JPH06249472A - Ice accumulating method in ice accumulation heat system and ice accumulating pipe system - Google Patents

Ice accumulating method in ice accumulation heat system and ice accumulating pipe system

Info

Publication number
JPH06249472A
JPH06249472A JP5056387A JP5638793A JPH06249472A JP H06249472 A JPH06249472 A JP H06249472A JP 5056387 A JP5056387 A JP 5056387A JP 5638793 A JP5638793 A JP 5638793A JP H06249472 A JPH06249472 A JP H06249472A
Authority
JP
Japan
Prior art keywords
ice
water
heat storage
tank
small tanks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5056387A
Other languages
Japanese (ja)
Other versions
JP3505733B2 (en
Inventor
Tokio Okonogi
時雄 小此木
Hironori Shiraishi
裕紀 白石
Sakae Kikuchi
栄 菊地
Masayuki Yano
正幸 谷野
Mitsuru Moriya
充 守屋
Masatake Iribe
真武 入部
Kazunori Eto
一典 衛藤
Tadashi Matsumoto
正 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP05638793A priority Critical patent/JP3505733B2/en
Publication of JPH06249472A publication Critical patent/JPH06249472A/en
Application granted granted Critical
Publication of JP3505733B2 publication Critical patent/JP3505733B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Abstract

PURPOSE:To provide no restriction on the number of small tanks to be installed in an ice accumulation heat system for employing multi-tank type heat accumulating tanks composed of a plurality of small tanks. CONSTITUTION:Ice and water slurry generated by over-cooled water produced by an over-cooling device 10 are concurrently supplied in parallel against independent small tanks 2, 3, 4 and ice is stored in each of the small tanks. At this time, a variation of water level in each of the small tanks is not high and further ice can be uniformly accumulated within each of the small tanks, resulting in that there is no limitation to the number of small tanks to be mounted and a degree of freedom of installing locations for the small tanks can be increased. In addition, since a changing-over valve and a communicating pipe are not needed, an amount of working operation can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、氷蓄熱システムにおけ
る蓄氷方法並びに蓄氷管路系に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ice storage method and an ice storage pipeline system in an ice heat storage system.

【0002】[0002]

【従来の技術】建物内に配設したファンコイルユニット
や水熱源ヒートポンプユニットの水側熱交換器に、蓄熱
槽内に蓄えた冷温水を循環させて冷暖房を行う際、冷房
時の冷熱を蓄熱槽内において氷の形態で蓄える氷蓄熱シ
ステムは、小規模装置でも多量の冷熱を蓄えられること
から近年特に注目されている。ところでこのような氷蓄
熱システムにおいて蓄熱槽内に蓄えられる氷には、生
成、使用する氷の性状の種類により、氷塊状のものとシ
ャーベット状のものとがあるが、後者の方がI.P.
F.(氷の充填率)を大きくでき、蓄熱効率を向上させ
ることができる。
2. Description of the Related Art When cooling and heating water by circulating cold / hot water stored in a heat storage tank through a water side heat exchanger of a fan coil unit or a water heat source heat pump unit installed in a building, the cold heat during cooling is stored. An ice heat storage system that stores ice in the form of ice in a tank has attracted particular attention in recent years because a large amount of cold heat can be stored even in a small-scale device. By the way, the ice stored in the heat storage tank in such an ice heat storage system is classified into an ice block type and a sherbet type depending on the type of ice to be produced and used. P.
F. (Ice filling rate) can be increased, and heat storage efficiency can be improved.

【0003】かかるシャーベット状の氷を生成するにあ
たっては、例えば特開昭63−217171号公報、特
開昭63−231157号公報、特開平1−11468
2号公報などに開示される技術において、過冷却水から
連続的に生成する方法、装置などが既に提案されてい
る。これら公知技術によれば、過冷却水を過冷却器の伝
熱管の吐出口から連続的に空中に吐出させ、該吐出流を
衝突板などの過冷却解除手段に衝突させて衝撃を付与さ
せることにより、シャーベット状の氷を水とのスラリー
状態(氷・水スラリー)として連続して効率よく生成す
ることが可能となっている。
In producing such sherbet-like ice, for example, JP-A-63-217171, JP-A-63-231157 and JP-A-1-11468 are used.
In the technology disclosed in Japanese Patent Publication No. 2 etc., a method, an apparatus, etc. for continuously producing from supercooled water have already been proposed. According to these known techniques, the supercooled water is continuously discharged from the discharge port of the heat transfer tube of the supercooler into the air, and the discharge flow is collided with the supercooling releasing means such as a collision plate to give an impact. This makes it possible to continuously and efficiently generate sherbet-like ice in a slurry state with water (ice / water slurry).

【0004】また一方、最近は需要の増大に伴い大規模
蓄熱設備への取り組みが盛んであるが、大容量の単一蓄
熱槽を設置できる余裕がない場合には、地下スラブなど
を利用した所謂多槽型の蓄熱槽が提案されている。これ
は例えば図2に示したように、小槽51、52、53、
54を連通管55、56、57で連通させて全体として
1つの蓄熱槽を構成するものである。そしてこのような
連通式の多槽型蓄熱槽に前記シャーベット状の氷を蓄氷
するには、従来次のような方法が採られている。
On the other hand, recently, efforts are being made for large-scale heat storage equipment as demand increases, but when there is no room to install a large-capacity single heat storage tank, a so-called underground slab is used. A multi-tank type heat storage tank has been proposed. This is, for example, as shown in FIG.
54 is connected by the communication pipes 55, 56, 57 to constitute one heat storage tank as a whole. In order to store the sherbet-shaped ice in the communication type multi-tank type heat storage tank, the following method has been conventionally used.

【0005】まず最も下流側の小槽54からポンプ58
によって取水された水は、過冷却器59で過冷却水とさ
れて空中に吐出され、過冷却解除手段60によって氷・
水スラリーに変換される。その後この氷・水スラリーは
搬送管61、及び該搬送管61から分岐する分岐管6
2、63、64、65へと搬送され、そこから各小槽5
1、52、53、54へと分配されるのであるが、これ
ら各分岐管62、63、64、65には、夫々切り替え
弁62a、63a、64a、65aが設けられており、
これら各切り替え弁62a、63a、64a、65aを
適宜操作させることにより、まず最も上流側となる小槽
51に対してのみ氷・水スラリーの供給、蓄氷が開始さ
れ、その後氷水相の氷容積がほぼ一杯になるにしたがっ
て、適宜切り替え弁62a、63a、64a、65aを
切り替えて、小槽52、53、54へと蓄氷を順次移行
するようにしていた。このような方法で蓄氷することに
より、各小槽51、52、53、54には図2に示した
ように、この順に氷水相の氷容積が大きい状態が創出さ
れ、最終的には全体として非常に大きな氷容積のもとで
氷蓄熱が達成されるようになっていたのである。
First, the pump 58 is moved from the tank 54 on the most downstream side.
The water taken in by the supercooler 59 is turned into supercooled water by the supercooler 59 and discharged into the air.
Converted to water slurry. Thereafter, the ice / water slurry is transferred to the transfer pipe 61 and a branch pipe 6 branched from the transfer pipe 61.
2, 63, 64, 65, from which each tank 5
1, 52, 53, 54, each of the branch pipes 62, 63, 64, 65 is provided with a switching valve 62a, 63a, 64a, 65a, respectively.
By appropriately operating these switching valves 62a, 63a, 64a, 65a, first, the supply of ice / water slurry and the storage of ice are started only for the small tank 51 on the most upstream side, and then the ice volume of the ice water phase is increased. As shown in FIG. 3, the changeover valves 62a, 63a, 64a, 65a are appropriately changed over so that the ice storage is sequentially transferred to the small tanks 52, 53, 54. By storing ice in this way, a state in which the ice volume of the ice-water phase is large in this order is created in each of the small tanks 51, 52, 53, 54, as shown in FIG. As a result, ice heat storage was being achieved under a very large ice volume.

【0006】[0006]

【発明が解決しようとする課題】しかしながら上記のよ
うな所謂直列順次蓄氷方法では、以下のような問題が生
ずる。即ち、シャーベット状の氷を槽内に蓄氷する場
合、蓄氷の進行に伴って槽内の氷の層による水の通過圧
力損失が増大し、槽の内圧が上昇するが、直列順次蓄氷
方法では、蓄氷量増加に伴う槽内圧上昇により、連通管
でつながった上流側槽の水位が上昇する。ところがその
水位上昇分の水は、蓄氷している槽の下流側槽から供給
されることになるので、下流側槽、特に最下流側槽54
では、大きな水位低下が生じてしまう。
However, the so-called serial sequential ice storage method as described above has the following problems. That is, when sherbet-shaped ice is stored in the tank, the passage pressure loss of water due to the ice layer in the tank increases as the ice storage progresses, and the tank internal pressure rises. In the method, the water level in the upstream side tank connected by the communication pipe rises due to the increase in tank pressure due to the increase in the amount of ice storage. However, since the water for the rising water level is supplied from the downstream side tank of the ice storage tank, the downstream side tank, especially the most downstream side tank 54
Then, a large drop in water level will occur.

【0007】本発明の発明者らが実際に図2に示した連
通式の多槽型蓄熱槽において実験したところ、図3のグ
ラフに示したような結果が得られた。これによれば最下
流側槽54の水位が著しく低下していることがわかる。
これでは水深が浅い槽しか設置できない場所において
は、連通して設置する小槽の数が制限されてしまい、蓄
熱槽全体の容量を大きくできないという問題がある。
When the inventors of the present invention actually conducted an experiment in the communication type multi-tank type heat storage tank shown in FIG. 2, the results shown in the graph of FIG. 3 were obtained. According to this, it is understood that the water level in the most downstream side tank 54 is remarkably lowered.
With this, in a place where only a shallow water tank can be installed, there is a problem that the number of small tanks connected in communication is limited, and the capacity of the entire heat storage tank cannot be increased.

【0008】さらに上記のような直列順次蓄氷方法を実
施するには、切り替え弁62a、63a、64a、65
aが必要であるが、一般に蓄熱槽として利用される地下
スラブ下水槽は、その上部が機械室等に供されており、
そのためこれら切り替え弁は槽内に設置せざるを得ず、
しかもその仕様も防水とする必要がある。従って施工
面、コスト面でも好ましいものではない。
Further, in order to carry out the above-mentioned serial sequential ice storage method, the switching valves 62a, 63a, 64a, 65 are used.
Although a is required, the upper part of the underground slab sewage tank that is generally used as a heat storage tank is provided in the machine room,
Therefore, these switching valves have to be installed in the tank,
Moreover, its specifications need to be waterproof. Therefore, it is not preferable in terms of construction and cost.

【0009】[0009]

【課題を解決するための手段】本発明はかかる点に鑑み
てなされたものであり、上記のような直列順次蓄氷方法
に代えて、いわば並列同時蓄氷する方式の蓄氷方法、及
び当該方法を実施するのに適した蓄氷管路系を提供して
上記問題の解決を図るものである。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above points, and in place of the above-described serial sequential ice storage method, so-called parallel simultaneous ice storage method, and The above problem is solved by providing an ice storage pipeline system suitable for carrying out the method.

【0010】そのため請求項1においては、空調用熱源
水を蓄える蓄熱槽の槽外に設置された過冷却器で過冷却
水を生成し、過冷却解除手段によって該過冷却水から変
換された氷・水スラリー中の氷を、前記蓄熱槽内に蓄え
る氷蓄熱システムにおいて、蓄熱槽を複数の独立した小
槽からなる多槽式蓄熱槽とし、前記氷・水スラリーを蓄
熱槽に供給して蓄氷するにあたり、これら各小槽に対し
て同時に氷・水スラリーを供給して蓄氷することを特徴
とする、氷蓄熱システムにおける蓄氷方法を提供する。
Therefore, in claim 1, supercooled water is generated by a supercooler installed outside the heat storage tank for storing the heat source water for air conditioning, and the ice is converted from the supercooled water by the supercooling releasing means. -In an ice heat storage system that stores ice in water slurry in the heat storage tank, the heat storage tank is a multi-tank type heat storage tank composed of a plurality of independent small tanks, and the ice / water slurry is supplied to the heat storage tank to store the ice. An ice storage method in an ice heat storage system is provided, in which ice / water slurry is simultaneously supplied to each of these small tanks for ice storage.

【0011】また請求項2では、上記請求項1の発明を
実施するのに適した管路系、即ち、空調用熱源水を蓄え
る蓄熱槽の槽外に設置された過冷却器で過冷却水を生成
し、過冷却解除手段によって該過冷却水から変換された
氷・水スラリー中の氷を、前記蓄熱槽内に蓄える氷蓄熱
システムにおける管路系であって、蓄熱槽を複数の独立
した小槽からなる多槽式蓄熱槽とし、これら各小槽内の
水を取水する各取水管を、過冷却器に接続される1の搬
送管に対して並列に接続し、さらに前記各小槽内に氷・
水スラリーを供給する各分配管を、過冷却解除手段に接
続される1の搬送管に対して並列に接続したことを特徴
とする、氷蓄熱システムにおける蓄氷管路系を提供す
る。
According to a second aspect of the present invention, supercooled water is provided by a supercooler installed outside a pipe system suitable for carrying out the invention of the first aspect, that is, a heat storage tank for storing heat source water for air conditioning. Is a pipe system in an ice heat storage system for storing ice in the ice-water slurry converted from the supercooled water by the supercooling release means in the heat storage tank, and a plurality of independent heat storage tanks are provided. A multi-tank heat storage tank consisting of small tanks, each intake pipe for taking in water in each of these small tanks is connected in parallel to one carrier pipe connected to the subcooler, and each of the above small tanks is connected. Ice inside
Provided is an ice storage pipeline system in an ice heat storage system, wherein each distribution pipe for supplying water slurry is connected in parallel to one carrier pipe connected to a supercooling releasing means.

【0012】[0012]

【作用】請求項1によれば、独立した小槽に対して氷・
水スラリーを同時に並列的に供給して蓄氷する方式を採
っているので、途中の蓄氷過程においては、各小槽に接
続される供給管の管路抵抗の違いによって各小槽間に蓄
氷量の差が生ずる。しかしながら蓄氷量が大きくなった
小槽においては、氷相の増大によって圧力損失が増加す
るため、以後の供給については、蓄氷量が小さく抵抗の
少ない小槽側へ次第に多く流れ込むようになる。即ち、
氷は常に蓄氷量の少ない小槽に供給されることになるの
である。従って最終的には、各小槽にほぼ均一に蓄氷さ
れることになる。
According to the first aspect of the present invention, ice
Since a method is adopted in which water slurry is supplied in parallel at the same time to store ice, during the course of ice storage in the middle, the storage between the tanks is different due to the difference in the line resistance of the supply pipe connected to each tank. A difference in the amount of ice occurs. However, in a small tank with a large amount of ice storage, the pressure loss increases due to an increase in the ice phase, so that in the subsequent supply, a large amount of ice storage will gradually flow into the small tank side with low resistance. That is,
Ice is always supplied to a small tank with a small amount of ice storage. Therefore, in the end, ice will be stored almost uniformly in each tank.

【0013】またそのようにしていわば並列して同時に
供給することにより、氷は自然と蓄氷量の少ない小槽に
供給されるから、各小槽に対して氷・水スラリーを分配
供給するための分配管については、特に切り替え弁を設
ける必要はない。
In addition, since the ice is naturally supplied to the small tanks having a small amount of ice storage by supplying them in parallel at the same time, the ice / water slurry is distributed and supplied to the respective small tanks. It is not necessary to provide a switching valve for the distribution pipe.

【0014】請求項2によれば、過冷却器に水を供給す
るための取水管路と、生成された氷・水スラリーを各小
槽に供給するための供給管路が夫々並列になっているか
ら、取水系については各小槽から均一に取水することが
でき、また氷・水スラリーの供給系についても、各小槽
に対して同時供給が可能となっている。従って循環する
水の系に影響を与えることなく、請求項1の方法をその
まま実施することができる。
According to the second aspect, the water intake pipe for supplying water to the subcooler and the supply pipe for supplying the produced ice / water slurry to the respective small tanks are arranged in parallel. Therefore, the water intake system can be uniformly taken from each tank, and the ice / water slurry supply system can be simultaneously supplied to each tank. Therefore, the method of claim 1 can be carried out as it is without affecting the circulating water system.

【0015】[0015]

【実施例】以下、本発明の実施例を図面に基づき説明す
れば、図1は本実施例を実施するための蓄氷設備の主要
な構成要素の説明図であり、本実施例における蓄熱槽1
は、同図からも明らかなように、夫々独立した3つの小
槽2、3、4からなる独立多槽型の蓄熱槽である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory view of main constituent elements of an ice storage facility for implementing the present embodiment. 1
As is clear from the figure, is an independent multi-tank type heat storage tank consisting of three independent small tanks 2, 3 and 4.

【0016】これら各小槽2、3、4の底部には、夫々
独立した取水管5、6、7が接続され、そこから氷フィ
ルタなどの氷核分離器(図示せず)を介して取水された
各小槽2、3、4内の水は、1本の搬送管8にまとめら
れ、ポンプ9によって蓄熱槽1外部にある過冷却器10
へと連続供給される。過冷却器10は搬送された水を0
゜C以下の過冷却水にし、これを大気中に吐出し、該過
冷却水の吐出流は縦パイプ11内に落下する。
Independent water intake pipes 5, 6, and 7 are connected to the bottoms of the small tanks 2, 3, and 4, respectively, from which water is taken in via an ice nucleus separator (not shown) such as an ice filter. The water in each of the small tanks 2, 3 and 4 thus collected is collected in one carrier pipe 8 and is supercooled by the pump 9 outside the heat storage tank 1.
Is continuously supplied to. The subcooler 10 does not transfer the transported water.
The supercooled water having a temperature of ° C or less is discharged into the atmosphere, and the discharged stream of the supercooled water drops into the vertical pipe 11.

【0017】上記縦パイプ11は、過冷却水の吐出流を
受け入れるのに充分な内径を有した縦管であり、その上
端は先広がりの受け部12が形成されて開口しており、
下端は搬送管13に通じている。そして過冷却水が縦パ
イプ11内に落下したときの衝撃によって、流動性を有
する微細な氷と水とによる氷・水スラリーが生成され
る。
The vertical pipe 11 is a vertical pipe having an inner diameter sufficient to receive the discharge flow of the supercooled water, and the upper end of the vertical pipe 11 is formed with a divergent receiving portion 12 formed therein to open.
The lower end communicates with the carrier pipe 13. Then, the impact of the supercooled water falling into the vertical pipe 11 produces an ice-water slurry formed of fluid fine ice and water.

【0018】搬送管13は、各小槽2、3、4の各側壁
を貫通する槽内配管であり、各小槽2、3、4内にて、
夫々分配管14、15、16が接続され、これら各分配
管14、15、16を通じて各小槽2、3、4内に氷・
水スラリーが供給されて、各小槽2、3、4内への蓄氷
が行われる。本実施例における蓄氷設備は以上の構成を
有しており、通常夜間に実施される製氷・蓄氷運転の際
には、ポンプ9の作動により、各小槽2、3、4から取
水管5、6、7によって均一に取水されて、過冷却器1
0に蓄熱槽1の水が供給される。
The carrier pipe 13 is an in-tank pipe that penetrates each side wall of each of the small tanks 2, 3, and 4.
The distribution pipes 14, 15 and 16 are connected to the respective distribution pipes 14, 15 and 16, and the ice,
The water slurry is supplied to store ice in the small tanks 2, 3, and 4. The ice storage equipment according to the present embodiment has the above-described configuration. During the ice making / ice storage operation that is usually performed at night, the pump 9 operates to take water from each of the small tanks 2, 3 and 4. Water is uniformly taken by 5, 6, and 7, and the subcooler 1
The water of the heat storage tank 1 is supplied to 0.

【0019】そして過冷却器10から吐出された過冷却
水によってて縦パイプ11で生成された氷・水スラリー
は、搬送管13及び各分配管14、15、16を通じて
各小槽2、3、4内に供給、蓄氷される。この場合途中
の蓄氷過程においては、管路抵抗の違いによって各小槽
2、3、4間に蓄氷量の差が生ずるが、蓄氷量が大きく
なった小槽では氷による圧力損失が増加するため、その
ようなときにはまだ蓄氷量が少なく、管路抵抗の小さい
小槽に氷が流れ込むようになる。即ち、氷は常に蓄氷量
の少ない小槽に供給されることになるので、蓄氷途中で
各小槽2、3、4相互間に蓄氷量の多少の差があって
も、最終的には各小槽2、3、4にはほぼ均一に蓄氷さ
れる。
The ice / water slurry produced in the vertical pipe 11 by the supercooled water discharged from the subcooler 10 is passed through the carrier pipe 13 and the respective distribution pipes 14, 15, 16 to the small tanks 2, 3 ,. It is supplied in 4 and ice is stored. In this case, in the course of storing ice in the middle, a difference in ice storage amount occurs between the small tanks 2, 3, and 4 due to the difference in pipe resistance. Due to the increase, in such a case, the ice storage amount is still small, and the ice flows into the small tank having a small conduit resistance. That is, since the ice is always supplied to the small tank with a small amount of ice storage, even if there is a slight difference in the amount of ice storage between the small tanks 2, 3, and 4 during the ice storage, the final In each of the small tanks 2, 3, 4, the ice is almost evenly stored.

【0020】また取水管5、6、7によって各小槽2、
3、4毎に取水しているから、各小槽2、3、4の水位
変化は大きいものではなく、それゆえ設置する小槽の数
にも制限はない。従って蓄熱槽1全体として非常に大き
な容量とすることが可能である。さらにまた、上記のよ
うに各小槽2、3、4に均一に蓄氷されるから、既述の
従来技術のように、氷・水スラリーの分配に必要だった
切り替え弁を設ける必要がなく、施工面、コスト面でも
メリットが大きい。
Further, each of the small tanks 2, 6 is connected by the water intake pipes 5, 6, 7.
Since water is taken every 3 and 4, the water level change in each of the tanks 2, 3 and 4 is not large, and therefore there is no limit to the number of tanks to be installed. Therefore, the heat storage tank 1 as a whole can have a very large capacity. Furthermore, as described above, ice is uniformly stored in each of the small tanks 2, 3 and 4, so that it is not necessary to provide a switching valve, which was necessary for distributing ice / water slurry, unlike the above-described conventional technique. It also has great advantages in terms of construction and cost.

【0021】さらにまた各小槽2、3、4は従来のよう
に連通させるものではなく、独立して設置されるもので
あるから、例えば各小槽設置場所の自由度が増大し、建
物内の空間を有効に利用できる。また小槽相互を連通さ
せるための配管工事も不要であるから、全体としての施
工量も低減できる。
Furthermore, since each of the tanks 2, 3 and 4 is not connected to each other as in the conventional case but is installed independently, the degree of freedom of the installation location of each tank is increased and the inside of the building is increased. The space of can be used effectively. Moreover, since the piping work for connecting the small tanks to each other is not necessary, the amount of construction as a whole can be reduced.

【0022】なお図示は省略したが、このようにして蓄
熱槽1に蓄えられた冷熱水を負荷側熱交換器の熱源水と
する場合の冷熱水の取水、及びその循環は、各小槽2、
3、4毎に取水して、これを1の管路にまとめて負荷側
熱交換器に供給すればよく、そこで昇温された戻り水
も、上記搬送管13、及びこれに対する分配管14、1
5、16の関係と同様な構成を有する循環管路系によっ
て各小槽2、3、4に戻せばよい。
Although not shown, when the cold / hot water thus stored in the heat storage tank 1 is used as the heat source water of the load side heat exchanger, the cold / hot water is taken in and circulated in each small tank 2 ,
Water may be taken every 3 and 4 and may be collected in one pipe line and supplied to the load side heat exchanger, and the return water whose temperature is raised there is also the above-mentioned carrier pipe 13 and the distribution pipe 14 for this. 1
It may be returned to each of the small tanks 2, 3, and 4 by a circulation conduit system having a configuration similar to the relationship of 5 and 16.

【0023】また上記実施例においては、搬送管13に
ついては各小槽2、3、4を水平方向に貫通する槽内配
管で構成したが、槽内の水を過冷却器10に供給するた
めの搬送管8についてもこれと同様に槽内配管としても
よく、その場合建物内のスペースの有効な利用が図れ
る。逆に、スペース的に余裕のある場合には、もちろん
これら搬送管13を槽外配管とし、槽外から分配管を各
小槽2、3、4に接続する構成を採ってもよい。
Further, in the above embodiment, the carrier pipe 13 is constituted by the in-tank piping which penetrates each of the small tanks 2, 3 and 4 in the horizontal direction, but the water in the tank is supplied to the subcooler 10. Similarly, the carrier pipe 8 may be an in-tank pipe, in which case the space in the building can be effectively used. On the other hand, if there is a space in the space, it is of course possible to adopt a configuration in which these transfer pipes 13 are used as outside pipes and the distribution pipes are connected to the small tanks 2, 3, 4 from outside the tank.

【0024】[0024]

【発明の効果】請求項1によれば、複数の小槽からなる
多槽式の蓄熱槽を採用する氷蓄熱システムにおいて、各
小槽内の水位変化を大きくせずにこれら各小槽に均一に
蓄氷することができるから、設置する槽の数に制限を受
けない。従って大容量の氷蓄熱システムを構築しやす
い。また各小槽は相互に独立した槽構成であるから、小
槽の設置場所の自由度が増大し、建物内の空間を有効に
利用することができる。さらに、各小槽に氷・水スラリ
ーを分配するための切り替え弁は不要であり、しかも小
槽相互を連通させる配管も不要であるから、施工量、部
材数の低減が図れる。
According to the first aspect of the present invention, in an ice heat storage system which employs a multi-tank type heat storage tank composed of a plurality of small tanks, the water level in each small tank is not increased to be uniform in each of these small tanks. Since it can store ice, there is no limit to the number of tanks that can be installed. Therefore, it is easy to build a large capacity ice heat storage system. Further, since each of the small tanks has an independent tank structure, the degree of freedom of the installation location of the small tanks is increased, and the space in the building can be effectively used. Further, since a switching valve for distributing the ice / water slurry to each of the small tanks is not necessary and a pipe for connecting the small tanks to each other is also unnecessary, the amount of construction and the number of members can be reduced.

【0025】請求項2によれば、循環する水の系に影響
を与えることなく、請求項1の方法をそのまま実施する
ことができ、請求項1で得られる作用効果をそのまま具
有できる。またその場合、主搬送管に対して取水管、分
配管を並列に接続するという構成を採っているから、請
求項1の発明を実施するにあたって、効率よく管路を配
設することができる。
According to the second aspect, the method of the first aspect can be carried out as it is without affecting the system of circulating water, and the operational effect obtained in the first aspect can be provided as it is. Further, in that case, since the water intake pipe and the distribution pipe are connected in parallel to the main carrier pipe, the pipe line can be efficiently arranged in carrying out the invention of claim 1.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例における主要な構成の概略図である。FIG. 1 is a schematic diagram of a main configuration according to an embodiment.

【図2】従来技術における主要な構成の概略図である。FIG. 2 is a schematic diagram of a main configuration in the related art.

【図3】従来技術における蓄氷時の各小槽の水位変化を
示すグラフである。
FIG. 3 is a graph showing changes in water level in each small tank during ice storage in the conventional technique.

【符号の説明】[Explanation of symbols]

1 蓄熱槽 2、3、4 小槽 5、6、7 取水管 8 搬送管 9 ポンプ 10 過冷却器 11 縦パイプ 13 搬送管 14、15、16 分配管 1 Heat storage tank 2, 3, 4 Small tank 5, 6, 7 Intake pipe 8 Transfer pipe 9 Pump 10 Supercooler 11 Vertical pipe 13 Transfer pipe 14, 15, 16 Minutes piping

───────────────────────────────────────────────────── フロントページの続き (72)発明者 守屋 充 神奈川県座間市相模ヶ丘3−7−25 サン ライトヒルズ203 (72)発明者 入部 真武 神奈川県川崎市多摩区西生田3−20−9 (72)発明者 衛藤 一典 東京都町田市森野4−15−12 寺田ビル森 野B−311 (72)発明者 松本 正 神奈川県厚木市妻田北3−14−50 コーポ 本厚木A−103 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Mitsuru Moriya 3-7-25 Sagamigaoka, Zama City, Kanagawa Prefecture Sunlight Hills 203 (72) Inventor Mabu 3-20-9 Nishikuta, Tama-ku, Kawasaki City, Kanagawa Prefecture (72) Inventor Kazunori Eto 4-15-12 Morino, Machida, Tokyo Terada Bldg. Morino B-311 (72) Inventor Tadashi Matsumoto 3-14-50, Tsumadakita, Atsugi-shi, Kanagawa Corp. A-103, Motoko Atsugi

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 空調用熱源水を蓄える蓄熱槽の槽外に設
置された過冷却器で過冷却水を生成し、過冷却解除手段
によって該過冷却水から変換された氷・水スラリー中の
氷を、前記蓄熱槽内に蓄える氷蓄熱システムにおいて、
蓄熱槽を複数の独立した小槽からなる多槽式蓄熱槽と
し、前記氷・水スラリーを蓄熱槽に供給して蓄氷するに
あたり、これら各小槽に対して同時に氷・水スラリーを
供給して蓄氷することを特徴とする、氷蓄熱システムに
おける蓄氷方法。
1. A subcooler installed outside a heat storage tank for storing heat source water for air conditioning generates supercooled water, and the supercooling release means converts the supercooled water into the ice / water slurry. In an ice heat storage system for storing ice in the heat storage tank,
The heat storage tank is a multi-tank type heat storage tank consisting of a plurality of independent small tanks, and when the ice / water slurry is supplied to the heat storage tank to store ice, the ice / water slurry is simultaneously supplied to each of these small tanks. A method for storing ice in an ice heat storage system, characterized in that the ice is stored as ice.
【請求項2】 空調用熱源水を蓄える蓄熱槽の槽外に設
置された過冷却器で過冷却水を生成し、過冷却解除手段
によって該過冷却水から変換された氷・水スラリー中の
氷を、前記蓄熱槽内に蓄える氷蓄熱システムにおける管
路系であって、蓄熱槽を複数の独立した小槽からなる多
槽式蓄熱槽とし、これら各小槽内の水を取水する各取水
管を、過冷却器に接続される1の搬送管に対して並列に
接続し、さらに前記各小槽内に氷・水スラリーを供給す
る各分配管を、過冷却解除手段に接続される1の搬送管
に対して並列に接続したことを特徴とする、氷蓄熱シス
テムにおける蓄氷管路系。
2. A subcooler installed outside a heat storage tank for storing heat source water for air conditioning generates supercooled water, and the supercooling release means converts the supercooled water into the ice / water slurry. A pipe system in an ice heat storage system for storing ice in the heat storage tank, wherein the heat storage tank is a multi-tank type heat storage tank composed of a plurality of independent small tanks, and water is taken from each of these small tanks. A water pipe is connected in parallel to one carrier pipe connected to a supercooler, and each distribution pipe for supplying ice / water slurry into each of the small tanks is connected to a supercooling releasing means. An ice storage pipeline system in an ice heat storage system, which is connected in parallel to the carrier pipes.
JP05638793A 1993-02-23 1993-02-23 Ice storage method and ice storage pipe system in ice thermal storage system Expired - Fee Related JP3505733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05638793A JP3505733B2 (en) 1993-02-23 1993-02-23 Ice storage method and ice storage pipe system in ice thermal storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05638793A JP3505733B2 (en) 1993-02-23 1993-02-23 Ice storage method and ice storage pipe system in ice thermal storage system

Publications (2)

Publication Number Publication Date
JPH06249472A true JPH06249472A (en) 1994-09-06
JP3505733B2 JP3505733B2 (en) 2004-03-15

Family

ID=13025840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05638793A Expired - Fee Related JP3505733B2 (en) 1993-02-23 1993-02-23 Ice storage method and ice storage pipe system in ice thermal storage system

Country Status (1)

Country Link
JP (1) JP3505733B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008086711A1 (en) * 2006-12-31 2008-07-24 Beijing Poweru Technology Co., Ltd. Water energy-storing system with many water-storing sinks and its using method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008086711A1 (en) * 2006-12-31 2008-07-24 Beijing Poweru Technology Co., Ltd. Water energy-storing system with many water-storing sinks and its using method

Also Published As

Publication number Publication date
JP3505733B2 (en) 2004-03-15

Similar Documents

Publication Publication Date Title
KR101643712B1 (en) Oil vapor recovery equipment
SA96160740B1 (en) A system for supplying consumer units with thermal energy and a device for this supply
US4656836A (en) Pressurized, ice-storing chilled water system
JPH06249472A (en) Ice accumulating method in ice accumulation heat system and ice accumulating pipe system
CN115854450B (en) Exhaust method and system for open type transmission and distribution system of building ice or water cold accumulation air conditioner
JP2009121766A (en) Ice slurry packing method and apparatus
JP3331003B2 (en) Ice storage method for multiple tanks in ice thermal storage system
JP3512209B2 (en) Ice thermal storage tank
CN100526761C (en) Refrigerating apparatus
JP3214926B2 (en) Method of transporting ice / water slurry in ice thermal storage system
JP2001108385A (en) Heat accumulating device
JP3126521B2 (en) Supply method of ice / water slurry in ice thermal storage method
JP3206363B2 (en) Ice heat storage device and control method thereof
JPH08226681A (en) Ice storage apparatus
JP3266334B2 (en) Heat storage tank for air conditioning
JP3305855B2 (en) Ice storage system
JPH05340567A (en) Ice heat accumulating device
JPH01239327A (en) Ice heat accumulation cooling facility for multi-floor building
JP3270152B2 (en) Ice storage method
JPH08285418A (en) Method for discharging supercooled water in supercooling ice making system
JP2649078B2 (en) Heat storage type cooling and heating method
JPH08210742A (en) Ice making device and ice thermal storage device
SU1089359A1 (en) Hot water supply system
JPH11148751A (en) Ice machine
JPH05340568A (en) Structure of ice heat accumulating tank

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081226

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081226

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091226

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091226

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101226

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101226

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees