JP3206363B2 - Ice heat storage device and control method thereof - Google Patents

Ice heat storage device and control method thereof

Info

Publication number
JP3206363B2
JP3206363B2 JP09702995A JP9702995A JP3206363B2 JP 3206363 B2 JP3206363 B2 JP 3206363B2 JP 09702995 A JP09702995 A JP 09702995A JP 9702995 A JP9702995 A JP 9702995A JP 3206363 B2 JP3206363 B2 JP 3206363B2
Authority
JP
Japan
Prior art keywords
water level
water
pipe
flow path
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09702995A
Other languages
Japanese (ja)
Other versions
JPH08291958A (en
Inventor
英雅 生越
和夫 相沢
謙年 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP09702995A priority Critical patent/JP3206363B2/en
Publication of JPH08291958A publication Critical patent/JPH08291958A/en
Application granted granted Critical
Publication of JP3206363B2 publication Critical patent/JP3206363B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、スラリ状の細かな氷で
氷そのものを冷水と一緒に搬送することができるダイナ
ミック型氷を貯蔵する、連結された複数の蓄熱槽からな
る氷蓄熱装置の構造およびその制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ice heat storage device comprising a plurality of connected heat storage tanks for storing dynamic ice capable of transporting ice itself together with cold water with slurry-like fine ice. The present invention relates to a structure and a control method thereof.

【0002】[0002]

【従来の技術】従来の蓄熱槽は、蓄熱媒体に水そのもの
を用いた、いわゆる水蓄熱槽がある。地域冷暖房や大規
模なビルの空調などにおいては、ビルの地下に設置され
た二重スラブを断熱・防水した蓄熱槽が使用されてい
る。この蓄熱槽は、ビルの構造上、例えば6m×3m×
2m(高さ)程度の小容量の水槽が多数隣合わせに配置
され、それらの水槽間を水が流路するよう、水槽間の壁
に連通管と称する穴を開けている。
2. Description of the Related Art As a conventional heat storage tank, there is a so-called water heat storage tank using water itself as a heat storage medium. 2. Description of the Related Art In district cooling and heating, air conditioning in a large-scale building, and the like, a heat storage tank insulated and waterproofed by a double slab installed in a basement of the building is used. This heat storage tank has a structure of, for example, 6 m × 3 m ×
A large number of water tanks having a small capacity of about 2 m (height) are arranged adjacent to each other, and a hole called a communication pipe is formed in a wall between the water tanks so that water flows between the water tanks.

【0003】図7はこのような水蓄熱に使用されている
多槽連結型蓄熱装置の例を示した図であり、また図8は
図7の垂直方向の断面図である。図7〜図8において、
2は隔壁、3は連通管、61は水槽、62は始端槽、63は終
端槽、64はマンホールである。また図7〜図8において
矢印は水の流れる方向を示している。図7において、連
通管3によって水は、各水槽61を直列に流れる。すなわ
ち、蓄冷する場合は、始端槽62から冷凍機で造られた冷
水が流入し、順に連通管3によって水が押し出され、終
端槽63から水がくみ出され冷凍機に流入する。終端槽63
まで温度が低下すると蓄熱は終了する。また、蓄熱槽の
蓄熱を取り出す場合は、逆に始端槽62から冷水をくみ出
し、負荷に送水する。温度が上昇した水は、終端槽63か
ら流入し、連通管3によって順に水が押し出され、始端
槽62まで温度が上昇すると放熱は終了となる。
FIG. 7 is a view showing an example of a multi-tank type heat storage device used for such water heat storage, and FIG. 8 is a vertical sectional view of FIG. 7 and 8,
2 is a partition, 3 is a communication pipe, 61 is a water tank, 62 is a start tank, 63 is a terminal tank, and 64 is a manhole. In FIGS. 7 and 8, arrows indicate the direction in which water flows. In FIG. 7, water flows through each water tank 61 in series by the communication pipe 3. That is, when cold storage is performed, cold water produced by a refrigerator flows in from the starting tank 62, water is sequentially pushed out by the communication pipe 3, water is drawn out from the terminal tank 63, and flows into the refrigerator. Terminal tank 63
When the temperature drops to this point, the heat storage ends. On the other hand, when taking out the heat stored in the heat storage tank, cold water is drawn from the starting end tank 62 and supplied to the load. The water whose temperature has risen flows in from the terminal tank 63, the water is sequentially pushed out by the communication pipe 3, and when the temperature rises to the start tank 62, the heat radiation ends.

【0004】水槽61の数は、50槽にも達するものもある
為、連通管3を通過する水の圧力損失を小さくしない
と、各水槽間に水位差ができ、水が溢れたり、蓄熱量が
低下するため、連通管3の口径を大きくしたりしてい
る。
Since the number of the water tanks 61 may be as large as 50 tanks, unless the pressure loss of the water passing through the communication pipe 3 is reduced, a water level difference occurs between the water tanks, and the water overflows or heat storage. Therefore, the diameter of the communication pipe 3 is increased.

【0005】一方、特に大規模な冷暖房システムに適し
たものとして、ダイナミック型氷をこうした多槽連結型
蓄熱槽に使用した例として以下に述べる様なものがあ
る。
On the other hand, as an example particularly suitable for a large-scale cooling and heating system, there is the following example in which dynamic ice is used in such a multi-tank type heat storage tank.

【0006】図9は、「ファインアイスシステム について 高密度
蓄熱式ヒートポンプ研究会平成4年度成果報告書 H5.6.
17 p78」に記載されている様な従来技術の例を示した図
である。以下の図において図7〜8と同一部分について
は同一符号を付し、説明を省略する。図9において、1a
〜1dは貯氷槽 (小槽) 、10は熱交換器、11は製氷機、12
は冷水ポンプ、13は製氷用ポンプ、14は負荷用ポンプ、
17は温水配管、18は冷水配管、39は搬送配管、47は氷分
配ポンプ、49は給水分配管、51は氷分配槽である。隔壁
2で仕切られた、複数の小槽1a〜1dは、互いに連通管3
で連通している。小槽の内の一槽(この例の場合は1a)
に設置されている搬送配管39を介して、製氷機11に製氷
用の冷水が供給される。
FIG. 9 is a graph showing the results of the “Fine Ice System Study Group on High Density Heat Storage Heat Pumps, FY 1994 Report H5.6.
17 p 78 "shows an example of a conventional technique. In the following drawings, the same parts as those in FIGS. 7 and 8 are denoted by the same reference numerals, and description thereof will be omitted. In FIG. 9, 1a
~ 1d is ice storage tank (small tank), 10 is heat exchanger, 11 is ice machine, 12
Is a cold water pump, 13 is an ice making pump, 14 is a load pump,
17 is a hot water pipe, 18 is a cold water pipe, 39 is a transport pipe, 47 is an ice distribution pump, 49 is a water supply pipe, and 51 is an ice distribution tank. A plurality of small tanks 1a to 1d partitioned by the partition 2
In communication. One of the small tanks (1a in this example)
The ice making machine 11 is supplied with cold water for ice making via a transfer pipe 39 installed in the ice making machine.

【0007】製氷機11では、スラリ状の氷が間欠的に製
造される。製氷用ポンプ13によって製氷用の冷水を製氷
機11に供給することによって、製氷機11内の氷スラリは
氷分配槽51に押し出される。氷分配槽51内には、氷分配
ポンプ47が設置されており、給水分配管49を介して各小
槽1a〜1dに氷スラリを供給する。
[0007] In the ice making machine 11, slurry ice is produced intermittently. The ice slurry in the ice making machine 11 is pushed out to the ice distribution tank 51 by supplying cold water for ice making to the ice making machine 11 by the ice making pump 13. An ice distribution pump 47 is provided in the ice distribution tank 51, and supplies ice slurry to each of the small tanks 1a to 1d via a water supply pipe 49.

【0008】解氷の場合は、小槽の内の一槽1aには、冷
水配管18が設置されており、槽内の冷水は、この冷水配
管18を介して、冷水ポンプ12によって熱交換器10に供給
され、熱需要家からの負荷の水と熱交換される。昇温さ
れた水は温水配管17を介して、冷水配管18の設置されて
いる小槽1aから最も離れた小槽1dへ戻され、槽間は連通
管3によって順に押し出される。
In the case of melting ice, a chilled water pipe 18 is provided in one of the small tanks 1a, and the chilled water in the tank is supplied to the heat exchanger 12 by the chilled water pump 12 through the chilled water pipe 18. It is supplied to 10 and exchanges heat with the load water from the heat consumer. The heated water is returned to the small tank 1d farthest from the small tank 1a where the cold water pipe 18 is installed via the hot water pipe 17, and the water is sequentially pushed out between the tanks by the communication pipe 3.

【0009】また図10は、特開平6−249472号公
報に記載されている様な従来技術の例を示した図であ
る。以下の図において図9と同一部分については同一符
号を付し、説明を省略する。図10において、20は過冷却
器、21は解除パイプ、50は取水分配管である。独立した
複数の小槽1a〜1cには各々の槽に独立に連結した取水分
配管50が設置され、取水された水は製氷用ポンプ13によ
って過冷却器20へ供給される。過冷却器20は、搬送され
た水を 0℃以下の過冷却水にし、解除パイプ21内に吐出
され氷スラリとなって、給水分配管49を介して各小槽1a
〜1cに並列に供給される。
FIG. 10 is a diagram showing an example of the prior art as described in JP-A-6-249472. In the following drawings, the same portions as those in FIG. 9 are denoted by the same reference numerals, and description thereof will be omitted. In FIG. 10, reference numeral 20 denotes a supercooler, 21 denotes a release pipe, and 50 denotes a water intake pipe. A plurality of independent small tanks 1a to 1c are provided with water intake pipes 50 which are independently connected to the respective tanks, and the extracted water is supplied to the subcooler 20 by the ice making pump 13. The supercooler 20 converts the conveyed water into supercooled water of 0 ° C. or less, is discharged into the release pipe 21 and becomes an ice slurry, and is supplied to each of the small tanks 1a through the water supply pipe 49.
~ 1c are supplied in parallel.

【0010】解氷の場合も同様に、図には示していない
各々独立した冷水配管によって並列に冷水が取り出され
て負荷に供給され、昇温した水は、図には示していない
各温水配管を介して各小槽1a〜1cに並列に供給される。
Similarly, in the case of defrosting, similarly, cold water is taken out in parallel by independent cold water pipes (not shown) and supplied to a load, and the heated water is supplied to each hot water pipe (not shown). Is supplied in parallel to each of the small tanks 1a to 1c.

【0011】[0011]

【発明が解決しようとする課題】しかしながら上記の従
来技術には以下の様な問題点があった。
However, the above prior art has the following problems.

【0012】氷スラリ中に通水したときの通水圧損は、
水だけの場合と比較してかなり大きいことがわかってい
る。発明者らが行った実験によると、氷スラリ中を通過
する水の圧損は、氷スラリがないときに比べて4〜5倍
の値となった。これは、氷スラリがある場合、氷の粒の
間の狭い隙間を水が流れなければならないため、流れの
抵抗が発生するためである。また、氷蓄熱の場合は水蓄
熱に比べて蓄熱密度が高いため、解氷運転時の循環水流
量は増加するのが一般的である。通水圧損は流速の2乗
に比例して大きくなるため、流量が増加することによ
り、圧損はさらに大きくなる。
The water pressure loss when water flows through the ice slurry is as follows:
It turns out to be much larger than water alone. According to the experiment performed by the inventors, the pressure loss of water passing through the ice slurry was 4 to 5 times as large as that without the ice slurry. This is because in the presence of ice slurry, water must flow through the narrow gaps between the ice particles, creating flow resistance. In the case of ice heat storage, since the heat storage density is higher than that of water heat storage, the flow rate of the circulating water during the deicing operation is generally increased. Since the water pressure loss increases in proportion to the square of the flow velocity, the pressure loss further increases as the flow rate increases.

【0013】満氷状態の氷蓄熱槽に水を供給する場合
(解氷開始直後)の圧損を見積もると、氷スラリ中の通
水圧損が大きいため、圧損は数百mmH2O にも達し、隣合
う水槽の水位差が大きくなりすぎてしまい、単に、水蓄
熱と同様の放熱方法すなわち蓄熱槽を直列に連結して使
用することは不可能といえる。
When estimating the pressure loss when supplying water to the ice storage tank in a full ice state (immediately after the start of defrosting), the pressure loss reaches several hundred mmH 2 O due to the large pressure loss of water flow in the ice slurry. The water level difference between adjacent water tanks becomes too large, and it can be said that it is impossible to simply use a heat dissipation method similar to water heat storage, that is, connecting heat storage tanks in series.

【0014】図9に示された、「高密度蓄熱式ヒートポ
ンプ研究会 平成4年度成果報告書」に記載されている
様な従来技術の場合、蓄氷運転時には各小槽に並列に氷
スラリを供給するため、圧損はそれほど問題にならな
い。しかし、解氷運転時には、複数の小槽が直列に連結
された状態で通水されることになるため、各小槽毎の通
水圧損による隣合う小槽間の水位差が足し合わされてい
く事になり、最初の槽(1a)と最後の槽(1d)間の水位差は
かなり大きくなってしまう。隣合う小槽間の圧損を100m
mH2Oとすると、小槽が10槽ある場合は始端の槽と終端の
槽の間の水位差は1000mmH2O にもなる。小槽はもともと
水位が小さい場合が多いので、これだけの水位差が生じ
ると運転不能となり、従って、連結槽の槽数が少ない場
合か、氷量が少ない場合、または循環水流量が少ない場
合にしか運転ができない。
[0014] In the case of the prior art as described in the "High-density regenerative heat pump type heat pump research report in FY 1994" shown in Fig. 9, an ice slurry is supplied in parallel to each small tank during ice storage operation. Pressure loss is less of a concern because of the supply. However, during the de-icing operation, the water flows in a state where a plurality of small tanks are connected in series, so that the water level difference between adjacent small tanks due to the water pressure loss of each small tank is added. In other words, the water level difference between the first tank (1a) and the last tank (1d) becomes considerably large. 100m pressure drop between adjacent small tanks
Assuming mH 2 O, if there are 10 small tanks, the difference in water level between the start tank and the end tank will be 1000 mmH 2 O. Since small tanks often have a low water level, operation is not possible if such a water level difference occurs.Therefore, only when the number of connected tanks is small, the amount of ice is small, or the circulating water flow rate is small. I can't drive.

【0015】図10に示された、特開平6−249472
号公報に記載されている様な従来技術の場合には、各小
槽が並列に接続されているため、一槽当たりの供給水流
量は小さくなるため、圧損は小さく上記のような問題は
生じない。しかしながらこの場合各小槽が均等に解氷さ
れねばならない。均等に解氷するためには、各小槽に均
等に流量を分配することが必要である。しかし、この様
に均等に流量を分配するのは非常に難しい。なぜなら、
解氷時にわずかな流量のアンバランスが生じると流量が
少しでも多い槽は解氷が速く進行する。解氷の進行にと
もなって槽内のの通水圧損は小さくなるため、その槽へ
供給される流量が益々増加することとなる。このように
して各槽の解氷の不均一が拡大し、氷が残る槽が生じた
り、負荷への送水温度が上昇したりする。これらは、蓄
熱槽の容積効率の低下につながる。
Japanese Patent Laid-Open No. 6-249472 shown in FIG.
In the case of the prior art as described in Japanese Patent Application Publication No. H06-27139, since the small tanks are connected in parallel, the flow rate of the supply water per tank is small, so that the pressure loss is small and the above-described problem occurs Absent. However, in this case, each cistern must be thawed evenly. In order to thaw the ice uniformly, it is necessary to distribute the flow rate evenly to each of the small tanks. However, it is very difficult to distribute the flow evenly in this way. Because
If a slight imbalance of the flow rate occurs at the time of defrosting, the defrosting progresses quickly in the tank with a little flow rate. As the thaw progresses, the water pressure loss in the tank becomes smaller, so that the flow rate supplied to the tank further increases. In this way, the non-uniformity of the thawing of each tank is enlarged, and a tank in which ice remains is generated, or the temperature of water supplied to the load is increased. These lead to a reduction in the volumetric efficiency of the heat storage tank.

【0016】この様に、各小槽に均等に流量を分配する
ために、各小槽に流量制御弁等を設け、常に制御する方
法も考えられるが、槽数が数十にも及ぶ場合には、流量
制御装置も槽数だけ必要となり、制御が複雑になるばか
りか、コストアップにもつながる。
As described above, in order to evenly distribute the flow rate to each of the small tanks, it is possible to provide a flow control valve or the like in each of the small tanks and always control the small tanks. However, the number of flow control devices required is the same as the number of tanks, which not only complicates the control but also increases the cost.

【0017】また、蓄熱槽は、夏期は氷蓄熱、中間期・
冬期は水蓄熱として使用される場合が多い。多槽連結型
の氷蓄熱槽を水蓄熱槽として使用する場合、上記従来技
術では、各槽が温度成層型の蓄熱槽となる。二重スラブ
を使用した水槽では、水深が2m程度と浅いため、温度
成層を形成しにくく、そのため、蓄熱効率が低くならざ
るを得ない欠点を有している。
The heat storage tank has ice storage in summer,
In winter, it is often used for water storage. When the multi-tank-type ice heat storage tank is used as a water heat storage tank, in the above-described conventional technology, each tank is a temperature stratified heat storage tank. A water tank using a double slab has a drawback that the water depth is as shallow as about 2 m, so that it is difficult to form a thermal stratification, and the heat storage efficiency must be low.

【0018】以上のように、ダイナミック型氷を貯蔵す
る従来技術の多槽連結型氷蓄熱槽では、多くの問題点を
抱えている。本発明は、上記のような問題点を解決する
ためになされたもので、簡単で安価な配管・装置でダイ
ナミック型氷を貯蔵した多槽連結型氷蓄熱槽から効率よ
く冷熱を取り出すことができ、かつ、これらを水蓄熱と
して使用した場合でも、従来の水蓄熱槽と同等な方法・
効率で運転できることを目的としている。
As described above, the conventional multi-tank type ice heat storage tank for storing dynamic ice has many problems. The present invention has been made in order to solve the above-mentioned problems, and it is possible to efficiently extract cold heat from a multi-tank-type ice heat storage tank storing dynamic ice with simple and inexpensive piping and equipment. And, even when these are used as water heat storage, the same method as the conventional water heat storage tank
It aims to be able to operate efficiently.

【0019】[0019]

【課題を解決するための手段】上記課題は以下の手段に
より解決される。
The above object is achieved by the following means.

【0020】 連通手段によって直列に連結された複
数の貯槽と、冷水を冷熱消費設備へ送る冷水配管と、冷
熱消費設備からの戻り水を貯槽へ還流させる戻り水配管
とを備えた氷蓄熱装置において、冷水配管に第一の流路
切替手段を介して、その一方の分岐側に接続され、直列
に連結された貯槽の一方の端に位置する終端槽と前記冷
水配管とを接続する取水管と、前記第一の流路切替手段
の他方の分岐側に接続され、各貯槽と前記冷水配管とを
接続する第一の分配管と、戻り水配管に第二の流路切替
手段を介して、その一方の分岐側に接続され、直列に連
結された貯槽の他方の端に位置する始端槽と前記戻り水
配管とを接続する水管と、前記第二の流路切替手段の他
方の分岐側に接続され、各貯槽と前記戻り水配管とを接
続する第二の分配管とを備えるとともに、前記直列に連
結された貯槽の、いずれかの端に位置する貯槽の水位を
検出する水位検出手段と、前記水位に基づいて、前記第
一の流路切替手段及び前記第二の流路切替手段の分岐開
度を制御する制御手段を備えたことを特徴とする氷蓄熱
装置。
An ice heat storage device including a plurality of storage tanks connected in series by communication means, a cold water pipe for sending cold water to the cold heat consuming facility, and a return water pipe for returning the return water from the cold heat consuming facility to the storage tank. Via a first flow path switching means to the chilled water pipe, connected to one branch side thereof, and a water intake pipe connecting the terminal water tank and the chilled water pipe located at one end of the storage tank connected in series. A first distribution pipe connected to the other branch side of the first flow path switching means and connecting each storage tank and the cold water pipe, and a return water pipe through a second flow path switching means, A water pipe that is connected to the one branch side and connects the start water tank and the return water pipe located at the other end of the storage tank connected in series, and the other branch side of the second flow path switching means. A second distribution pipe connected to each storage tank and the return water pipe. And a water level detecting means for detecting a water level of a storage tank located at any end of the storage tanks connected in series, based on the water level, the first flow path switching means and the second An ice heat storage device comprising control means for controlling a branch opening of a flow path switching means.

【0021】 に記載された氷蓄熱装置を用いた制
御方法において、前記第一の流路切替手段及び第二の流
路切替手段は三方流量調整弁であって、分岐開度を連続
的に調整し、前記水位検出手段は、直列に連結された貯
槽の、始端槽の水位を検出し、前記制御手段は、水位が
解氷運転前の水位と許容上限水位との間にある、予め設
定された目標水位を維持する様に、前記第一の流路切替
手段及び第二の流路切替手段の分岐開度を連続的に制御
することを特徴とする氷蓄熱装置の制御方法。
[0021] In the control method using the ice heat storage device described in the above, the first flow path switching means and the second flow path switching means are three-way flow control valves, and continuously adjust the branch opening. Then, the water level detection means detects the water level of the starting tank of the storage tanks connected in series, and the control means sets the water level between the water level before the de-icing operation and the allowable upper limit water level. A method for controlling the ice heat storage device, wherein the branch opening degree of the first flow path switching means and the second flow path switching means is continuously controlled so as to maintain the target water level.

【0022】 に記載された氷蓄熱装置を用いた制
御方法において、前記第一の流路切替手段及び第二の流
路切替手段は三方流量調整弁であって、分岐開度を連続
的に調整し、前記水位検出手段は、直列に連結された貯
槽の、終端槽の水位を検出し、前記制御手段は、水位が
解氷運転前の水位と許容下限水位との間にある、予め設
定された目標水位を維持する様に、前記第一の流路切替
手段及び第二の流路切替手段の分岐開度を連続的に制御
することを特徴とする氷蓄熱装置の制御方法。
In the control method using the ice heat storage device described in the above, the first flow path switching means and the second flow path switching means are three-way flow control valves, and continuously adjust the branch opening. The water level detecting means detects the water level of the terminal tank of the storage tanks connected in series, and the control means sets the water level between the water level before the de-icing operation and the allowable lower limit water level. A method for controlling the ice heat storage device, wherein the branch opening degree of the first flow path switching means and the second flow path switching means is continuously controlled so as to maintain the target water level.

【0023】 に記載された氷蓄熱装置を用いた制
御方法において、前記第一の流路切替手段及び第二の流
路切替手段は三方切替弁であって、分岐開度を連続的に
調整し、前記水位検出手段は、直列に連結された貯槽
の、始端槽の水位を検出し、前記制御手段は、水位が解
氷運転前の水位と許容上限水位との間にある、予め設定
された第一の目標水位を超えた場合には、冷水配管と第
一の分配管とを連結すると同時に、戻り水配管と第二の
分配管とを連結するように、第一の流路切替手段及び第
二の流路切替手段の分岐方向を切換え、他方、水位が解
氷運転前の水位と前記第一の目標水位の間にある、予め
設定された第二の目標水位を下回った場合には、冷水配
管と取水管を連結するとともに、戻り水配管と水管を連
結するように、第一の流路切替手段及び第二の流路切替
手段の分岐方向を切換えることを特徴とする氷蓄熱装置
の制御方法。
[0023] In the control method using the ice heat storage device described in the above, the first flow path switching means and the second flow path switching means are three-way switching valves, and continuously adjust the branch opening. Wherein the water level detection means detects the water level of the starting tank of the storage tanks connected in series, and the control means sets the water level between the water level before the de-icing operation and the allowable upper limit water level. If the first target water level is exceeded, the first flow path switching means and the same as connecting the return water pipe and the second distribution pipe while connecting the cold water pipe and the first distribution pipe. When the branch direction of the second flow path switching means is switched, while the water level is between the water level before the de-icing operation and the first target water level, when the water level falls below a second target water level set in advance. The first flow path connects the cold water pipe and the intake pipe, and also connects the return water pipe and the water pipe. A method for controlling an ice heat storage device, comprising: switching a branch direction of a switching means and a second flow path switching means.

【0024】 に記載された氷蓄熱装置を用いた制
御方法において、前記第一の流路切替手段及び第二の流
路切替手段は三方切替弁であって、分岐開度を連続的に
調整し、前記水位検出手段は、直列に連結された貯槽
の、終端槽の水位を検出し、前記制御手段は、水位が解
氷運転前の水位と許容下限水位との間にある、予め設定
された第一の目標水位を下回った場合には、冷水配管と
第一の分配管とを連結すると同時に、戻り水配管と第二
の分配管とを連結するように、第一の流路切替手段及び
第二の流路切替手段の分岐方向を切換え、他方、水位が
解氷運転前の水位と前記第一の目標水位の間にある、予
め設定された第二の目標水位を上回った場合には、冷水
配管と取水管を連結するとともに、戻り水配管と水管を
連結するように、第一の流路切替手段及び第二の流路切
替手段の分岐方向を切換えることを特徴とする氷蓄熱装
置の制御方法。
In the control method using the ice heat storage device described in the above, the first flow path switching means and the second flow path switching means are three-way switching valves, and continuously adjust the branch opening. The water level detection means detects the water level of the terminal tank of the storage tanks connected in series, and the control means sets the water level between the water level before the de-icing operation and the allowable lower limit water level, which is set in advance. When the water level falls below the first target water level, the first flow path switching means and the second water distribution pipe are connected to the first distribution pipe at the same time as connecting the cold water pipe and the first distribution pipe. When the branch direction of the second flow path switching means is switched, while the water level is between the water level before the de-icing operation and the first target water level, when the water level exceeds a preset second target water level. , Connect the cold water pipe and the intake pipe, and connect the return water pipe and the water pipe, A method for controlling an ice heat storage device, comprising switching a branch direction of a road switching unit and a second flow switching unit.

【0025】ここで連通手段とは、連通管、あるいは連
通管と同等な機能を有する、複数の槽内の流体を連通さ
せる手段(例えばもぐり堰等)をいう。
Here, the communication means refers to a communication pipe or a means (for example, a moat weir) having a function equivalent to that of the communication pipe for communicating fluids in a plurality of tanks.

【0026】[0026]

【作用】本発明による、予め設定された一つの目標水位
を維持する様に流路切替手段の分岐開度を連続的に制御
する場合の作用は以下の様になる。
The operation of the present invention in the case of continuously controlling the branch opening of the flow path switching means so as to maintain one preset target water level is as follows.

【0027】解氷時に残氷量が多く通水圧損が大きくて
始端槽側に設けた水位計による水位が目標水位より高く
なる時には、切替弁の分岐開度が分配管側へ大きくなる
ように調整されるので、各小槽毎に水の取水、給水がな
され、通水が滞りなく行われる。この状態で運転を続け
ると、やがて水位が目標水位より低くなるが、ここで各
小槽の解氷は必ずしも均一ではなく、残氷量の多い小槽
が存在する。この時、水位が目標水位より低くなると、
切替弁の分岐開度が水管、取水管側へ大きくなるように
調整されるので、水は連通管により多く流れ、不均一に
解氷されて、残氷量が多くなった小槽の氷を解氷するこ
とができる。この状態で運転を続けると、冷水が各槽の
氷層を通過することにより、再び水位が目標水位より高
くなるが、ここで切替弁の分岐開度が分配管側へ大きく
なるように調整されるので、再び各小槽毎に水の取水、
給水がなされ、通水が滞りなく行われる。この様にし
て、始端槽と終端槽の水位差が大きく成り過ぎない様に
して、安定的に冷水を冷熱消費設備へ供給することがで
きる。
When the residual ice amount is large at the time of defrosting and the water pressure loss is large and the water level measured by the water level meter provided on the starting tank is higher than the target water level, the branch opening of the switching valve is increased toward the distribution pipe. Since adjustment is performed, water is taken in and supplied to each of the small tanks, and the water flow is performed without interruption. If the operation is continued in this state, the water level eventually becomes lower than the target water level. However, here, the thawing in each of the small tanks is not necessarily uniform, and there are small tanks with a large amount of residual ice. At this time, if the water level falls below the target water level,
Since the branch opening of the switching valve is adjusted so as to increase toward the water pipe and the intake pipe, the water flows more through the communication pipe, and is thawed unevenly. Can be thawed. If the operation is continued in this state, the cold water passes through the ice layer of each tank, so that the water level becomes higher than the target water level again.Here, the branch opening of the switching valve is adjusted so as to increase toward the distribution pipe side. So again, water intake for each small tank,
Water will be supplied and water will flow without interruption. In this way, it is possible to stably supply chilled water to the cold and heat consuming equipment so that the water level difference between the starting tank and the ending tank does not become too large.

【0028】終端槽側に水位計を設けて、予め設定され
た一つの目標水位を維持する様に流路切替手段の分岐開
度を連続的に制御する場合の作用も、前記の場合と同様
であり、この場合には水位が目標水位より低くなる時に
は、切替弁の分岐開度が分配管側へ大きくなるように調
整され、また水位が目標水位より高くなる時は、切替弁
の分岐開度が水管、取水管側へ大きくなるように調整さ
れるので、始端槽と終端槽の水位差が大きく成り過ぎな
い様にして、安定的に冷水を冷熱消費設備へ供給するこ
とができる。
The operation in the case where a water level gauge is provided on the terminal tank side and the branch opening of the flow path switching means is continuously controlled so as to maintain one preset target water level is also the same as in the above case. In this case, when the water level becomes lower than the target water level, the branch opening of the switching valve is adjusted so as to increase toward the distribution pipe, and when the water level becomes higher than the target water level, the branch opening of the switching valve is adjusted. Since the degree is adjusted so as to increase toward the water pipe and the intake pipe, it is possible to stably supply chilled water to the cold heat consuming equipment so that the water level difference between the start tank and the end tank does not become too large.

【0029】また、本発明による、予め設定された二つ
の目標水位の間に水位を維持する様に流路切替手段の分
岐方向を切替える制御をする場合の作用は以下の様にな
る。
Further, according to the present invention, the operation of switching the branch direction of the flow path switching means so as to maintain the water level between two preset target water levels is as follows.

【0030】解氷時に残氷量が多く通水圧損が大きくて
始端槽側に設けた水位計による水位が第一の目標水位よ
り高くなる時には、切替弁を切り替えて分配管側へ流れ
る様に調整されるので、各小槽毎に水の取水、給水がな
され、通水が滞りなく行われる。この状態で運転を続け
ると、やがて水位が低くなりだし、第二の目標水位より
低くなるが、ここで各小槽の解氷は必ずしも均一ではな
く、残氷量の多い小槽が存在する。この時、水位が第二
の目標水位より低くなると、切替弁を切替えて水管、取
水管側へ流れる様に調整されるので、水は連通管により
多く流れ、不均一に解氷されて、残氷量が多くなった小
槽の氷を解氷することができる。この状態で運転を続け
ると、冷水が各槽の氷層を通過することにより、再び水
位が設定水位より高くなるが、ここで切替弁を切替えて
分配管側へ流れる様に調整されるので、再び各小槽毎に
水の取水、給水がなされ、通水が滞りなく行われる。こ
の様にして、始端槽と終端槽の水位差が大きく成り過ぎ
ない様にして、安定的に冷水を冷熱消費設備へ供給する
ことができる。
When the residual ice amount is large and the water flow pressure loss is large at the time of deicing and the water level measured by the water level meter provided on the starting tank is higher than the first target water level, the switching valve is switched to flow to the distribution pipe. Since adjustment is performed, water is taken in and supplied to each of the small tanks, and the water flow is performed without interruption. If the operation is continued in this state, the water level will eventually drop and become lower than the second target water level. Here, the defrosting of each of the small tanks is not necessarily uniform, and there are small tanks with a large amount of residual ice. At this time, when the water level becomes lower than the second target water level, the switching valve is switched so that the water is adjusted so as to flow to the water pipe and the intake pipe side. It is possible to thaw the ice in the small tank where the amount of ice has increased. If the operation is continued in this state, the cold water passes through the ice layer of each tank, and the water level becomes higher than the set water level again.However, the switching valve is switched here so that the water is adjusted to flow to the distribution pipe side. Water is taken in and water is supplied to each of the small tanks again, and the water flow is performed without interruption. In this way, it is possible to stably supply chilled water to the cold and heat consuming equipment so that the water level difference between the starting tank and the ending tank does not become too large.

【0031】終端槽側に水位計を設けて、予め設定され
た二つの目標水位の間に水位を維持する様に流路切替手
段の分岐方向を切替える制御をする場合の作用も、前記
の場合と同様であり、この場合には水位が第一の目標水
位より低くなる時には、切替弁を切り替えて分配管側へ
流れる様に調整され、水位が第二の目標水位より高くな
ると、切替弁を切替えて水管、取水管側へ流れる様に調
整されるので、始端槽と終端槽の水位差が大きく成り過
ぎない様にして、安定的に冷水を冷熱消費設備へ供給す
ることができる。
In the case where a water level gauge is provided on the terminal tank side to control the switching of the branching direction of the flow path switching means so as to maintain the water level between two predetermined target water levels, In this case, when the water level becomes lower than the first target water level, the switching valve is switched to adjust the flow to the distribution pipe side, and when the water level becomes higher than the second target water level, the switching valve is turned off. Since it is switched so as to flow to the water pipe and the water intake pipe side, it is possible to stably supply the cold water to the cold heat consuming equipment so that the water level difference between the start tank and the end tank does not become too large.

【0032】[0032]

【実施例】本発明の実施例を図面に基づいて説明する。An embodiment of the present invention will be described with reference to the drawings.

【0033】図1は、本発明の実施例である多槽連結型
氷蓄熱装置の配管及び制御の系統図を示した図である。
以下の図において図8と同一部分については同一符号を
付し、説明を省略する。図1において、4は給水と取水
を行う始端槽側からの分配管、5は給氷と取水を行う終
端槽側からの分配管、6は給水と取水を行う水管、7は
取水を行う取水管、8は始端槽側切替弁、9は終端槽側
切替弁、15は水位計、16は水位制御装置、22、23は切替
弁、24、25は搬送配管である。
FIG. 1 is a diagram showing a piping and control system diagram of a multi-tank-type ice heat storage device according to an embodiment of the present invention.
In the following drawings, the same portions as those in FIG. 8 are denoted by the same reference numerals, and description thereof will be omitted. In FIG. 1, reference numeral 4 denotes a distribution pipe from the starting tank side for supplying water and water intake, 5 denotes a distribution pipe from the terminal tank side for supplying ice water and water intake, 6 denotes a water pipe for supplying water and water intake, and 7 denotes a water intake and intake water. A water pipe, 8 is a starting tank side switching valve, 9 is a terminal tank side switching valve, 15 is a water level gauge, 16 is a water level control device, 22 and 23 are switching valves, and 24 and 25 are conveying pipes.

【0034】隔壁2で仕切られた複数(この例では5
槽)の小槽1a〜1eは互いに連通管3で連通している。各
小槽には開口部を持った始端槽側からの分配管4と始端
槽1aに水管6が設置されており、これらは三方制御弁に
なっている始端槽側切替弁8を介して負荷からの搬送配
管24に接続されている。
A plurality of partitions (5 in this example)
The small tanks 1a to 1e of the tank are connected to each other by a communication pipe 3. Each of the small tanks is provided with a distribution pipe 4 having an opening from the starting tank side and a water pipe 6 in the starting tank 1a, and these are loaded through a starting tank switching valve 8 which is a three-way control valve. Connected to the transfer pipe 24.

【0035】また、各小槽には開口部を持った終端槽側
からの分配管5と終端槽1eに取水管7が設置されてお
り、これらは、三方制御弁になっている終端槽側切替弁
9を介して負荷への搬送配管25に接続されている。
Each of the small tanks is provided with a distribution pipe 5 having an opening from the end tank side and an intake pipe 7 in the end tank 1e. These are provided on the end tank side which is a three-way control valve. It is connected to the transfer pipe 25 to the load via the switching valve 9.

【0036】また、始端槽1aには、水位を計測する水位
計15が設置されており、この信号は水位制御装置16に入
力され、その出力は始端槽側切替弁8と終端槽側切替弁
9に送られ、開閉動作を行わせる。
A water level gauge 15 for measuring the water level is installed in the starting tank 1a. This signal is input to a water level control device 16, and its output is output from a starting tank switching valve 8 and an end tank switching valve. 9 to be opened and closed.

【0037】図2は図1に示した実施例において、蓄氷
運転時のフローを示した図である。以下の図において図
1と同一部分については同一符号を付し、説明を省略す
る。まず、始端槽側切替弁8を水が水管6から搬送配管
24へ流れる様に切替え、切替弁22を搬送配管24から製氷
機11へ流れる様に切替える。さらに、切替弁23を製氷機
11から搬送配管25に流れる様に切替え、終端槽側切替弁
9を搬送配管25から終端槽側からの分配管5に流れる様
に切替える。この様に切替えてから、製氷用ポンプ13を
起動する。これにより、製氷機11で製造された氷スラリ
は、切替弁23、終端槽側切替弁9を介して、終端槽側か
らの分配管5を通り各小槽に分配され、各小槽に氷が貯
蔵される。また、始端槽側切替弁8は、水位計15の水位
が設定水位より低くなった時は、始端槽以外の槽に残っ
た水の取水を行うため、始端槽側からの分配管4が開と
なる様に切替弁を切替える制御を行うことが可能であ
り、始端槽側からの分配管4からくみ出された水は、製
氷用ポンプ13にて製氷機11に供給される。
FIG. 2 is a diagram showing a flow during the ice storage operation in the embodiment shown in FIG. In the following drawings, the same portions as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted. First, water is transferred from the water pipe 6 to the transfer pipe 8 at the starting tank side switching valve 8.
The flow is switched to flow to 24, and the switching valve 22 is switched to flow from the transport pipe 24 to the ice making machine 11. Furthermore, the switching valve 23 is connected to the ice making machine.
The flow is switched from 11 to the transfer pipe 25, and the terminal tank side switching valve 9 is switched to flow from the transfer pipe 25 to the distribution pipe 5 from the terminal tank. After such switching, the ice making pump 13 is started. As a result, the ice slurry produced by the ice making machine 11 is distributed to the respective small tanks through the distribution pipe 5 from the terminal tank side via the switching valve 23 and the terminal tank side switching valve 9, and the ice slurry is supplied to each small tank. Is stored. In addition, when the water level of the water level gauge 15 becomes lower than the set water level, the start-end tank side switching valve 8 opens the distribution pipe 4 from the start-end tank side to take in water remaining in the tanks other than the start-end tank. It is possible to perform control to switch the switching valve so that water is drawn from the distribution pipe 4 from the starting tank side and supplied to the ice making machine 11 by the ice making pump 13.

【0038】図3は本発明の実施例で、始端槽の水位を
検出して切替弁の分岐開度を制御する場合における解氷
運転時のフローを示した図である。以下の実施例におい
て解氷運転時には、切替弁23を搬送配管25から冷水配管
18へ流れる様に切替え、切替弁22を温水配管17から搬送
配管24へ流れる様に切替える。
FIG. 3 is a diagram showing a flow during the de-icing operation in the case of detecting the water level of the starting end tank and controlling the branch opening of the switching valve in the embodiment of the present invention. In the following embodiment, during the deicing operation, the switching valve 23 is moved from the transfer pipe 25 to the cold water pipe.
The flow is switched to flow to 18, and the switching valve 22 is switched to flow from the hot water pipe 17 to the transfer pipe 24.

【0039】解氷運転開始時には、予め始端側切替弁8
を水管6側への開度が大きくなる様に調整し、また終端
槽側切替弁9を取水管7への開度が大きくなる様に調整
する。この様にして運転が始まると、解氷初期には残氷
量が多いので、連通管3を通って流れる水の圧損が大き
いため始端槽1aの水位が上昇する。ここで、水位計4の
水位が解氷運転前の水位と許容上限水位との間にある、
予め設定された目標水位よりも高くなった場合には、水
位制御装置16によって、始端側切替弁8を始端槽側から
の分配管4側への開度が大きくなる様に調整し、また終
端槽側切替弁9を終端槽側からの分配管5側への開度が
大きくなる様に調整する。この様にして、始端槽1aと終
端槽1eの水位差が大きいときは、始端槽側からの分配管
4および終端槽側からの分配管5側へ水をより多く流す
ことにより、各小槽毎に取水、給水がなされ、通水が滞
りなく行われる。
At the start of the de-icing operation, the starting end side switching valve 8
Is adjusted so that the opening degree to the water pipe 6 becomes large, and the terminal tank side switching valve 9 is adjusted so that the opening degree to the water pipe 7 becomes large. When the operation is started in this manner, since the amount of residual ice is large in the early stage of the defrosting, the pressure loss of the water flowing through the communication pipe 3 is large, so that the water level of the starting tank 1a rises. Here, the water level of the water level gauge 4 is between the water level before the de-icing operation and the allowable upper limit water level,
When the water level becomes higher than a preset target water level, the water level control device 16 adjusts the starting end switching valve 8 so that the opening degree from the starting end tank side to the distribution pipe 4 side is increased, and the end level is changed. The tank side switching valve 9 is adjusted so that the opening from the terminal tank side to the distribution pipe 5 side becomes large. In this manner, when the water level difference between the start tank 1a and the end tank 1e is large, more water flows to the distribution pipe 4 from the start tank and to the distribution pipe 5 from the end tank, so that each small tank Water is taken and supplied every time, and water flow is carried out without interruption.

【0040】解氷が進むにつれて、残氷量が減ってきた
時は、連通管3を通って流れる水の圧損が減るため始端
槽1aの水位が下がりだす。ここで、水位計4の水位が目
標水位よりも低くなった場合には、水位制御装置16によ
って、始端側切替弁8を水管6側への開度が大きくなる
様に調整し、また終端槽側切替弁9を取水管7への開度
が大きくなる様に調整する。この様にして、始端槽1aと
終端槽1eの水位差が小さいときは、水管6および取水管
7側へ水をより多く流すことにより、水が通水管により
多く流れ、不均一に解氷されて残氷量の多くなった小槽
の氷を解氷することができる。ここで冷水が各槽の氷層
を通ることにより、通水圧損が増加して、再び始端槽の
水位が上昇し、目標水位より高くなった場合には、再度
水位制御装置16で、始端側切替弁8を始端槽側からの分
配管4側への開度が大きくなる様に調整し、また終端槽
側切替弁9を終端槽側からの分配管5側への開度が大き
くなる様に調整する。
When the amount of residual ice decreases as the thawing progresses, the pressure drop of the water flowing through the communication pipe 3 decreases, so that the water level in the starting tank 1a starts to drop. Here, when the water level of the water level gauge 4 becomes lower than the target water level, the water level control device 16 adjusts the opening of the starting end switching valve 8 to the water pipe 6 side, and also adjusts the end tank. The side switching valve 9 is adjusted so that the opening to the water pipe 7 is increased. In this manner, when the water level difference between the start tank 1a and the end tank 1e is small, by flowing more water to the water pipe 6 and the water intake pipe 7 side, more water flows through the water pipe, and the ice is unevenly thawed. It is possible to thaw the ice in the small tank where the amount of remaining ice has increased. Here, when the cold water passes through the ice layer of each tank, the water flow pressure loss increases, and the water level of the starting tank rises again and becomes higher than the target water level. The switching valve 8 is adjusted so that the opening degree from the starting tank side to the distribution pipe 4 side is increased, and the termination valve side switching valve 9 is adjusted such that the opening degree from the terminal tank side to the distribution pipe 5 side is increased. Adjust to

【0041】以上の様にして、目標水位を保つ様に切替
弁の開度を切替えることにより、始端槽と終端槽の水位
差が大きく成り過ぎない様にして、安定的に冷水を冷熱
消費設備へ供給することができ、各小槽に氷を残すこと
なく完全に解氷することができる。
As described above, by switching the opening of the switching valve so as to maintain the target water level, the water level difference between the starting tank and the ending tank does not become too large, and the chilled water is stably supplied to the cold heat consuming equipment. Can be completely thawed without leaving ice in each cell.

【0042】また、解氷運転開始時に、予め始端側切替
弁8を始端槽側からの分配管4側への開度が大きくなる
様に調整し、また終端槽側切替弁9を終端槽側からの分
配管5側への開度が大きくなる様に調整してもよい。こ
の場合には、解氷が進むにつれて、水位計4の水位が目
標水位よりも低くなった場合には、水位制御装置16によ
って、始端側切替弁8を水管6側への開度が大きくなる
様に調整し、また終端槽側切替弁9を取水管7への開度
が大きくなる様に調整する。
When the de-icing operation is started, the starting end switching valve 8 is adjusted in advance so that the opening from the starting tank side to the distribution pipe 4 side is increased, and the terminal tank side switching valve 9 is set to the terminal tank side. May be adjusted so that the degree of opening to the distribution pipe 5 from the side becomes large. In this case, if the water level of the water level gauge 4 becomes lower than the target water level as the thawing progresses, the opening of the start end switching valve 8 toward the water pipe 6 is increased by the water level control device 16. In addition, the terminal-side switching valve 9 is adjusted so that the opening to the water pipe 7 is increased.

【0043】ここで、切替弁の開度は、水位が目標水位
より上へ離れる程始端槽側からの分配管4および終端槽
側からの分配管5への開度が大きくなる様、また水位が
目標水位より下へ離れる程水管6および取水管7への開
度が大きくなる様に制御することが好ましい。
Here, the opening degree of the switching valve is set such that the opening degree to the distribution pipe 4 from the starting tank side and the distribution pipe 5 from the end tank side becomes larger as the water level becomes higher than the target water level. It is preferable to control so that the opening degree to the water pipe 6 and the intake pipe 7 increases as the distance from the target water level becomes lower.

【0044】この様にして、冷水は終端槽側からの分配
管5および取水管7より取水され、冷水配管18を通って
負荷熱交換器10へ送られる。負荷熱交換器において、冷
水は負荷戻り水と熱交換され冷却された水は再度負荷へ
送水される。一方熱交換して昇温した水は、温水配管17
を通り、始端槽側からの分配管4および水管6を介して
各小槽に供給される。なお、負荷熱交換器10を介さずに
冷水を直接負荷へ送水してもよい。
In this way, the cold water is taken from the distribution pipe 5 and the water intake pipe 7 from the terminal tank side, and is sent to the load heat exchanger 10 through the cold water pipe 18. In the load heat exchanger, the cold water exchanges heat with the load return water, and the cooled water is sent to the load again. On the other hand, water heated by heat exchange is
And supplied to each small tank via the distribution pipe 4 and the water pipe 6 from the starting tank side. The cold water may be directly sent to the load without passing through the load heat exchanger 10.

【0045】また、切替弁の開度調整を行わずに、目標
水位より高くなった場合には、始端槽側からの分配管4
および終端槽側からの分配管5へ切替え、目標水位より
低くなった場合には、水管6および取水管7へ切替える
制御としてもよい。
If the water level becomes higher than the target water level without adjusting the opening of the switching valve, the distribution pipe 4
Alternatively, control may be performed by switching to the distribution pipe 5 from the terminal tank side and switching to the water pipe 6 and the water intake pipe 7 when the water level becomes lower than the target water level.

【0046】図4は本発明の実施例で、終端槽の水位を
検出して切替弁の分岐開度を制御する場合における解氷
運転時のフローを示した図である。
FIG. 4 is a diagram showing a flow during the de-icing operation in the case where the water level of the terminal tank is detected and the branch opening of the switching valve is controlled in the embodiment of the present invention.

【0047】この場合には、水位計4の水位が解氷運転
前の水位と許容上限水位との間にある、予め設定された
目標水位よりも低くなった場合には、水位制御装置16に
よって、始端側切替弁8を始端槽側からの分配管4側へ
の開度が大きくなる様に調整し、また終端槽側切替弁9
を終端槽側からの分配管5側への開度が大きくなる様に
調整する。また、水位計4の水位が目標水位よりも高く
なった場合には、水位制御装置16によって、始端側切替
弁8を水管6側への開度が大きくなる様に調整し、また
終端槽側切替弁9を取水管7への開度が大きくなる様に
調整する。ここで、切替弁の開度は、水位が目標水位よ
り下へ離れる程始端槽側からの分配管4および終端槽側
からの分配管5への開度が大きくなる様、また水位が目
標水位より上へ離れる程水管6および取水管7への開度
が大きくなる様に制御することが好ましい。
In this case, when the water level of the water level gauge 4 becomes lower than the preset target water level between the water level before the de-icing operation and the allowable upper limit water level, the water level control device 16 , The start-side switching valve 8 is adjusted so that the opening from the starting-end tank side to the distribution pipe 4 side is increased.
Is adjusted so that the degree of opening from the terminal tank side to the distribution pipe 5 side increases. When the water level of the water level gauge 4 becomes higher than the target water level, the water level control device 16 adjusts the start end switching valve 8 so that the opening degree to the water pipe 6 becomes large, The switching valve 9 is adjusted so that the opening to the water pipe 7 is increased. Here, the opening degree of the switching valve is set such that the opening degree to the distribution pipe 4 from the starting tank side and the distribution pipe 5 from the end tank side becomes larger as the water level becomes lower than the target water level, and the water level becomes the target water level. It is preferable to control so that the opening degree to the water pipe 6 and the water intake pipe 7 increases as the distance increases.

【0048】また、切替弁の開度調整を行わずに、目標
水位より低くなった場合には、始端槽側からの分配管4
および終端槽側からの分配管5へ切替え、目標水位より
高くなった場合には、水管6および取水管7へ切替える
制御としてもよい。
If the water level becomes lower than the target water level without adjusting the opening of the switching valve, the distribution pipe 4
Alternatively, control may be performed to switch to the distribution pipe 5 from the terminal tank side and to switch to the water pipe 6 and the water intake pipe 7 when the water level becomes higher than the target water level.

【0049】図5aおよび図5bは、始端槽の水位を検出し
て二つの目標水位を設けて切替弁で切替える場合におけ
る解氷運転時のフローを示した図である。
FIGS. 5A and 5B are diagrams showing a flow during the de-icing operation in the case where the water level in the starting tank is detected, two target water levels are provided, and switching is performed by the switching valve.

【0050】解氷運転開始時には、予め始端側切替弁8
を水が搬送配管24から水管6へ流れる様に切替え、終端
槽側切替弁9を水が取水管7から搬送配管25へ流れる様
に切替えておく。この様にして運転が始まると、解氷初
期には残氷量が多いので、連通管3を通って流れる水の
圧損が大きいため始端槽1aの水位が上昇する。図5aはこ
の様な、水位計15の水位が、解氷運転前の水位と許容上
限水位との間にある、予め設定された第一の目標水位を
超えた場合のフローを示しており、この場合には、始端
槽側からの分配管4および終端槽側からの分配管5を通
して水が流れる様にする。つまり、前記目標水位を上回
った場合に水位制御装置16で、終端槽側切替弁9を冷水
が終端槽側からの分配管5から搬送配管25へ流れる様に
切替え、始端側切替弁8を搬送配管24から始端槽側から
の分配管4へ流れる様に切替える。冷水は終端槽側から
の分配管5より取水され、冷水配管18を通って負荷熱交
換器10へ送られる。熱交換して昇温した水は、温水配管
17を通り、始端槽側からの分配管4を介して各小槽に供
給される。
At the start of the de-icing operation, the starting end switching valve 8
Is switched so that water flows from the transport pipe 24 to the water pipe 6, and the terminal tank side switching valve 9 is switched so that water flows from the water intake pipe 7 to the transport pipe 25. When the operation is started in this manner, since the amount of residual ice is large in the early stage of the defrosting, the pressure loss of the water flowing through the communication pipe 3 is large, so that the water level of the starting tank 1a rises. FIG.5a shows a flow when the water level of the water level gauge 15 exceeds a first target water level set in advance between the water level before the de-icing operation and the allowable upper limit water level, In this case, water flows through the distribution pipe 4 from the start tank side and the distribution pipe 5 from the end tank side. That is, when the water level exceeds the target water level, the water level control device 16 switches the terminal tank side switching valve 9 so that cold water flows from the distribution pipe 5 from the terminal tank side to the conveying pipe 25, and conveys the starting end side switching valve 8 The flow is switched from the pipe 24 to the distribution pipe 4 from the starting tank side. The cold water is taken from the distribution pipe 5 from the terminal tank side and sent to the load heat exchanger 10 through the cold water pipe 18. The water heated by heat exchange is
The water is supplied to each of the small tanks through the distribution pipe 4 from the starting tank side through 17.

【0051】解氷が進むにつれて、残氷量が減ってきた
時は、連通管3を通って流れる水の圧損が減るため始端
槽1aの水位が下がりだす。図5bはこうして水位計15の水
位が、解氷運転前の水位と前記第一の目標水位の間にあ
る、予め設定された第二の目標水位を下回った場合のフ
ローを示しており、この場合には、連通管3を通って流
れる水の圧損が少ないので、取水管7および水管6を通
して水が流れる様にする。つまり、目標水位を下回った
場合に水位制御装置16で、終端槽側切替弁9を冷水が取
水管7から搬送配管25へ流れる様に切替え、さらに、始
端側切替弁8を搬送配管24から水管6へ流れる様に切替
える。この様にすれば、水は給水管6から連通管3を通
り、取水管7へと圧損が少なく通ることができ、不均一
に解氷されて残った小槽の氷を、均一に解氷することが
できる。ここで冷水が各槽の氷層を通ることにより、通
水圧損が増加して、再び始端槽の水位が上昇し、第一の
目標水位を超えた場合には、再度水位制御装置16で、終
端槽側切替弁9を冷水が終端槽側からの分配管5から搬
送配管25へ流れる様に切替え、始端側切替弁8を搬送配
管24から始端槽側からの分配管4へ流れる様に切替え
る。
When the amount of residual ice decreases as the thawing progresses, the pressure drop of the water flowing through the communication pipe 3 decreases, so that the water level in the starting tank 1a starts to drop. FIG.5b shows a flow in the case where the water level of the water level gauge 15 is lower than a preset second target water level between the water level before the de-icing operation and the first target water level, In this case, since the pressure loss of the water flowing through the communication pipe 3 is small, the water is made to flow through the water intake pipe 7 and the water pipe 6. That is, when the water level falls below the target water level, the water level control device 16 switches the end tank switching valve 9 so that cold water flows from the intake pipe 7 to the transport pipe 25, and further switches the start end switch valve 8 from the transport pipe 24 to the water pipe. Switch to flow to 6. In this way, water can pass from the water supply pipe 6 through the communication pipe 3 to the water intake pipe 7 with little pressure loss, and the ice in the small tank that has been thawed unevenly and is uniformly thawed. can do. Here, when the cold water passes through the ice layer of each tank, the water flow pressure loss increases, the water level of the starting tank rises again, and when the water level exceeds the first target water level, the water level control device 16 again controls the water level. The terminal tank side switching valve 9 is switched so that the cold water flows from the distribution pipe 5 from the terminal tank side to the transport pipe 25, and the start end side switching valve 8 is switched so that the cold water flows from the transport pipe 24 to the distribution pipe 4 from the start tank side. .

【0052】以上の様にして、目標水位を保つ様に切替
弁を切替えることにより、始端槽と終端槽の水位差が大
きく成り過ぎない様にして、安定的に冷水を冷熱消費設
備へ供給することができ、各小槽に氷を残すことなく完
全に解氷することができる。
As described above, the switching valve is switched so as to maintain the target water level, so that the water level difference between the start tank and the end tank does not become too large, and the chilled water is stably supplied to the cooling and consuming equipment. Can be completely thawed without leaving ice in each cell.

【0053】また、解氷運転開始時に、予め始端側切替
弁8を搬送配管24から始端槽側からの分配管4へ流れる
様に切替え、終端槽側切替弁9を冷水が終端槽側からの
分配管5から搬送配管25へ流れる様に切替えても良い。
この場合には、解氷が進むにつれて、水位が予め設定さ
れた第二の目標水位を下回った場合には、水位制御装置
16で、終端槽側切替弁9を冷水が取水管7から搬送配管
25へ流れる様に切替え、さらに、始端側切替弁8を搬送
配管24から水管6へ流れる様に切替える。
When the de-icing operation is started, the starting end switching valve 8 is switched in advance so as to flow from the conveying pipe 24 to the distribution pipe 4 from the starting tank side, and the terminal tank side switching valve 9 is supplied with cold water from the terminal tank side. The flow may be switched so as to flow from the distribution pipe 5 to the transport pipe 25.
In this case, when the water level falls below the second target water level set in advance as the thawing proceeds, the water level control device
At 16, cold water is supplied from the intake pipe 7 to the terminal tank side switching valve 9,
25, and the start end switching valve 8 is switched to flow from the transport pipe 24 to the water pipe 6.

【0054】ここで、水位が第一の目標水位と第二の目
標水位の間にある時は、分配管および水管の両方に、ま
たは分配管および取水管の両方に流れる様に切替弁の開
度を設定する様にしても良い。
Here, when the water level is between the first target water level and the second target water level, the switching valve is opened so as to flow to both the distribution pipe and the water pipe, or to both the distribution pipe and the intake pipe. The degree may be set.

【0055】図6aおよび図6bは、終端槽の水位を検出し
て二つの目標水位を設けて切替弁で切替える場合におけ
る解氷運転時のフローを示した図である。
FIGS. 6A and 6B are diagrams showing the flow during the ice-melting operation in the case where the water level in the terminal tank is detected, two target water levels are provided, and switching is performed by the switching valve.

【0056】解氷初期など、残氷量が多い時には、連通
管3を通って流れる水の圧損が大きいため終端槽1eの水
位が下降する。図6aはこの様な、水位計15の水位が、解
氷運転前の水位と許容下限水位との間にある、予め設定
された第一の目標水位を下回った場合のフローを示して
おり、この場合には、始端槽側からの分配管4および終
端槽側からの分配管5を通して水が流れる様にする。つ
まり、前記目標水位を下回った場合に水位制御装置16
で、終端槽側切替弁9を冷水が終端槽側からの分配管5
から搬送配管25へ流れる様に切替え、始端側切替弁8を
搬送配管24から始端槽側からの分配管4へ流れる様に切
替える。冷水は終端槽側からの分配管5より取水され、
冷水配管18を通って負荷熱交換器10へ送られ、熱交換し
て昇温した水は、温水配管17を通り、始端槽側からの分
配管4を介して各小槽に供給される。
When the amount of residual ice is large, for example, at the beginning of thaw, the water level in the terminal tank 1e drops because the pressure loss of the water flowing through the communication pipe 3 is large. FIG.6a shows a flow when the water level of the water level gauge 15 is lower than a preset first target water level, which is between the water level before the deicing operation and the allowable lower limit water level, In this case, water flows through the distribution pipe 4 from the start tank side and the distribution pipe 5 from the end tank side. That is, when the water level falls below the target water level, the water level control device 16
Then, the cold water is supplied to the terminal tank side switching valve 9 by the distribution pipe 5 from the terminal tank side.
And the starting end switching valve 8 is switched from the conveying pipe 24 to the distribution pipe 4 from the starting tank side. Cold water is taken from distribution pipe 5 from the terminal tank side,
The water that has been sent to the load heat exchanger 10 through the cold water pipe 18 and has undergone heat exchange and raised in temperature passes through the hot water pipe 17 and is supplied to each small tank via the distribution pipe 4 from the starting tank side.

【0057】解氷が進むにつれて、残氷量が減ってきた
時は、連通管3を通って流れる水の圧損が減るため終端
槽1eの水位が上がりだす。図6bはこうして水位計15の水
位が、解氷運転前の水位と前記第一の目標水位の間にあ
る、予め設定された第二の目標水位を上回った場合のフ
ローを示しており、この場合には、連通管3を通って流
れる水の圧損が少ないので、取水管7および水管6を通
して水が流れる様にする。つまり、前記目標水位を上回
った場合に水位制御装置16で、終端槽側切替弁9を冷水
が取水管7から搬送配管25へ流れる様に切替え、さら
に、始端側切替弁8を搬送配管24から水管6へ流れる様
に切替える。この様にすれば、水は給水管6から連通管
3を通り、取水管7へと圧損が少なく通ることができ
る。
When the amount of residual ice decreases as the thawing progresses, the pressure loss of the water flowing through the communication pipe 3 decreases, so that the water level in the terminal tank 1e starts rising. FIG.6b shows a flow in the case where the water level of the water level gauge 15 is higher than a preset second target water level between the water level before the de-icing operation and the first target water level, and In this case, since the pressure loss of the water flowing through the communication pipe 3 is small, the water is made to flow through the water intake pipe 7 and the water pipe 6. That is, when the water level exceeds the target water level, the water level control device 16 switches the end tank switching valve 9 so that cold water flows from the intake pipe 7 to the transport pipe 25, and further switches the start end switch valve 8 from the transport pipe 24. The flow is switched to flow to the water pipe 6. In this way, water can pass from the water supply pipe 6 through the communication pipe 3 to the water intake pipe 7 with little pressure loss.

【0058】図3または図5の実施例における水位計の
設置位置は、始端槽の近くの水槽でも良く、図4または
図6の実施例における水位計の設置位置は、終端槽の近
くの水槽でも良い。連通管は、潜り堰、誘導管等でも良
い。
The position of the water level gauge in the embodiment of FIG. 3 or 5 may be a water tank near the starting tank, and the position of the water level gauge in the embodiment of FIG. 4 or 6 may be the water tank near the end tank. But it is good. The communication pipe may be a dive weir, a guide pipe, or the like.

【0059】また、蓄氷運転時と解氷運転時とで配管を
共用したが、別々に配管を設けても良い。
Although the pipes are shared between the ice storage operation and the ice melting operation, separate pipes may be provided.

【0060】本実施例では、切替弁に三方制御弁を使用
しているが、二方制御弁の組合わせでも良い。
In this embodiment, a three-way control valve is used as the switching valve, but a combination of two-way control valves may be used.

【0061】[0061]

【発明の効果】以上のように、本発明によれば、安価な
配管システムと簡単な制御システムで、多槽連結型氷蓄
熱槽において、解氷運転時に槽間の水位差を低減するこ
とができる。また、氷が少なくなると、直列で接続され
て解氷運転されるので、氷が一部の槽に残るということ
がなく、全ての氷を効率よく解氷することができる。さ
らに、水蓄熱として、従来と同様に効率の良い混合槽と
して使用できる効果がある。
As described above, according to the present invention, a low-pipe system and a simple control system can reduce the water level difference between tanks in a multi-tank type ice heat storage tank during the ice-melting operation. it can. Further, when the amount of ice is reduced, the ice is connected and connected in series to perform the thawing operation, so that the ice does not remain in some tanks and all the icing can be efficiently thawed. Further, there is an effect that the water heat storage can be used as an efficient mixing tank as in the related art.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例である多槽連結型氷蓄熱装置の
配管及び制御の系統図を示した図。
FIG. 1 is a diagram showing a piping and control system diagram of a multi-tank connected ice heat storage device according to an embodiment of the present invention.

【図2】図1に示した実施例において、蓄氷運転時のフ
ローを示した図。
FIG. 2 is a diagram showing a flow during an ice storage operation in the embodiment shown in FIG. 1;

【図3】本発明の実施例で、始端槽の水位を検出して切
替弁の分岐開度を制御する場合における解氷運転時のフ
ローを示した図。
FIG. 3 is a diagram showing a flow at the time of a de-icing operation in the case of detecting the water level of the starting end tank and controlling the branch opening of the switching valve in the embodiment of the present invention.

【図4】本発明の実施例で、終端槽の水位を検出して切
替弁の分岐開度を制御する場合における解氷運転時のフ
ローを示した図。
FIG. 4 is a diagram showing a flow during an ice-melting operation in a case where the water level of the terminal tank is detected and the branch opening of the switching valve is controlled in the embodiment of the present invention.

【図5】本発明の実施例で、始端槽の水位を検出して二
つの目標水位を設けて切替弁で切替える場合における解
氷運転時のフローを示した図。
FIG. 5 is a diagram showing a flow during the de-icing operation in the case where the water level of the starting tank is detected, two target water levels are provided, and switching is performed by the switching valve in the embodiment of the present invention.

【図6】本発明の実施例で、終端槽の水位を検出して二
つの目標水位を設けて切替弁で切替える場合における解
氷運転時のフローを示した図。
FIG. 6 is a diagram showing a flow during the de-icing operation in a case where the water level in the terminal tank is detected, two target water levels are provided, and switching is performed by the switching valve in the embodiment of the present invention.

【図7】従来技術の例を示した図。FIG. 7 is a diagram showing an example of the related art.

【図8】図7の垂直方向の断面を示した図。FIG. 8 is a view showing a vertical cross section of FIG. 7;

【図9】従来技術の図7とは異なる例を示した図。FIG. 9 is a diagram showing an example different from FIG. 7 of the related art.

【図10】従来技術の図7及び図9とは異なる実施例を示
した図。
FIG. 10 is a diagram showing an embodiment different from FIGS. 7 and 9 of the related art.

【符号の説明】[Explanation of symbols]

1 貯氷槽 1a 始端槽 1e 終端槽 3 連通管 4 始端槽側からの分配管 5 終端槽側からの分配管 6 水管 7 取水管 8 始端槽側切替弁 9 終端槽側切替弁 15 水位計 16 水位制御装置 17 温水配管 18 冷水配管 Reference Signs List 1 ice storage tank 1a start tank 1e end tank 3 communication pipe 4 distribution pipe from start tank side 5 distribution pipe from end tank side 6 water pipe 7 intake pipe 8 start tank switching valve 9 end tank switching valve 15 water level gauge 16 water level Controller 17 Hot water piping 18 Cold water piping

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−272914(JP,A) 実開 昭64−49830(JP,U) (58)調査した分野(Int.Cl.7,DB名) F25C 1/00 F24F 5/00 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-6-272914 (JP, A) JP-A 64-49830 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) F25C 1/00 F24F 5/00

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 連通手段によって直列に連結された複数
の貯槽と、冷水を冷熱消費設備へ送る冷水配管と、冷熱
消費設備からの戻り水を貯槽へ還流させる戻り水配管と
を備えた氷蓄熱装置において、冷水配管に第一の流路切
替手段を介して、その一方の分岐側に接続され、直列に
連結された貯槽の一方の端に位置する終端槽と前記冷水
配管とを接続する取水管と、前記第一の流路切替手段の
他方の分岐側に接続され、各貯槽と前記冷水配管とを接
続する第一の分配管と、戻り水配管に第二の流路切替手
段を介して、その一方の分岐側に接続され、直列に連結
された貯槽の他方の端に位置する始端槽と前記戻り水配
管とを接続する水管と、前記第二の流路切替手段の他方
の分岐側に接続され、各貯槽と前記戻り水配管とを接続
する第二の分配管とを備えるとともに、前記直列に連結
された貯槽の、いずれかの端に位置する貯槽の水位を検
出する水位検出手段と、前記水位に基づいて、前記第一
の流路切替手段及び前記第二の流路切替手段の分岐開度
を制御する制御手段を備えたことを特徴とする氷蓄熱装
置。
1. An ice heat storage system comprising: a plurality of storage tanks connected in series by communication means; a cold water pipe for sending cold water to a cold heat consuming facility; and a return water pipe for returning the return water from the cold heat consuming facility to the storage tank. In the apparatus, the chilled water pipe is connected to the chilled water pipe via a first flow path switching means on one branch side thereof and connected to a terminal tank located at one end of the storage tank connected in series. A water pipe, a first distribution pipe connected to the other branch side of the first flow path switching means and connecting each storage tank and the cold water pipe, and a return water pipe through a second flow path switching means. A water pipe that is connected to one branch side thereof and that connects the start water tank located at the other end of the storage tank connected in series and the return water pipe, and the other branch of the second flow path switching means. And a second distribution pipe that is connected to the storage tank and connects each storage tank and the return water pipe. And a water level detecting means for detecting a water level of a storage tank located at any end of the storage tanks connected in series, based on the water level, the first flow path switching means and the second An ice heat storage device comprising control means for controlling a branch opening of a flow path switching means.
【請求項2】 請求項1に記載された氷蓄熱装置を用い
た制御方法において、前記第一の流路切替手段及び第二
の流路切替手段は三方流量調整弁であって、分岐開度を
連続的に調整し、前記水位検出手段は、直列に連結され
た貯槽の、始端槽の水位を検出し、前記制御手段は、水
位が解氷運転前の水位と許容上限水位との間にある、予
め設定された目標水位を維持する様に、前記第一の流路
切替手段及び第二の流路切替手段の分岐開度を連続的に
制御することを特徴とする氷蓄熱装置の制御方法。
2. The control method using an ice heat storage device according to claim 1, wherein the first flow path switching means and the second flow path switching means are three-way flow control valves, Continuously, the water level detecting means detects the water level of the starting tank of the storage tanks connected in series, the control means, the water level between the water level before the de-icing operation and the allowable upper limit water level A control of the ice heat storage device, wherein the branch opening degree of the first flow path switching means and the second flow path switching means is continuously controlled so as to maintain a predetermined target water level. Method.
【請求項3】 請求項1に記載された氷蓄熱装置を用い
た制御方法において、前記第一の流路切替手段及び第二
の流路切替手段は三方流量調整弁であって、分岐開度を
連続的に調整し、前記水位検出手段は、直列に連結され
た貯槽の、終端槽の水位を検出し、前記制御手段は、水
位が解氷運転前の水位と許容下限水位との間にある、予
め設定された目標水位を維持する様に、前記第一の流路
切替手段及び第二の流路切替手段の分岐開度を連続的に
制御することを特徴とする氷蓄熱装置の制御方法。
3. The control method using the ice heat storage device according to claim 1, wherein the first flow path switching means and the second flow path switching means are three-way flow control valves, Is continuously adjusted, the water level detecting means detects the water level of the terminal tank of the storage tanks connected in series, and the control means sets the water level between the water level before the de-icing operation and the allowable lower limit water level. A control of the ice heat storage device, wherein the branch opening degree of the first flow path switching means and the second flow path switching means is continuously controlled so as to maintain a predetermined target water level. Method.
【請求項4】 請求項1に記載された氷蓄熱装置を用い
た制御方法において、前記第一の流路切替手段及び第二
の流路切替手段は三方切替弁であって、分岐開度を連続
的に調整し、前記水位検出手段は、直列に連結された貯
槽の、始端槽の水位を検出し、前記制御手段は、水位が
解氷運転前の水位と許容上限水位との間にある、予め設
定された第一の目標水位を超えた場合には、冷水配管と
第一の分配管とを連結すると同時に、戻り水配管と第二
の分配管とを連結するように、第一の流路切替手段及び
第二の流路切替手段の分岐方向を切換え、他方、水位が
解氷運転前の水位と前記第一の目標水位の間にある、予
め設定された第二の目標水位を下回った場合には、冷水
配管と取水管を連結するとともに、戻り水配管と水管を
連結するように、第一の流路切替手段及び第二の流路切
替手段の分岐方向を切換えることを特徴とする氷蓄熱装
置の制御方法。
4. The control method using the ice heat storage device according to claim 1, wherein the first flow path switching means and the second flow path switching means are three-way switching valves, and have a branch opening degree. Adjusting continuously, the water level detecting means detects the water level of the starting tank of the storage tanks connected in series, and the control means, wherein the water level is between the water level before the de-icing operation and the allowable upper limit water level When the first target water level exceeds a preset first target water level, the first water distribution pipe is connected to the first distribution pipe, and at the same time, the first water distribution pipe is connected to the second distribution pipe. Switching the branch direction of the flow path switching means and the second flow path switching means, while the water level is between the water level before the de-icing operation and the first target water level, the preset second target water level If it is lower, connect the cold water pipe to the intake pipe, and connect the return water pipe to the water pipe. A method for controlling an ice heat storage device, comprising: switching a branch direction of one flow path switching means and a second flow path switching means.
【請求項5】 請求項1に記載された氷蓄熱装置を用い
た制御方法において、前記第一の流路切替手段及び第二
の流路切替手段は三方切替弁であって、分岐開度を連続
的に調整し、前記水位検出手段は、直列に連結された貯
槽の、終端槽の水位を検出し、前記制御手段は、水位が
解氷運転前の水位と許容下限水位との間にある、予め設
定された第一の目標水位を下回った場合には、冷水配管
と第一の分配管とを連結すると同時に、戻り水配管と第
二の分配管とを連結するように、第一の流路切替手段及
び第二の流路切替手段の分岐方向を切換え、他方、水位
が解氷運転前の水位と前記第一の目標水位の間にある、
予め設定された第二の目標水位を上回った場合には、冷
水配管と取水管を連結するとともに、戻り水配管と水管
を連結するように、第一の流路切替手段及び第二の流路
切替手段の分岐方向を切換えることを特徴とする氷蓄熱
装置の制御方法。
5. The control method using the ice heat storage device according to claim 1, wherein the first flow path switching means and the second flow path switching means are three-way switching valves, and the branch opening degree is controlled. Continuously adjusting, the water level detecting means detects the water level of the terminal tank of the storage tanks connected in series, and the control means, wherein the water level is between the water level before the de-icing operation and the allowable lower limit water level When the water level falls below a preset first target water level, the first water pipe is connected to the first distribution pipe, and at the same time, the first water pipe is connected to the return water pipe and the second distribution pipe. Switching the branch direction of the flow path switching means and the second flow path switching means, while the water level is between the water level before the de-icing operation and the first target water level,
When the water level exceeds the second target water level set in advance, the first flow path switching means and the second flow path are connected so as to connect the cold water pipe and the intake pipe and to connect the return water pipe and the water pipe. A method for controlling an ice heat storage device, characterized by switching a branch direction of a switching means.
JP09702995A 1995-04-21 1995-04-21 Ice heat storage device and control method thereof Expired - Fee Related JP3206363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09702995A JP3206363B2 (en) 1995-04-21 1995-04-21 Ice heat storage device and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09702995A JP3206363B2 (en) 1995-04-21 1995-04-21 Ice heat storage device and control method thereof

Publications (2)

Publication Number Publication Date
JPH08291958A JPH08291958A (en) 1996-11-05
JP3206363B2 true JP3206363B2 (en) 2001-09-10

Family

ID=14181038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09702995A Expired - Fee Related JP3206363B2 (en) 1995-04-21 1995-04-21 Ice heat storage device and control method thereof

Country Status (1)

Country Link
JP (1) JP3206363B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113566466A (en) * 2021-06-11 2021-10-29 香港华艺设计顾问(深圳)有限公司 Cold supply device and external ice melting and cold supply method

Also Published As

Publication number Publication date
JPH08291958A (en) 1996-11-05

Similar Documents

Publication Publication Date Title
US4753080A (en) Cold storage method and apparatus
US4656836A (en) Pressurized, ice-storing chilled water system
US20200166291A1 (en) Latent heat storage system having a latent heat storage device and method for operating a latent heat storage system
US4226364A (en) Single conduit air conditioning system
JP3206363B2 (en) Ice heat storage device and control method thereof
WO2004097320A2 (en) Thermal energy storage
JPH09287797A (en) Method for controlling device operation in ice heat accumulating system
AU2021102913A4 (en) Method for heating and insulating coarse and fine concrete aggregate in mixing station in shed in winter
WO1998001871A1 (en) Cooling system for substation
JP3419366B2 (en) Ice storage device
JP3127155B2 (en) Thermal storage system
CN213147050U (en) Ice cold storage device
JP3505733B2 (en) Ice storage method and ice storage pipe system in ice thermal storage system
JP3492062B2 (en) Ice-water heat exchange system
JP2679503B2 (en) Ice storage device
JP2593033B2 (en) Method and apparatus for controlling thawing of ice storage tank
JP3266334B2 (en) Heat storage tank for air conditioning
JP3331003B2 (en) Ice storage method for multiple tanks in ice thermal storage system
JPH0842877A (en) Operating method for ice cold heat storage apparatus, and the apparatus
JP3496694B2 (en) Cold heat storage system
JPH06300398A (en) Preventing method for freezing of ice-making heat exchanger for ice heat storage in supercooling ice-making method
JPH0755207A (en) Ice water slurry-conveying piping
JPH02115638A (en) Room cooler
JPH03140728A (en) Heat storage type cold water manufacture device
JPH1123008A (en) Cooling device accompanied by ice water transportation

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010605

LAPS Cancellation because of no payment of annual fees