SE467553B - OPTICAL METHOD TO DETECT AND CLASSIFY RETURNS BY DETECTING SPRITT RESP BACKGROUND LIGHT FROM A BRIGHT - Google Patents

OPTICAL METHOD TO DETECT AND CLASSIFY RETURNS BY DETECTING SPRITT RESP BACKGROUND LIGHT FROM A BRIGHT

Info

Publication number
SE467553B
SE467553B SE9003817A SE9003817A SE467553B SE 467553 B SE467553 B SE 467553B SE 9003817 A SE9003817 A SE 9003817A SE 9003817 A SE9003817 A SE 9003817A SE 467553 B SE467553 B SE 467553B
Authority
SE
Sweden
Prior art keywords
detecting
detect
classify
light
light beam
Prior art date
Application number
SE9003817A
Other languages
Swedish (sv)
Other versions
SE9003817D0 (en
SE9003817L (en
Inventor
Sten Loefving
Original Assignee
Sten Loefving
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sten Loefving filed Critical Sten Loefving
Priority to SE9003817A priority Critical patent/SE467553B/en
Publication of SE9003817D0 publication Critical patent/SE9003817D0/en
Priority to DE4139515A priority patent/DE4139515A1/en
Publication of SE9003817L publication Critical patent/SE9003817L/en
Publication of SE467553B publication Critical patent/SE467553B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/10Detecting, e.g. by using light barriers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/95Lidar systems specially adapted for specific applications for meteorological use
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/4802Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Description

467 553 De således beskrivna fenomenen erbjuder en möjlighet att endast utifrån uppmätt pulstid klassificera nederbörd. För en stråle med en höjd av ca 0.3 mm kan man förvänta sig följande typiska resultat: nederbördsslag: pulstid: regn (D=lmm) 0.10 ms duggregn (D=0,1mm) 0.15 ms snö 0.25 ms Ljusstrálen utformas oval och med det minsta måttet vertikalt. 467 553 The phenomena thus described offer an opportunity to classify precipitation only on the basis of measured pulse time. For a beam with a height of approx. 0.3 mm, the following typical results can be expected: Precipitation type: pulse time: rain (D = lmm) 0.10 ms drizzle (D = 0.1 mm) 0.15 ms snow 0.25 ms The light beam is designed oval and with the smallest had to be vertical.

Detta eliminerar i viss mån de fel som orsakas av vind. Om partikeln p g a vind faller snett igenom de centrala delarna av den ovala strålen svarar pulslängden väl mot den vertikala hastig- heten vilket ju är vad man önskar mäta.This eliminates to some extent the errors caused by wind. If the particle falls obliquely through the central parts of the oval beam due to wind, the pulse length corresponds well to the vertical velocity, which is what you want to measure.

Ett viktigt kännetecken för föreliggande uppfinning är alltså att att man registrerar det bakàtspidda ljuset när en nederbörds- partikel passerar en ljusstrále vars vertikala utsträckning är mindre eller jämförbar med diametern på de partiklar man vill registrera och klassificera. Inget hidrar emellertid att man de- tekterar strålning som sprids i andra riktningar än bakåt, orsaken till att bakåtspridning används i föreliggande uppfinning är att konstruktionen blir mycket robust och enkel och dessutom att denna uppbyggnad medför minsta tänkbara påverkan på luftströmningen kring givaren, luftströmning som utgör en felkälla för mätningar.An important feature of the present invention is thus that one registers the backscattered light when a precipitation particle passes a light beam whose vertical extent is smaller or comparable to the diameter of the particles one wants to register and classify. However, there is no reason to detect radiation that is scattered in directions other than backward, the reason why backscattering is used in the present invention is that the construction becomes very robust and simple and also that this construction has the least possible effect on the air flow around the sensor. a source of error for measurements.

Det finns s k "present weather instruments" som med optiska metoder tillsammans med en kraftfull dator detekterar och klassificerar nederbörden. Dessa instrument skiljer sig från före- liggande uppfinning på två viktiga punkter. För det första arbetar de med en ljusstrále vars tvärsnittsarea är avsevärt större än nederbördspartiklarnas, vilket är ett villkor för funktionen.There are so-called "present weather instruments" which with optical methods together with a powerful computer detect and classify precipitation. These instruments differ from the present invention in two important respects. First, they work with a light beam whose cross-sectional area is considerably larger than that of the precipitation particles, which is a condition of the function.

Dessa instrument bearbetar nämligen tvärsnittsarean via amplituden på de registrerade signalerna. För det andra detekteras det ljus som nederbördspartikeln inte sprider ut (transmissionsprincipen) eller det ljus som partikeln sprider ut i en vinkel "nära" ljusstràlens (framåtspridning). _ ' Det är möjligt att utifrân varje droppes pulstid bräkna dess volym vilket i sin tur möjliggör en beräkning av millimeter nederbörd.Namely, these instruments process the cross-sectional area via the amplitude of the recorded signals. Second, the light that the precipitation particle does not emit (the transmission principle) or the light that the particle emits at an angle "close" to the light beam (forward scattering) is detected. It is possible to calculate its volume from the pulse time of each drop, which in turn enables a calculation of millimeters of precipitation.

Ett utförinqsexempel Här beskrivs en tänkbar utformning av uppfinningen. Inom ramen för patentkraven kan emellertid flera andra utformningar realiseras.An embodiment Hereinafter, a possible embodiment of the invention is described. Within the scope of the claims, however, several other designs can be realized.

En AM-modulerad halvledarlaser jämte fokuseringsobjektiv monteras intill en detektor med tillhörande samlingslins enligt figuren. Om laserstrålen skär detektorlinsens optiska axel med en vinkel större än detektorlobens halva öppningsvinkel enligt figuren nås detektorn av spritt ljus från eventuella partiklar inom ett be- gränsat område definierat av snittet mellan detektorloben och laserstrálen. Efter synkrondemodulering av detektorsignalen er- hàlles pulser när partiklar passerar det förut definierade om- rådet. I elektroniken finns kretsar för bestämning av pulslängden. “ärAn AM-modulated semiconductor laser and focusing lens are mounted next to a detector with an associated collection lens according to the figure. If the laser beam intersects the optical axis of the detector lens at an angle greater than half the aperture angle of the detector beam according to the figure, the detector is reached by scattered light from any particles within a limited area defined by the intersection between the detector beam and the laser beam. After synchronous demodulation of the detector signal, pulses are obtained when particles pass the previously defined range. In electronics, there are circuits for determining the pulse length. “Is

Claims (2)

467 553 Patentkrav467,553 Patent claims 1.0ptisk metod att detektera och klassificera nederbörd där utrustning används som innefattar en strålningskälla samt ett detekteringssystem varvid strälen sammanfaller med detekterings- loben inom ett omrâde k ä n n e t e c k n a d d ä r a v a t t det spridda ljuset från ljusstràlen vars vertikala utsträckning är mindre än diametern på de största partiklar man vill detektera eller mellan 0,1 och 1 mm, varvid stora regndroppar skiljes från mindre genom att de orsakar kortare pulser och snö skiljes från regn genom att snöflingor orsakar längre pulser än regndroppar och ljusstrålens horisontella utsträckning är större än dess vertikala utsträckning.Optical method for detecting and classifying precipitation using equipment that includes a radiation source and a detection system in which the beam coincides with the detection beam within an area characterized by the scattered light from the light beam whose vertical extent is less than the diameter of the largest particles. want to detect or between 0.1 and 1 mm, whereby large raindrops are distinguished from smaller ones by causing shorter pulses and snow is separated from rain by snowflakes causing longer pulses than raindrops and the horizontal extent of the light beam is greater than its vertical extent. 2.0ptisk metod att detektera och klassificera nederbörd där utrustning används som innefattar en strälningskälla samt ett detekteringssystem varvid strålen sammanfaller med detekterings- loben inom en begränsad volym. k ä n n e t e c k n a d d ä r a v a t t det bakåtspridda ljuset från ljusstrålen vars vertikala ut- sträckning är mindre än diametern pá de största partiklar man vill detektera eller mellan 0,1 och 1 mm, varvid stora regndroppar skiljes från mindre genom att de orsakar kortare pulser och snö skiljes från regn genom att snöflingor orsakar längre pulser än regndroppar och ljusstrålens horisontella utsträckning är större än dess vertikala utsträckning. n2.0ptical method of detecting and classifying precipitation where equipment is used that includes a radiation source and a detection system whereby the beam coincides with the detection beam within a limited volume. characterized by the backscattered light from the light beam whose vertical extent is less than the diameter of the largest particles to be detected or between 0.1 and 1 mm, whereby large raindrops are distinguished from smaller ones by causing shorter pulses and snow is separated from rain because snowflakes cause longer pulses than raindrops and the horizontal extent of the light beam is greater than its vertical extent. n
SE9003817A 1990-11-30 1990-11-30 OPTICAL METHOD TO DETECT AND CLASSIFY RETURNS BY DETECTING SPRITT RESP BACKGROUND LIGHT FROM A BRIGHT SE467553B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SE9003817A SE467553B (en) 1990-11-30 1990-11-30 OPTICAL METHOD TO DETECT AND CLASSIFY RETURNS BY DETECTING SPRITT RESP BACKGROUND LIGHT FROM A BRIGHT
DE4139515A DE4139515A1 (en) 1990-11-30 1991-11-29 Optical detection and classification of precipitation - using light beam with vertical dimension smaller than largest particle to be detected

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE9003817A SE467553B (en) 1990-11-30 1990-11-30 OPTICAL METHOD TO DETECT AND CLASSIFY RETURNS BY DETECTING SPRITT RESP BACKGROUND LIGHT FROM A BRIGHT

Publications (3)

Publication Number Publication Date
SE9003817D0 SE9003817D0 (en) 1990-11-30
SE9003817L SE9003817L (en) 1992-05-31
SE467553B true SE467553B (en) 1992-08-03

Family

ID=20381058

Family Applications (1)

Application Number Title Priority Date Filing Date
SE9003817A SE467553B (en) 1990-11-30 1990-11-30 OPTICAL METHOD TO DETECT AND CLASSIFY RETURNS BY DETECTING SPRITT RESP BACKGROUND LIGHT FROM A BRIGHT

Country Status (2)

Country Link
DE (1) DE4139515A1 (en)
SE (1) SE467553B (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5796094A (en) 1993-02-26 1998-08-18 Donnelly Corporation Vehicle headlight control using imaging sensor
US5670935A (en) 1993-02-26 1997-09-23 Donnelly Corporation Rearview vision system for vehicle including panoramic view
US6822563B2 (en) 1997-09-22 2004-11-23 Donnelly Corporation Vehicle imaging system with accessory control
US6084519A (en) * 1993-05-07 2000-07-04 Control Devices, Inc. Multi-function light sensor for vehicle
EP0698261B1 (en) * 1993-05-07 2003-05-02 Dennis J. Hegyi Multi-fonction light sensor for vehicle
US6118383A (en) * 1993-05-07 2000-09-12 Hegyi; Dennis J. Multi-function light sensor for vehicle
US7655894B2 (en) 1996-03-25 2010-02-02 Donnelly Corporation Vehicular image sensing system
DE19615246A1 (en) * 1996-04-18 1997-10-23 Krupp Foerdertechnik Gmbh Photogrammetry method for three-dimensional tracking of moving objects
US6313454B1 (en) 1999-07-02 2001-11-06 Donnelly Corporation Rain sensor
EP1025702B9 (en) 1997-10-30 2007-10-03 Donnelly Corporation Rain sensor with fog discrimination
AU2003263131A1 (en) * 2002-08-09 2004-03-19 Automotive Distance Control Systems Gmbh Means of transport with a three-dimensional distance camera and method for the operation thereof
US7720580B2 (en) 2004-12-23 2010-05-18 Donnelly Corporation Object detection system for vehicle
US7972045B2 (en) 2006-08-11 2011-07-05 Donnelly Corporation Automatic headlamp control system
US8017898B2 (en) 2007-08-17 2011-09-13 Magna Electronics Inc. Vehicular imaging system in an automatic headlamp control system
US8451107B2 (en) 2007-09-11 2013-05-28 Magna Electronics, Inc. Imaging system for vehicle
US8446470B2 (en) 2007-10-04 2013-05-21 Magna Electronics, Inc. Combined RGB and IR imaging sensor
US20100020170A1 (en) 2008-07-24 2010-01-28 Higgins-Luthman Michael J Vehicle Imaging System

Also Published As

Publication number Publication date
SE9003817D0 (en) 1990-11-30
SE9003817L (en) 1992-05-31
DE4139515A1 (en) 1992-06-04

Similar Documents

Publication Publication Date Title
SE467553B (en) OPTICAL METHOD TO DETECT AND CLASSIFY RETURNS BY DETECTING SPRITT RESP BACKGROUND LIGHT FROM A BRIGHT
US6611319B2 (en) Optical flow sensor using a fast correlation algorithm
US4830494A (en) Method and apparatus for measuring particles in a fluid
FI98160B (en) Analyser for particle asymmetry
FI98766C (en) Device and method for measuring visibility and prevailing weather conditions
JP2641927B2 (en) Particle measurement device
WO1986004435A1 (en) Precipitation identification by utilizing particulate size and velocity, extinction coefficients and humidity measurements
US4984889A (en) Particle size measuring system with coincidence detection
US20130094012A1 (en) Method and apparatus for measuring the flow velocity by means of a plasma
US4202625A (en) Method and apparatus for discriminating red blood cells from platelets
JP4430659B2 (en) Weather measurement equipment
US4510438A (en) Coincidence correction in particle analysis system
CN110987872B (en) Forward scatter sensor
EP1828812A1 (en) A weather measurement device for determining the falling speed of hydrometers
JPH08159949A (en) Particle detection device
CN110006849B (en) Method and device for obtaining extinction coefficient of aerosol
JPH0786455B2 (en) Particle measuring method and apparatus
JP3193670B2 (en) Smoke detector
CN110987873B (en) Forward scatter sensor
JP3312712B2 (en) Optimal threshold setting method for high-sensitivity smoke detector
US6512583B1 (en) Apparatus and method for the dimensional measurement of airborne fibers
JPH11118946A (en) Snowstorm detecting sensor and snowstorm detector using it
US11828854B2 (en) Automatic LIDAR performance monitoring and maintenance for autonomous driving
JP3053694B2 (en) Flow velocity measuring device
JPH11339157A (en) Smoke sensor

Legal Events

Date Code Title Description
NAL Patent in force

Ref document number: 9003817-5

Format of ref document f/p: F

NUG Patent has lapsed