JP3512209B2 - Ice thermal storage tank - Google Patents

Ice thermal storage tank

Info

Publication number
JP3512209B2
JP3512209B2 JP05805093A JP5805093A JP3512209B2 JP 3512209 B2 JP3512209 B2 JP 3512209B2 JP 05805093 A JP05805093 A JP 05805093A JP 5805093 A JP5805093 A JP 5805093A JP 3512209 B2 JP3512209 B2 JP 3512209B2
Authority
JP
Japan
Prior art keywords
ice
heat storage
water
storage tank
small water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05805093A
Other languages
Japanese (ja)
Other versions
JPH06249473A (en
Inventor
義輝 関
明彦 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP05805093A priority Critical patent/JP3512209B2/en
Publication of JPH06249473A publication Critical patent/JPH06249473A/en
Application granted granted Critical
Publication of JP3512209B2 publication Critical patent/JP3512209B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Other Air-Conditioning Systems (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、空調用の熱源水を氷共
存の形態で蓄熱するようにした氷蓄熱槽に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ice heat storage tank for storing heat source water for air conditioning in the form of coexistence with ice.

【0002】[0002]

【従来の技術】従来より、建物内に配設したファンコイ
ルユニットや水熱源ヒートポンプユニットの水側熱交換
器に冷温水を循環させて冷暖房を行う際に、冷房時の冷
熱を蓄熱槽内において氷の形態で蓄えるいわゆる氷蓄熱
方式を用いた蓄熱システムが提案されている。かかるシ
ステムによれば、例えば夜間電力で冷凍機を駆動して製
氷し、氷の状態で多量の冷熱を蓄熱槽で蓄えた上、冷房
運転時にその氷の冷熱を冷水として取り出して二次側熱
交換器(負荷側熱交換器)に循環するものであり、水の
固液相変態時の潜熱を利用するので小規模装置でも多量
の冷熱を蓄えることができることから近年特に注目され
ている。
2. Description of the Related Art Conventionally, when cooling and heating water is circulated through a water side heat exchanger of a fan coil unit or a water heat source heat pump unit arranged in a building, the cold heat during cooling is stored in a heat storage tank. A heat storage system using a so-called ice heat storage method for storing in the form of ice has been proposed. According to such a system, for example, a refrigerator is driven by electric power at night to make ice, and a large amount of cold heat in the ice state is stored in the heat storage tank, and then the cold heat of the ice is taken out as cold water during the cooling operation to obtain the secondary side heat. It circulates to an exchanger (load side heat exchanger), and since latent heat at the time of solid-liquid phase transformation of water is used, a large amount of cold heat can be stored even in a small-scale device, and thus it has been particularly noted in recent years.

【0003】さらに最近では、地下スラブを利用するな
どした多数の槽から構成され、各槽を連通管により順次
連通し通水する、いわゆる多槽型蓄熱槽を冷温水槽とし
て用いた大規模な蓄熱設備も提案されている。
More recently, a large-scale heat storage using a so-called multi-tank type heat storage tank, which is composed of a large number of tanks using an underground slab, and in which each tank is sequentially connected by a communication pipe, is used as a cold / hot water tank. Equipment is also proposed.

【0004】図に、二重スラブを利用した場合の従来
の多槽型氷蓄熱槽の典型的な配管を示す。図示のよう
に、従来の装置では、小水槽1a、1b、1c、1dを
連通管7で直列に連結し、各小水槽に設けられた氷フィ
ルタ8により氷を濾過された水相の蓄熱水のみが回収さ
れて、ポンプ3により搬送管4を介して過冷却器2に送
られる。過冷却器2により過冷却域にまで冷却された蓄
熱水は、次いで縦パイプ5に落下されて、そこで氷・水
スラリーに変換され、管路6を介して各小水槽へと送ら
れ、各小水槽において冷熱として蓄えられる。このよう
に、多槽型氷蓄熱槽を用いることにより、例えば安価な
夜間電力を利用することにより多量の冷熱を蓄えること
ができる。
FIG. 3 shows typical piping of a conventional multi-tank type ice heat storage tank when a double slab is used. As shown in the figure, in the conventional apparatus, the small water tanks 1a, 1b, 1c, and 1d are connected in series by a communication pipe 7, and the ice water is filtered by an ice filter 8 provided in each small water tank. Only this is collected and sent by the pump 3 to the subcooler 2 via the carrier pipe 4. The heat storage water cooled to the supercooling area by the supercooler 2 is then dropped to the vertical pipe 5, where it is converted into ice / water slurry and sent to each small water tank via the pipe line 6. It is stored as cold heat in a small water tank. As described above, by using the multi-tank type ice heat storage tank, it is possible to store a large amount of cold heat by using inexpensive nighttime electric power, for example.

【0005】しかしながら、図に示すように、各小水
槽を連通管により直列に接続し、氷フィルタにより氷か
ら分離した水槽の蓄熱水を過冷却器に戻す構成を用いた
場合に、十分な冷水量の循環を確保するためには、出力
の大きなポンプを利用するか、あるいは、多数の連通管
により各小水槽を接続する必要があった。しかしなが
ら、ポンプの出力には自ずと限界があるし、また建物の
構造によっては多数の連通管を配管できない場合があ
り、その解決が望まれていた。さらに、小水槽に蓄えら
れた氷層が厚くなった場合には、高出力のポンプを使用
した場合でも、あるいは多数の連通管を設けた場合であ
っても、連通管が直列に接続されているため、蓄熱水の
循環が困難になるおそれがある。
However, as shown in FIG. 3 , in the case of using a constitution in which the small water tanks are connected in series by communication pipes and the stored water in the water tank separated from the ice by the ice filter is returned to the subcooler, it is sufficient. In order to ensure the circulation of cold water, it was necessary to use a pump with a large output or to connect each small water tank with a large number of communication pipes. However, the output of the pump is naturally limited, and depending on the structure of the building, it may not be possible to pipe a large number of communication pipes, and a solution to this has been desired. Furthermore, if the ice layer stored in the small water tank becomes thick, the communication pipes are connected in series even if a high-output pump is used or if a large number of communication pipes are provided. Therefore, circulation of heat storage water may become difficult.

【0006】[0006]

【発明が解決しようとする課題】従って、本発明の目的
は、従来の装置が有する上記のような問題点に鑑み、多
数の小水槽からなる氷蓄熱槽システムであっても、高出
力のポンプを用いたり、あるいは多数の連通管を配設せ
ずに、十分な量の蓄熱水を循環させることが可能な新規
かつ改良された氷蓄熱槽の構造を提供することである。
SUMMARY OF THE INVENTION Therefore, in view of the above problems of the conventional apparatus, an object of the present invention is to provide a high output pump even for an ice heat storage tank system including a large number of small water tanks. It is an object of the present invention to provide a structure of a new and improved ice heat storage tank that can circulate a sufficient amount of heat storage water without using the above or arranging a large number of communication pipes.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、氷・水スラリーを空調用熱源水として蓄
えるための氷蓄熱槽と、この氷蓄熱槽の槽外に設置され
て通水される水を過冷却域にまで冷却可能な過冷却器
と、前記氷蓄熱槽内の水を前記過冷却器内に連続的に通
水し前記過冷却器の放出端から過冷却水を吐出させるた
めの系と、この過冷却水を氷・水スラリーに変換して前
記氷蓄熱槽内に導くための氷・水スラリー変換手段と、
前記氷蓄熱槽内に蓄えられた氷・水スラリーを解氷する
べく負荷側からの戻り水を前記氷蓄熱槽内に導くための
系と、から成る氷蓄熱槽において、前記氷蓄熱槽が同じ
高さに設置される複数の小水槽から成り、前記各小水槽
を並列に接続する第1の管路系を介して前記氷・水スラ
リー変換手段から氷・水スラリーが前記各小水槽に底部
から分配されると共に、前記各小水槽を並列に接続する
第2の管路系を介して前記各小水槽から冷水が槽内上部
に設けた氷核分離手段の上方に備えられた取水用の開口
から回収されるように構成されていることを特徴とする
氷蓄熱槽を提供する。なお、上記の第1及び第2の管路
系を、前記各小水槽を貫通するように配管することも可
能である。
In order to solve the above problems, the present invention provides an ice heat storage tank for storing ice / water slurry as heat source water for air conditioning, and an ice heat storage tank installed outside the ice heat storage tank. A supercooler capable of cooling the water to be passed to a subcooling area, and water in the ice heat storage tank is continuously passed into the subcooler to continuously discharge supercooled water from a discharge end of the subcooler. A system for discharging, and an ice / water slurry conversion means for converting the supercooled water into ice / water slurry and introducing it into the ice heat storage tank,
In an ice heat storage tank comprising a system for guiding return water from a load side into the ice heat storage tank for defrosting the ice / water slurry stored in the ice heat storage tank, the ice heat storage tank is the same. It comprises a plurality of small water tanks installed at a height, and the ice / water slurry is converted from the ice / water slurry converting means into a bottom portion in each of the small water tanks via a first pipeline system connecting the respective small water tanks in parallel.
While being dispensed from said each of the small water tub a second pipeline system with cold water tank in the upper from the respective small water tank via connecting in parallel
Opening for water intake provided above the ice nucleus separating means
There is provided an ice heat storage tank characterized by being configured to be recovered from . In addition, it is also possible to pipe the first and second pipeline systems so as to penetrate the small water tanks.

【0008】さらに、小水層の数が多い場合には、本発
明によれば、それらの複数の小水槽が複数のブロックに
分割し、各ブロック毎に前記第1の管路系及び前記第2
の管路系を配設し、前記各ブロックの前記第1の管路系
同士を並列接続する第3の管路系を介して前記氷・水ス
ラリー変換手段から氷・水スラリーを各ブロックに分配
すると共に、前記各ブロックの前記第2の管路系同士を
並列接続する第4の管路系を介して前記各ブロックから
冷水が回収されるように構成する。この場合にも、上記
第3及び第4の管路系を、前記各小水槽を貫通するよう
に配管することも可能である。
Further, when the number of small water layers is large, according to the present invention, the plurality of small water tanks are divided into a plurality of blocks, and each of the blocks has the first pipeline system and the first pipe system. Two
Of the ice / water slurry from the ice / water slurry conversion means to each block via a third pipeline system in which the first pipeline systems of the blocks are connected in parallel. In addition to distributing, cold water is collected from each of the blocks via a fourth pipeline that connects the second pipelines of the blocks in parallel. Also in this case, the third and fourth pipeline systems may be arranged so as to penetrate through the small water tanks.

【0009】[0009]

【作用】本発明によれば、氷フィルタにより氷から分離
された水相の蓄熱水を回収するための第2の管路系が並
列に配管されているので、多数の小水槽から蓄熱システ
ムが構成される場合であっても、各小水槽から均一に蓄
熱水を回収することが可能である。また、氷・水スラリ
ーを各小水槽に供給するための第1の管路系も並列に配
管されているので、各小水槽に氷・水スラリーを均一に
蓄氷することが可能である。また、各小水槽に連通する
分岐管に適当な弁手段を設けることにより、各小水槽か
らの取水及び各小水槽への氷・水スラリーの供給を所望
に応じて制御することも可能である。このように、本発
明に基づく氷蓄熱槽によれば、蓄熱水を効率よく循環さ
せることができるので、蓄熱効率を高めることができ
る。
According to the present invention, since the second pipe line system for collecting the heat storage water of the water phase separated from the ice by the ice filter is arranged in parallel, the heat storage system can be formed from a large number of small water tanks. Even when configured, it is possible to uniformly collect the stored heat water from each small water tank. Further, since the first pipeline system for supplying the ice / water slurry to each small water tank is also arranged in parallel, it is possible to store the ice / water slurry uniformly in each small water tank. Further, by providing an appropriate valve means on a branch pipe communicating with each small water tank, it is possible to control water intake from each small water tank and supply of ice / water slurry to each small water tank as desired. . As described above, according to the ice heat storage tank of the present invention, the heat storage water can be efficiently circulated, so that the heat storage efficiency can be improved.

【0010】さらに、小水槽の数が増加した場合には、
本発明の別の観点によれば、小水槽をいくつかのブロッ
クに分割し、ブロック毎を並列の管路系で結ぶので、多
数の管路を配管せずとも、各ブロック及びそのブロック
を構成する各小水槽に氷・水スラリーの均一な供給が可
能になると共に、各ブロック及びそのブロック構成する
各小水槽から蓄熱水を均一に回収することが可能であ
る。
Further, when the number of small water tanks increases,
According to another aspect of the present invention, the small water tank is divided into several blocks, and each block is connected by a parallel pipeline system, so that each block and its blocks are configured without piping a large number of pipelines. It is possible to uniformly supply ice / water slurry to each of the small water tanks, and it is possible to uniformly collect the heat storage water from each block and each small water tank that constitutes the block.

【0011】[0011]

【実施例】以下に添付図面を参照しながら、本発明の好
適な実施例について説明する。図1は、本発明に基づく
氷蓄熱システムの概略を示しており、小水槽1a、1
b、1c、1dは、氷・水スラリーを供給するための供
給管路系である搬送管6及びそれから分岐する分岐管9
a、9b、9c、9dにより並列に接続されると同時
に、各小水槽から取水するための取水管路系である搬送
管10及びそれから分岐する分岐管11a、11b、1
1c、11dにより並列に接続される。なお、図示の例
では、4つの小水槽が接続されているが、本発明に基づ
く構成は、2以上の複数の小水槽を備える氷蓄熱システ
ムに適用可能であり、その数は上記実施例によっては限
定されない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 shows an outline of an ice heat storage system according to the present invention.
b, 1c and 1d are a carrier pipe 6 which is a supply pipe system for supplying ice / water slurry and a branch pipe 9 branching from the carrier pipe 6.
a, 9b, 9c, 9d are connected in parallel, and at the same time, a carrier pipe 10 which is an intake pipe line system for taking water from each small water tank and branch pipes 11a, 11b, 1 branching therefrom.
It is connected in parallel by 1c and 11d. In the illustrated example, four small water tanks are connected, but the configuration according to the present invention can be applied to an ice heat storage system including a plurality of two or more small water tanks, the number of which depends on the above embodiment. Is not limited.

【0012】図示の例では、分岐管11a、11b、1
1c、11dは、それぞれ、氷フィルタ13a、13
b、13c、13dのような氷核分離手段の上方に取水
用の開口部12a、12b、12c、12dを備えてお
り、ポンプ3などを駆動することにより、氷フィルタに
より氷水相から氷核が分離され、水相となった蓄熱水が
各小水槽から取水されて、搬送管10及び4を介して、
過冷却器2に連続供給される。過冷却器2に通水された
蓄熱水は0℃以下の過冷却域にまで冷却されて、過冷却
水として大気中に吐出され、その後、縦パイプ5内に落
下される。
In the illustrated example, the branch pipes 11a, 11b, 1
1c and 11d are ice filters 13a and 13d, respectively.
b, 13c, 13d is provided with water intake openings 12a, 12b, 12c, 12d above the ice nuclei separating means, and by driving the pump 3 or the like, ice nuclei are removed from the ice water phase by the ice filter. The heat storage water that has been separated and becomes a water phase is taken from each small water tank, and is transferred via the transfer pipes 10 and 4.
It is continuously supplied to the subcooler 2. The heat storage water passed through the subcooler 2 is cooled to a supercooling region of 0 ° C. or lower, discharged as supercooled water into the atmosphere, and then dropped into the vertical pipe 5.

【0013】上記縦パイプ5は、過冷却水の吐出流を受
け入れるのに十分な内径を有した縦管であり、その上端
には先広がりの受け部が形成されて開口しており、その
下端は搬送管6に連通している。この搬送管11と各小
水槽1a、1b、1c、1dの底部とは、それぞれ弁に
よって開閉自在な分岐管9a、9b、9c、9dにより
接続される。このように構成することにより、過冷却器
2から吐出された過冷却水が縦パイプ5内に落下したと
きの衝撃により生成される氷・水スラリーは、流動状態
を保ちながら、搬送管6及び各分岐管9a、9b、9
c、9dを通じて、各小水槽1a、1b、1c、1d内
へとそれぞれ独立して搬送自在に構成されている。
The vertical pipe 5 is a vertical pipe having an inner diameter sufficient to receive the discharge flow of the supercooled water, and a divergent receiving portion is formed at the upper end thereof to open the lower end thereof. Communicate with the carrier pipe 6. The transport pipe 11 and the small water tank 1a, 1b, 1c, and the bottom of 1d, freely branched pipe 9a-off by the respective valves, 9b, connected by 9c, 9 d. With this configuration, the ice / water slurry generated by the impact when the supercooled water discharged from the subcooler 2 falls into the vertical pipe 5 keeps the fluid state while maintaining the flow state. Each branch pipe 9a, 9b, 9
Each of the small water tanks 1a, 1b, 1c, and 1d can be independently conveyed through c and 9d.

【0014】本発明によれば、搬送管6は上記のように
並列に各小水槽に接続されているので、生成された氷・
水スラリーを、分岐管9a、9b、9c、9dを介して
各小水槽に均一に分配することが可能である。また、分
岐管9a、9b、9c、9dにそれぞれ弁を設けること
により、上流側に位置する小水槽から氷・水スラリーを
供給し、各小水槽の氷容積がほぼ一杯になるに従って、
順次下流側に位置する小水槽に氷・水スラリーを供給す
ることも可能である。
According to the present invention, since the carrier pipe 6 is connected in parallel to each small water tank as described above, the generated ice
The water slurry can be uniformly distributed to each small water tank via the branch pipes 9a, 9b, 9c, 9d. Further, by providing valves on the branch pipes 9a, 9b, 9c, 9d, respectively, ice / water slurry is supplied from the small water tank located on the upstream side, and as the ice volume of each small water tank becomes almost full,
It is also possible to sequentially supply ice / water slurry to a small water tank located on the downstream side.

【0015】一方、このようにして氷水相として冷熱が
蓄えられた各小水槽からの蓄熱水の回収にあたっても、
本発明によれば、搬送管10が上記のように並列に各小
水槽に接続されているので、分岐管11a、11b、1
1c、11dを介して各小水槽から均一に回収すること
が可能である。図3に示すような従来のシステムのよう
に、各小水槽が連通管により直列に接続されている場合
には、特に蓄熱水の回収時に循環を効率よく行うために
は、多数の回収管路を配管したり、あるいは回収用のポ
ンプの容量を大きくする必要があったが、本発明によれ
ば、各小水槽に回収用の分岐管11a、11b、11
c、11dが並列に接続されているので、多量の蓄熱水
を回収したい場合であっても、従来の直列の配管構成よ
りもはるかに容易かつ迅速に回収を行うことが可能であ
る。また、各小水槽に連通する分岐管11a、11b、
11c、11dのそれぞれに開閉制御可能な弁手段を設
けることにより、各小水槽からの回収量を調整すること
も可能である。
On the other hand, when recovering the heat storage water from each small water tank in which cold heat is stored as the ice water phase in this way,
According to the present invention, since the carrier pipe 10 is connected in parallel to each small water tank as described above, the branch pipes 11a, 11b, 1
It is possible to collect uniformly from each small water tank via 1c and 11d. As in the conventional system as shown in FIG. 3, when the small water tanks are connected in series by communication pipes, in order to efficiently circulate the heat storage water, a large number of recovery pipelines are required. However, according to the present invention, the branch pipes 11a, 11b, 11 for collection are provided in each small water tank.
Since c and 11d are connected in parallel, even when a large amount of heat storage water is desired to be recovered, it is possible to recover much more easily and quickly than the conventional serial piping configuration. In addition, branch pipes 11a, 11b, which communicate with each small water tank,
It is also possible to adjust the amount of recovery from each small water tank by providing a valve means capable of opening and closing control on each of 11c and 11d.

【0016】なお、図示の例では、各搬送管6又は10
及び各分岐管9a、9b、9c、9d又は11a、11
b、11c、11dは、各小水槽の外部に配管されてい
るが、各管を各小水槽を連通するように配管することも
可能であり、そのように配管することにより、建物空間
のより効率的な利用を図ることができる。
In the illustrated example, each of the carrier pipes 6 or 10 is
And each branch pipe 9a, 9b, 9c, 9d or 11a, 11
Although b, 11c, and 11d are piped to the outside of each small water tank, it is also possible to pipe each pipe so as to communicate with each small water tank. It can be used efficiently.

【0017】これらの小水槽を建物の二重スラブの空間
を利用して配置することも可能である。建物の地下構造
には、上スラブと下スラブの間の空間を垂直壁で仕切っ
た二重スラブ構造が存在することがあり、通常はこのコ
ンクリートで囲われた空間は死空間となっているが、本
発明の氷蓄熱を行う場合に、この空間を小水槽に利用す
れば、コンクリートが断熱壁の役割を果たすので効果的
な蓄熱が可能となるとともに、建物の死空間の利用が図
れる。
It is also possible to arrange these small water tanks by utilizing the space of the double slab of the building. In the underground structure of a building, there may be a double slab structure in which the space between the upper slab and the lower slab is partitioned by a vertical wall, and the space surrounded by this concrete is usually a dead space. When the ice heat storage of the present invention is performed, if this space is used as a small water tank, concrete plays a role of a heat insulating wall, so that effective heat storage is possible and the dead space of the building can be utilized.

【0018】図2には、本発明のさらに別の実施例が示
されている。この実施例では、図1に示すよりもさらに
多くの小水槽を含んでいる。このような場合には、複数
の小水槽をまとめていくつかのグループを形成し、各グ
ループに対して氷・水スラリー供給管及び蓄熱水回収管
を、それぞれ、並列に接続する構成とすることが可能で
ある。図2では、複数の小水槽を含むグループを、参照
番号A、B、Cとして示し、各グループへの氷・水スラ
リーの主搬送管を20、その主搬送管20から各グルー
プへの分岐管を21a、21b、21cで示している。
同様に、各グループから蓄熱水を回収するための主搬送
管を22、その主搬送管22と各グループとを結ぶ分岐
管を23a、23b、23cで示している。図示の例で
は、小水槽のをA、B、Cの3つのグループに分割して
いるが、グループの数は使用状況に応じて適宜選択する
ことが可能である。
FIG. 2 shows still another embodiment of the present invention. This embodiment includes more small aquariums than shown in FIG. In such cases, multiple small water tanks should be grouped together to form several groups, and an ice / water slurry supply pipe and a heat storage water recovery pipe should be connected in parallel to each group. Is possible. In FIG. 2, a group including a plurality of small water tanks is indicated by reference numerals A, B, and C, and a main carrier pipe of ice / water slurry to each group is 20, and a branch pipe from the main carrier pipe 20 to each group. Are indicated by 21a, 21b, and 21c.
Similarly, the main carrier pipe 22 for collecting the heat storage water from each group is indicated by 22, and the branch pipes connecting the main carrier pipe 22 and each group are indicated by 23a, 23b, 23c. In the illustrated example, the small water tank is divided into three groups A, B, and C, but the number of groups can be appropriately selected according to the usage situation.

【0019】詳細には図示していないが、各グループ内
において、そのグループに含まれる各小水槽は図1に示
す構成と同様に、供給管及び回収管の双方が並列に接続
されており、各グループ内おける蓄熱水の循環は図1と
ほぼ同様なので、詳細な説明はここでは省略する。
Although not shown in detail, in each group, each small water tank included in the group has both a supply pipe and a recovery pipe connected in parallel, as in the configuration shown in FIG. Since the circulation of the heat storage water in each group is almost the same as that in FIG. 1, detailed description thereof will be omitted here.

【0020】このように供給管及び回収管を、それぞ
れ、各ブロックに対して並列に接続することにより、過
冷却器2及び縦パイプ5により生成された氷・水スラリ
ーを各ブロックに均一に供給することが可能となると同
時に、各ブロックからの熱源水の回収も各ブロックから
均一に行うことが可能になり、蓄熱水の循環効率を高め
ることが可能になる。また、供給管及び回収管の各分岐
管に弁手段25を設け、それらの開度を調整してやるこ
とにより、各ブロックに供給する氷・水スラリー及び各
ブロックから回収される熱源水の量を所望に応じて制御
することが可能になる。さらにまた、図1の場合と同様
に、各管を各小水槽を連通するように配管することも可
能であり、そのように配管することにより、建物空間の
より効率的な利用を図ることができる。
By thus connecting the supply pipe and the recovery pipe in parallel to each block, the ice / water slurry produced by the subcooler 2 and the vertical pipe 5 is uniformly supplied to each block. At the same time, the heat source water can be recovered from each block uniformly from each block, and the circulation efficiency of the heat storage water can be improved. Further, the valve means 25 is provided on each branch pipe of the supply pipe and the recovery pipe, and the opening degree thereof is adjusted so that the amount of ice / water slurry supplied to each block and the amount of heat source water recovered from each block are desired. It becomes possible to control according to. Furthermore, as in the case of FIG. 1, it is possible to connect each pipe so as to communicate with each small water tank, and by doing so, a more efficient use of the building space can be achieved. it can.

【0021】[0021]

【発明の効果】以上のように本発明によれば、氷フィル
タにより氷から分離された水相の蓄熱水を回収するため
の第2の管路系が並列に配管されているので、多数の小
水槽から蓄熱システムが構成される場合であっても、各
小水槽から均一に蓄熱水を回収することが可能である。
また、氷・水スラリーを各小水槽に供給するための第1
の管路系も並列に配管されているので、各小水槽に氷・
水スラリーを均一に蓄氷することが可能である。また、
各小水槽に連通する分岐管に適当な弁手段を設けること
により、各小水槽からの取水及び各小水槽への氷・水ス
ラリーの供給を所望に応じて制御することも可能であ
る。このように、本発明に基づく氷蓄熱槽によれば、蓄
熱水を効率よく循環させることができるので、蓄熱効率
を高めることができる。
As described above, according to the present invention, since the second pipe line system for collecting the heat storage water of the water phase separated from the ice by the ice filter is arranged in parallel, a large number of pipes are provided. Even when the heat storage system is composed of small water tanks, it is possible to uniformly collect the heat storage water from each small water tank.
In addition, the first for supplying ice / water slurry to each small water tank
Since the pipeline system of is also connected in parallel, ice in each small water tank
It is possible to store ice in water slurry uniformly. Also,
It is also possible to control the intake of water from each small water tank and the supply of ice / water slurry to each small water tank as desired by providing an appropriate valve means on a branch pipe communicating with each small water tank. As described above, according to the ice heat storage tank of the present invention, the heat storage water can be efficiently circulated, so that the heat storage efficiency can be improved.

【0022】さらに、小水槽の数が増加した場合には、
本発明の別の観点によれば、小水槽をいくつかのブロッ
クに分割し、ブロック毎を並列の管路系で結ぶので、多
数の管路を配管せずとも、各ブロック及びそのブロック
を構成する各小水槽に氷・水スラリーの均一な供給が可
能になると共に、各ブロック及びそのブロック構成する
各小水槽から蓄熱水を均一に回収することが可能であ
る。
Further, when the number of small water tanks increases,
According to another aspect of the present invention, the small water tank is divided into several blocks, and each block is connected by a parallel pipeline system, so that each block and its blocks are configured without piping a large number of pipelines. It is possible to uniformly supply ice / water slurry to each of the small water tanks, and it is possible to uniformly collect the heat storage water from each block and each small water tank that constitutes the block.

【0023】また、本発明によれば、これらの配管を各
小水槽を貫通するように配管したり、あるいは、建物の
地下スラブを小水槽と利用することも可能なので、建物
の死空間を有効に活用することができる。
Further, according to the present invention, these pipes can be pierced through each small water tank, or the underground slab of the building can be used as a small water tank, so that the dead space of the building can be effectively used. Can be used for.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に基づく氷蓄熱槽の第1の実施例の構成
を示す概略図である。
FIG. 1 is a schematic diagram showing a configuration of a first embodiment of an ice heat storage tank according to the present invention.

【図2】本発明に基づく氷蓄熱槽の別の実施例の構成を
示す概略図である。
FIG. 2 is a schematic diagram showing the configuration of another embodiment of the ice heat storage tank according to the present invention.

【図3】従来の氷蓄熱槽の構成を示す概略図である。FIG. 3 is a schematic diagram showing a configuration of a conventional ice heat storage tank.

【符号の説明】[Explanation of symbols]

1a、1b、1c、1d 小水槽 2 過冷却器 3 ポンプ 4 搬送管 5 縦パイプ 6 主搬送管 9a、9b、9c、9d 分岐管 10 主搬送管 11a、11b、11c、11d 分岐管 12a、12b、12c、12d 氷フィルタ 1a, 1b, 1c, 1d Small water tank 2 supercooler 3 pumps 4 carrier tubes 5 vertical pipes 6 Main carrier pipe 9a, 9b, 9c, 9d Branch pipe 10 Main carrier pipe 11a, 11b, 11c, 11d Branch pipe 12a, 12b, 12c, 12d Ice filter

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−1834(JP,A) 特開 平4−295528(JP,A) 特開 平4−155185(JP,A) 実開 昭56−42725(JP,U) (58)調査した分野(Int.Cl.7,DB名) F24F 5/00 102 C09K 5/06 F28D 20/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-5-1834 (JP, A) JP-A-4-295528 (JP, A) JP-A-4-155185 (JP, A) Actual development Sho-56- 42725 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) F24F 5/00 102 C09K 5/06 F28D 20/00

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 氷・水スラリーを空調用熱源水として蓄
えるための氷蓄熱槽と、この氷蓄熱槽の槽外に設置され
て通水される水を過冷却域にまで冷却可能な過冷却器
と、前記氷蓄熱槽内の水を前記過冷却器内に連続的に通
水し前記過冷却器の放出端から過冷却水を吐出させるた
めの系と、この過冷却水を氷・水スラリーに変換して前
記氷蓄熱槽内に導くための氷・水スラリー変換手段と、
前記氷蓄熱槽内に蓄えられた氷・水スラリーを解氷する
べく負荷側からの戻り水を前記氷蓄熱槽内に導くための
系と、から成る氷蓄熱槽において、 前記氷蓄熱槽が同じ高さに設置される複数の小水槽から
成り、前記各小水槽を並列に接続する第1の管路系を介
して前記氷・水スラリー変換手段から氷・水スラリーが
前記各小水槽に底部から分配されると共に、前記各小水
槽を並列に接続する第2の管路系を介して前記各小水槽
から冷水が槽内上部に設けた氷核分離手段の上方に備え
られた取水用の開口から回収されるように構成されてい
ることを特徴とする、氷蓄熱槽。
1. An ice heat storage tank for storing ice / water slurry as a heat source water for air conditioning, and supercooling which is installed outside the ice heat storage tank to cool water to a supercooling region. And a system for continuously passing the water in the ice heat storage tank into the subcooler to discharge the supercooled water from the discharge end of the subcooler, and the supercooled water as ice / water. An ice / water slurry conversion means for converting into a slurry and guiding it into the ice heat storage tank;
An ice heat storage tank comprising a system for guiding return water from a load side into the ice heat storage tank in order to defrost the ice / water slurry stored in the ice heat storage tank, wherein the ice heat storage tank is the same. It comprises a plurality of small water tanks installed at a height, and the ice / water slurry is converted from the ice / water slurry converting means into a bottom portion in each of the small water tanks via a first pipeline system connecting the respective small water tanks in parallel. while being dispensed from, provided above the ice nucleus separating means cold water from said each of the small water tank is provided in the upper tank through the second conduit system for connecting said each of the small water tank in parallel
An ice heat storage tank, characterized in that the ice heat storage tank is configured to be recovered from the taken water intake opening .
【請求項2】前記各小水槽を並列に接続する第1の管路
系及び第2の管路系が、それぞれ、主搬送管とそこから
各小水槽に連通する複数の分岐管から構成され、各分岐
管に開閉制御可能な弁手段が設けられていることを特徴
とする、請求項1に記載の氷蓄熱槽。
2. A first pipe line system and a second pipe line system for connecting the respective small water tanks in parallel are respectively composed of a main carrier pipe and a plurality of branch pipes communicating therewith to the respective small water tanks. The ice heat storage tank according to claim 1, wherein each branch pipe is provided with valve means capable of controlling opening and closing.
【請求項3】前記第1及び第2の管路系が、前記各小水
槽を貫通するように配管されることを特徴とする、請求
項1又は2に記載の氷蓄熱槽。
3. The ice heat storage tank according to claim 1, wherein the first and second pipeline systems are arranged so as to pass through the small water tanks.
【請求項4】前記氷蓄熱槽が複数の小水槽から成り、前
記複数の小水槽が複数のブロックに分割され、各ブロッ
ク毎に第1の管路系及び第2の管路系を配設し、前記各
ブロックの前記第1の管路系同士を並列接続する第3の
管路系を介して前記氷・水スラリー変換手段から氷・水
スラリーを各ブロックに分配すると共に、前記各ブロッ
クの前記第2の管路系同士を並列接続する第4の管路系
を介して前記各ブロックから冷水が回収されるように構
成されていることを特徴とする、請求項1ないし3のい
ずれかに記載の氷蓄熱槽。
4. The ice heat storage tank comprises a plurality of small water tanks, the plurality of small water tanks are divided into a plurality of blocks, and a first pipeline system and a second pipeline system are provided for each block. Then, the ice / water slurry converting means distributes the ice / water slurry to each block via a third pipeline system that connects the first pipeline systems of the blocks in parallel to each other, 4. The cold water is collected from each of the blocks via a fourth pipeline system that connects the second pipeline systems in parallel with each other, in any one of claims 1 to 3. Ice storage tank described in crab.
【請求項5】前記各ブロックを並列に接続する第3の管
路系及び第4の管路系が、それぞれ、主搬送管とそこか
ら各ブロック配管する複数の分岐管から構成され、各
分岐管に開閉制御可能な弁手段が設けられていることを
特徴とする、請求項4に記載の氷蓄熱槽。
5. The third pipeline system and the fourth pipeline system for connecting each of said blocks in parallel, respectively, is composed of a plurality of branch pipes to the pipe in each block and from there the main conveying pipe, each The ice heat storage tank according to claim 4, wherein the branch pipe is provided with valve means capable of opening and closing control.
【請求項6】前記第3及び第4の管路系が、前記各小水
槽を貫通するように配管されることを特徴とする、請求
項4又は5に記載の氷蓄熱槽
6. The ice heat storage tank according to claim 4 or 5, wherein the third and fourth pipeline systems are arranged so as to pass through the small water tanks.
【請求項7】前記氷蓄熱は、建物内の二重スラブで挟
まれるコンクリート空間であることを特徴とする、請求
項1ないし6のいずれかに記載の氷蓄熱槽。
7. The ice heat storage tank according to claim 1, wherein the ice heat storage tank is a concrete space sandwiched between double slabs in a building.
JP05805093A 1993-02-24 1993-02-24 Ice thermal storage tank Expired - Fee Related JP3512209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05805093A JP3512209B2 (en) 1993-02-24 1993-02-24 Ice thermal storage tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05805093A JP3512209B2 (en) 1993-02-24 1993-02-24 Ice thermal storage tank

Publications (2)

Publication Number Publication Date
JPH06249473A JPH06249473A (en) 1994-09-06
JP3512209B2 true JP3512209B2 (en) 2004-03-29

Family

ID=13073100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05805093A Expired - Fee Related JP3512209B2 (en) 1993-02-24 1993-02-24 Ice thermal storage tank

Country Status (1)

Country Link
JP (1) JP3512209B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100436978C (en) * 2006-12-31 2008-11-26 北京佩尔优科技有限公司 Water energy-storage system with multi flume tanks and using method thereof

Also Published As

Publication number Publication date
JPH06249473A (en) 1994-09-06

Similar Documents

Publication Publication Date Title
CN101517323A (en) Thermal energy storage and cooling system with isolated external melt cooling
EP2310751B1 (en) Thermal gradient fluid header for multiple heating and cooling systems
JP3512209B2 (en) Ice thermal storage tank
JPH11257808A (en) Refrigerating device having ice storage container
CN110186131B (en) Efficient ice storage system method
JPS6036835A (en) Ice storing type air conditioning and cooling system
JP2771952B2 (en) Individually distributed air conditioner
JPH09210413A (en) Regional heat supplying system
JP3266334B2 (en) Heat storage tank for air conditioning
KR20100046705A (en) Ice thermal storage system using closed-circuit
JP3505733B2 (en) Ice storage method and ice storage pipe system in ice thermal storage system
JP3511210B2 (en) Heat storage method for air conditioning
FI113203B (en) A method of pumping heat in a cooling system, particularly a district cooling network, to recover the waste heat from the water circulating therein, and a device for that purpose
JP3427628B2 (en) Ice storage device
JPH0561539B2 (en)
JP3276013B2 (en) Thermal storage system
JPH01285727A (en) Regional cooling system
JPH0275842A (en) Heat storage type heat pump device
JPH02118348A (en) Regional cooling system
JP2000065401A (en) Heat accumulating system
JPH10185249A (en) Ice storage apparatus
JP2649078B2 (en) Heat storage type cooling and heating method
JP2571127Y2 (en) Ice nucleus separation device for ice storage system
JP3102042B2 (en) Ice making equipment
JPH11281103A (en) Regenerative system

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100116

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100116

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110116

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110116

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees