分電圧(vl)〜(Vo)をサンプリング出
力する。
On the other hand, the backscattered light scattered by the target (W) is received by the light receiving element (9) through the transparent protection plate (2) and the optical lens (4). This received wave detects individual particles (snowfall) within the field of view.
Since it is a composite wave of reflected waves from each particle, the phase of the reflected wave from each particle changes for each pulse hit due to the random arrangement of snowfall and the movement of each particle, and the received power (that is, received voltage) changes from moment to moment. fluctuate. Therefore, the receiving circuit (1
0) integrates the received voltage for each pulse hit, and
At every predetermined period (t2), received pulse integrated voltages (vl) to (Vo) obtained by integrating the received voltage in that section are sampled and output.

第3図はこうして得られた受信パルス積分電圧(vl)
〜(V、)を降順に並べたグラフ図で、ここでは受信パ
ルス積分電圧(■4)か最大電圧(V、)として示され
ている。
Figure 3 shows the received pulse integrated voltage (vl) obtained in this way.
-(V,) are arranged in descending order, and here they are shown as the received pulse integrated voltage (4) or the maximum voltage (V,).

第4図は第3図の状態を包絡線で表したグラフ図で、こ
こでは異なる標的密度について測定した複数の包絡線が
示されている。図において(V、、)は標的密度が最も
小さい場合の包絡線を示しており、この時の受信パルス
積分電圧(■1)〜(V、)の平均電圧を求めると、(
V、、)である。同様にして(V、□)は標的密度が前
記よりも少し大きい場合の包絡線を示しており、この時
の平均電圧は(V、□)である。さらに(■a5)は標
的密度が最も大きい場合の包絡線を示しており、この時
の平均電圧は(V as)である。かくして、各平均電
圧には(V−+)<(V、□) < (V−3) < 
(V、4) < (V、s)の関係があり、この平均電
圧を求めることで標的密度を測定できることは上記の通
りである。
FIG. 4 is a graphical representation of the situation of FIG. 3 in the form of envelopes, in which a plurality of envelopes measured for different target densities are shown. In the figure, (V,,) indicates the envelope when the target density is the smallest, and when the average voltage of the received pulse integrated voltages (■1) to (V,) at this time is determined, (
V, ). Similarly, (V, □) indicates the envelope when the target density is slightly larger than the above, and the average voltage at this time is (V, □). Furthermore, (■a5) shows the envelope when the target density is the highest, and the average voltage at this time is (V as). Thus, each average voltage has (V-+) < (V, □) < (V-3) <
As described above, there is a relationship of (V, 4) < (V, s), and the target density can be measured by finding this average voltage.

ところで、本実施例のように所定時間(to )にわた
って受信パルス積分電圧の収集を行うと、どの包絡綿も
略一定の最大受信パルス積分電圧(〜′、、、)を有し
ていることに気づく。
By the way, if the received pulse integrated voltage is collected over a predetermined period of time (to) as in this embodiment, it is found that every wrapped cotton has a substantially constant maximum received pulse integrated voltage (~',,,). notice.

一般に、後方散乱光の受光電力(P)は、(但し、K:
光学的定数、0 粒子の散乱断面積、D・空間の粒子密
度、R:投光器と標的までの距離) の関係で示されるか、各受光電力(P、)の中には、粒
子密度(D)が一定であるにもかかわらず、散乱断面積
(a)か大、または距離(R)か小であることによって
生じるピーク電力(P、、、)か必ず含まれてくるので
ある。
Generally, the received power (P) of backscattered light is (however, K:
Optical constant, 0 Particle scattering cross section, D, particle density in space, R: Distance from projector to target) ) is constant, the peak power (P, . . . ) caused by a large scattering cross section (a) or a small distance (R) is always included.

そこで第1図に戻り、最大値検出回路(11)は受信パ
ルス積分電圧(vl)〜(V、)の中から最大の受信パ
ルス積分電圧値(Vo)を検出する。一方、平均値検出
回路(12)は受信パルス積分電圧(V、) 〜(V、
)の平均値(V、)を、 によって検出する。そして、除算回路(13)は最大の
受信パルス積分電圧値(vl)を基準としてこの平均値
(V、)を相対評価すべ(、これらの比を、 に従って求め、対数変換回路(14) (S)を、 S = 201’og Q に従ってデシベル値に変換する。なお、は測定値 (Q) が 電力比の場合は、 S=101ogQ である。
Returning to FIG. 1, the maximum value detection circuit (11) detects the maximum received pulse integrated voltage value (Vo) from among the received pulse integrated voltages (vl) to (V, ). On the other hand, the average value detection circuit (12) detects the received pulse integrated voltage (V, ) ~ (V,
The average value (V, ) of ) is detected by. Then, the division circuit (13) performs a relative evaluation of this average value (V,) using the maximum received pulse integrated voltage value (vl) as a reference, and calculates the ratio of these values according to ) is converted into a decibel value according to S = 201'og Q, where S = 101'ogQ when the measured value (Q) is a power ratio.

ここで、透明の保護板(2)、(3)か汚れると、それ
に応じて受信パルス積分電圧(Vl)〜(Vn)も減衰
するが、今、平均値(V、)を求める基礎となる受信パ
ルス積分電圧(■1)〜(V、)の検出時の平均減衰係
数を(21+最大の受信パルス積分電圧値(■。)に対
応する受信パルス積分電圧(V、)の検出時の減衰係数
をa2とすると、その津11定イ直(S)は[5には、
となるが、汚れの進行に比べて受信パルス積分電圧(v
l)の収集時間(to )が充分に短ければa1丑α2
として良いから、 In となり、本実施例によれば透明の保護板(2)。
Here, if the transparent protection plates (2) and (3) become dirty, the received pulse integrated voltages (Vl) to (Vn) will also attenuate accordingly, but this will now be the basis for calculating the average value (V,). The average attenuation coefficient at the time of detection of the received pulse integrated voltage (■1) ~ (V,) is (21 + attenuation at the time of detection of the received pulse integrated voltage (V,) corresponding to the maximum received pulse integrated voltage value (■.) If the coefficient is a2, then the 11 constant straightness (S) is [5 is,
However, compared to the progress of contamination, the received pulse integrated voltage (v
If the collection time (to ) of l) is sufficiently short, a1 丑α2
According to this embodiment, it is a transparent protection plate (2).

(3)に汚れが生じても、これによる減衰分は分母分子
の関係で相殺され、もって測定結果には誤差を生じない
Even if dirt occurs in (3), the attenuation due to this is canceled out by the relationship between the denominator and numerator, so that no error occurs in the measurement results.

また、これによって従来はフルスケールの約50%程度
であった有効計測範囲も約90%にまで拡大できる。
Furthermore, this allows the effective measurement range, which was conventionally about 50% of the full scale, to be expanded to about 90%.

また、本発明によれば(■8)と(V、、)との相対評
価をするので、例えば装置の設置場所毎に標的の散乱係
数か異なる場合でも、標的密度に忠実な正確な測定結果
が得られる。
In addition, according to the present invention, since a relative evaluation is performed between (■8) and (V, , ), accurate measurement results that are faithful to the target density can be obtained even if the scattering coefficient of the target differs depending on the installation location of the device. is obtained.

さらに、従来の電磁波を用いた雨量レーダや雪量レーダ
では、反射電力を降水強度に換算するための所謂レーダ
反射因子と呼ばれる反射係数を推定しなければならず、
これに推定誤差があるとこれか降水強度の測定誤差につ
ながるが、本発明を応用すれば反射係数は関与しな(な
るので、測定精度の向上か図れる利、’#、かある。
Furthermore, in conventional rainfall radars and snow radars that use electromagnetic waves, it is necessary to estimate a reflection coefficient called a radar reflection factor to convert reflected power into precipitation intensity.
If there is an estimation error in this, it will lead to an error in the measurement of precipitation intensity, but if the present invention is applied, the reflection coefficient will not be involved, so there is an advantage that the measurement accuracy can be improved.

なお、上記実施例では降雪強度計を示したが、降水強度
計でも、他の空間浮遊物体の密度測定装置でも良い。
Although a snowfall intensity meter is shown in the above embodiment, a precipitation intensity meter or other spatially floating object density measuring device may be used.

また、上記実施例では赤外線を利用したが本発明は光波
を利用した濁度計、電磁波を利用したレーダ雨・雪量針
、もしくは音波を利用して空間浮遊物を非接触で測定す
る装置にも適用できる。
In addition, although the above embodiments used infrared rays, the present invention is applicable to turbidity meters that use light waves, radar rain/snow needles that use electromagnetic waves, or devices that non-contactly measure floating objects in space using sound waves. can also be applied.

[発明の効果] この発明は以上説明したように、検出した最大電力を基
準としてその平均電力を相対評価するので、送/受信部
の汚損や標的の散乱係数の相違等かあっても常に正確な
測定結果が得られるとともに、測定の有効範囲を広(維
持できる等の効果かある。
[Effects of the Invention] As explained above, this invention uses the detected maximum power as a reference to evaluate the average power relative to it, so it is always accurate even if the transmitting/receiving section is contaminated or the scattering coefficient of the target is different. In addition to obtaining accurate measurement results, it also has the effect of widening (maintaining) the effective range of measurement.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による実施例の降雪強度計のブロック図
、第2図は第1図の装置の動作タイミングチャート、第
3図は受信パルス積分電圧(■、)〜(Vn)を降順に
並べたグラフ図、第4図は平均電圧(V、、)〜(V、
5)をパラメータとして対応する受信パルス積分電圧の
並びを包絡線で示したグラフ図である。 (1)は本体、(2)、(3)は透明保護板、(4)、
(5)は光学レンズ、(6)は赤外線発光素子、 (7
)は送信回路、(8)はタイミングクロック発生回路、
(9)は赤外線受光素子、(10)は受信回路、(11
)は最大値検出回路、(I2)は平均値検出回路、(I
3)は\
Fig. 1 is a block diagram of a snowfall intensity meter according to an embodiment of the present invention, Fig. 2 is an operation timing chart of the device shown in Fig. 1, and Fig. 3 shows received pulse integrated voltages (■, ) to (Vn) in descending order. The arranged graph diagram, Figure 4, shows the average voltage (V, ) ~ (V,
5) is a graph diagram showing, as an envelope, a sequence of corresponding received pulse integrated voltages using 5) as a parameter. (1) is the main body, (2), (3) are transparent protective plates, (4),
(5) is an optical lens, (6) is an infrared light emitting element, (7
) is a transmission circuit, (8) is a timing clock generation circuit,
(9) is an infrared light receiving element, (10) is a receiving circuit, (11)
) is the maximum value detection circuit, (I2) is the average value detection circuit, (I
3) is\

Claims (1)

【特許請求の範囲】 時系列のパルス状エネルギー波を測定空間に放射し該空
間に浮遊する標的からの後方散乱波を受信することで標
的密度を測定する空間浮遊物体の密度測定装置において
、 時系列の後方散乱波を所定時間収集してn個の受信電力
を得る受信手段と、 このn個の受信電力の中から最大電力を検出する最大電
力検出手段と、 このn個の受信電力の平均電力を検出する平均電力検出
手段と、 前記検出した最大電力を基準として前記検出した平均電
力を相対評価する標的密度の評価手段とを備えたことを
特徴とする空間浮遊物体の密度測定装置。
[Scope of Claims] A density measuring device for a space-floating object that measures target density by emitting time-series pulsed energy waves into a measurement space and receiving backscattered waves from a target floating in the space, comprising: receiving means for collecting backscattered waves of the sequence for a predetermined period of time to obtain n received powers; maximum power detecting means for detecting the maximum power from among the n received powers; and an average of the n received powers. An apparatus for measuring the density of objects floating in space, comprising: average power detection means for detecting power; and target density evaluation means for relatively evaluating the detected average power with reference to the detected maximum power.
JP2269507A 1990-10-09 1990-10-09 Device for measuring the density of airborne objects Expired - Fee Related JPH0623693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2269507A JPH0623693B2 (en) 1990-10-09 1990-10-09 Device for measuring the density of airborne objects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2269507A JPH0623693B2 (en) 1990-10-09 1990-10-09 Device for measuring the density of airborne objects

Publications (2)

Publication Number Publication Date
JPH04147037A true JPH04147037A (en) 1992-05-20
JPH0623693B2 JPH0623693B2 (en) 1994-03-30

Family

ID=17473384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2269507A Expired - Fee Related JPH0623693B2 (en) 1990-10-09 1990-10-09 Device for measuring the density of airborne objects

Country Status (1)

Country Link
JP (1) JPH0623693B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010528309A (en) * 2007-05-29 2010-08-19 ユニベルシテ・クロード・ベルナール・リヨン・プルミエ Optical remote detection method for compounds in media
CN114944851A (en) * 2022-04-26 2022-08-26 中国人民解放军国防科技大学 High-rate environment backscattering communication method, device, equipment and medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010528309A (en) * 2007-05-29 2010-08-19 ユニベルシテ・クロード・ベルナール・リヨン・プルミエ Optical remote detection method for compounds in media
CN114944851A (en) * 2022-04-26 2022-08-26 中国人民解放军国防科技大学 High-rate environment backscattering communication method, device, equipment and medium
CN114944851B (en) * 2022-04-26 2023-11-21 中国人民解放军国防科技大学 High-rate environment backscattering communication method, device, equipment and medium

Also Published As

Publication number Publication date
JPH0623693B2 (en) 1994-03-30

Similar Documents

Publication Publication Date Title
US8804103B2 (en) Velocity measuring system
US7791713B2 (en) Distance measurement
US7453553B2 (en) System and method for determining range in 3D imaging systems
JP3545823B2 (en) Apparatus and method for measuring visibility and current weather
US7911589B2 (en) Optical distance measuring method and corresponding optical distance measurement device
US20040233416A1 (en) Method and device for recording a three-dimensional distance-measuring image
JP2006521536A5 (en)
JP2820095B2 (en) Laser measuring device
CN111766571A (en) Outdoor calibration method for infrared range finder
TUDOR et al. LiDAR sensors used for improving safety of electronic-controlled vehicles
JPH04147037A (en) Device for measuring density of object floating in space
EP3730967A1 (en) Method of generating a time domain echo waveform and electromagnetic radiation echo waveform generation system
CN114397013B (en) Laser power meter and method for calibrating sampling coefficient of large optical system based on same
Golovkov et al. Receiving system of a pulsed laser rangefinder
JPH0619479B2 (en) Rain, snow and fog identification method and device
RU2361237C2 (en) Method of photo-location measurement of height of cloud layers and device to this end
RU2521203C1 (en) Method of detecting objects, measuring velocity, range and angular coordinates and apparatus for realising said method
CN111077530B (en) Light quantum distance meter with air component measuring function
Yoo et al. Gravitational lensing effects on the baryonic acoustic oscillation signature<? format?> in the redshift-space correlation function
RU2258903C2 (en) Method and device for measuring shift of object (versions)
JPH0365844B2 (en)
CN118091606A (en) High-precision single-photon detection laser radar ranging system and method
RU20976U1 (en) CLOUD LOW METER OF CLOUD LOWER BORDER
CN114370944A (en) Real-time online temperature monitoring method and system with calibration and correction functions
JPS6112527B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees