JPH06248327A - Laser beam processing method - Google Patents

Laser beam processing method

Info

Publication number
JPH06248327A
JPH06248327A JP5036900A JP3690093A JPH06248327A JP H06248327 A JPH06248327 A JP H06248327A JP 5036900 A JP5036900 A JP 5036900A JP 3690093 A JP3690093 A JP 3690093A JP H06248327 A JPH06248327 A JP H06248327A
Authority
JP
Japan
Prior art keywords
power density
density distribution
moving direction
laser beam
processed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5036900A
Other languages
Japanese (ja)
Inventor
Hidenobu Matsuyama
山 秀 信 松
Kimihiro Shibata
田 公 博 柴
Hironori Sakamoto
元 宏 規 坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP5036900A priority Critical patent/JPH06248327A/en
Publication of JPH06248327A publication Critical patent/JPH06248327A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the efficiency of the way how the energy possessed by a laser beam is used by specifying the power density distribution of the laser beam with which the surface of a member to be processed is irradiated. CONSTITUTION:The member to be processed is processed by using the beam which has the power density distribution possessing the peak of power density on the rear side in a relative beam moving direction between the member to be processed and the laser beam. The largest surface processing depth is obtd. if such beam is used. The depth of the surface hardened layer is larger than in the case of use of the laser beam having a uniform power density distribution if surface processing is hardening. The hardening is thus efficiently executed. The lowering of the output of the laser beam is possible if the hardening treatment to the same extent as in the case of use of the laser beam having the uniform power density distribution suffices.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、被加工部材の表面に
レーザ光を照射してレーザ焼入れ等の加工を行うのに利
用されるレーザ加工方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser processing method used for irradiating a surface of a member to be processed with laser light to perform processing such as laser hardening.

【0002】[0002]

【従来の技術】従来のレーザ加工方法、とくに、レーザ
焼入れ方法としては、例えば、昭和57年発行の社団法
人 日本溶接協会 大出力レーザ金属加工法研究会編
「レーザ加工技術解説書」 第42頁あるいは第116
頁に述べられているような方法が優れているとされてき
た。
2. Description of the Related Art As a conventional laser processing method, in particular, a laser quenching method, for example, the Japan Welding Association, High Power Laser Metal Processing Method Study Group, published in 1982.
"Laser Processing Technology Manual" Page 42 or 116
The method as described on the page has been considered superior.

【0003】すなわち、ここで述べられている金属加工
法では、なんらかの方法でビーム幅方向において均一な
パワー密度をもつパワー密度分布を有するレーザ光に成
形してこのレーザ光を焼入れに用いるものである。
That is, in the metal working method described here, a laser beam having a power density distribution having a uniform power density in the beam width direction is formed by some method and this laser beam is used for quenching. .

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな従来使用されてきた均一なパワー密度分布を有する
レーザ光を用いてレーザ焼入れを行う方法にあっては、
パワー密度分布を任意に変化させて最適なパワー密度分
布形状を見いだすことは非常に難しく、均一なパワー密
度分布が、レーザ発振器から直接得られるマルチ,リン
グ,シングルモードの円形ビームより優れていることが
解析的あるいは実験的に確認されてきただけであった。
したがって、均一なパワー密度分布を有するものが最適
のビームであることの証明はなされていなかったのであ
り、いかなるパワー密度分布を有するものがレーザ加工
にとって適切であるかを明らかにすることが課題であっ
た。
However, in the method of performing the laser hardening using the laser light having the uniform power density distribution which has been used conventionally,
It is very difficult to find the optimum power density distribution shape by changing the power density distribution arbitrarily, and the uniform power density distribution is superior to the multi-, ring-, and single-mode circular beams directly obtained from the laser oscillator. Has only been confirmed analytically or experimentally.
Therefore, it has not been proved that the one having a uniform power density distribution is the optimum beam, and it is a subject to clarify what kind of power density distribution is suitable for laser processing. there were.

【0005】そこで、本発明者は、数値解析によるレー
ザ焼入れ現象のシミュレーションを可能とするシステム
を開発して最適パワー密度分布の検討を行ってきた。
Therefore, the present inventor has studied the optimum power density distribution by developing a system capable of simulating the laser hardening phenomenon by numerical analysis.

【0006】[0006]

【発明の目的】この発明は、このような従来の課題にか
んがみてなされたものであって、エネルギの使われ方の
効率が良いレーザ焼入れ等のレーザ加工を行うことが可
能であるレーザ加工方法を提供することを目的としてい
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and a laser processing method capable of performing laser processing such as laser hardening in which energy is efficiently used. Is intended to provide.

【0007】[0007]

【課題を解決するための手段】本発明に係わるレーザ加
工方法は、被加工部材の表面にレーザ光を照射して加工
を行うに際し、被加工部材とレーザ光との間での相対的
なビーム移動方向の後側にパワー密度のピークをもつパ
ワー密度分布を有するビームを用いて加工を行う構成と
したことを特徴としており、このようなレーザ加工方法
に係わる発明の構成をもって前述した従来の課題を解決
するための手段としている。
According to a laser processing method of the present invention, when a surface of a member to be processed is irradiated with a laser beam for processing, a relative beam between the member to be processed and the laser beam is provided. The present invention is characterized in that processing is performed using a beam having a power density distribution having a peak of power density on the rear side in the moving direction. As a means to solve

【0008】以下、この発明の基本構成について図1な
いし図3に基づいて説明する。
The basic structure of the present invention will be described below with reference to FIGS.

【0009】図1は、ビームの移動方向においてパワー
密度のピークが偏倚したパワー密度分布を有するビーム
Bacと、ビームの移動方向において均一なパワー密度
をもつパワー密度分布を有するビームBbのビーム長さ
方向におけるパワー密度の変化の一例を示すものであ
る。
FIG. 1 shows beam lengths of a beam Bac having a power density distribution in which the peak of the power density is deviated in the beam moving direction and a beam Bb having a power density distribution having a uniform power density in the beam moving direction. It is an example of a change in the power density in the direction.

【0010】すなわち、偏倚したビームBacでは、ビ
ーム移動方向の前側(つまりビームcの場合)あるいは
後側(つまり、ビームaの場合)にパワー密度のピーク
をもつパワー密度分布を有するものとなっており、均一
なビームBbでは、ビーム移動方向において完全に均一
なパワー密度をもつパワー密度分布を有するビームbよ
りなるものとなっている。
That is, the deviated beam Bac has a power density distribution having a peak of power density on the front side (that is, in the case of beam c) or the rear side (that is, in the case of beam a) in the beam moving direction. However, the uniform beam Bb is composed of the beam b having a power density distribution having a completely uniform power density in the beam moving direction.

【0011】そして、このようなビームa,b,cを用
いて図2に示す被加工部材1に対しレーザ加工を行った
場合には、ビーム移動方向の後側にパワー密度のピーク
をもつパワー密度分布を有するビームaを用いた場合に
より深い表面加工部位2が形成されて加熱作用がもっと
も大きいものとなり(図2の(a)参照)、また、ビー
ム移動方向において均一なパワー密度をもつパワー密度
分布を有するビームbを用いた場合に表面加工部位2の
深さが若干浅いものとなって加熱作用はビームaを用い
た場合よりも小さいものとなり(図2の(b)参照)、
さらに、ビーム移動方向の前側にパワー密度のピークを
もつパワー密度分布を有するビームcを用いた場合に表
面加工部位が実質的に形成されないものとなって十分な
加熱作用をほとんど得ることができないものとなってい
た。
When laser processing is performed on the workpiece 1 shown in FIG. 2 using such beams a, b, and c, the power having a peak of power density on the rear side in the beam moving direction. When the beam a having a density distribution is used, a deeper surface-processed portion 2 is formed and the heating effect becomes the largest (see FIG. 2A), and the power having a uniform power density in the beam moving direction is obtained. When the beam b having the density distribution is used, the depth of the surface-processed portion 2 becomes slightly shallower and the heating action becomes smaller than that when the beam a is used (see FIG. 2B).
Furthermore, when a beam c having a power density distribution having a power density peak on the front side in the beam moving direction is used, the surface processed portion is not substantially formed, and a sufficient heating action can hardly be obtained. It was.

【0012】[0012]

【発明の作用】レーザ表面加工に際して、ビーム表面中
心での温度履歴を調べたところ、図3に示すような温度
変化パターンとなり、被加工部材とレーザ光との間での
相対的なビーム移動方向の後側にパワー密度のピークを
もつパワー密度分布を有するビームaを用いた場合に最
高到達温度が最も高くなることが見い出された。一方、
ビーム移動方向に均一なパワー密度をもつパワー密度分
布を有するビームbを用いた場合には、最高到達温度は
ビームaを用いた場合よりも低くくなることが認められ
た。さらに、相対的なビーム移動方向の前側にパワー密
度のピークをもつパワー密度分布を有するビームcを用
いた場合には、最高到達温度が最も低くなることが認め
られた。
When the temperature history at the center of the beam surface is examined during laser surface processing, a temperature change pattern as shown in FIG. 3 is obtained, and the relative beam movement direction between the workpiece and the laser beam. It was found that the maximum temperature reached was highest when the beam a having a power density distribution having a power density peak on the rear side was used. on the other hand,
It was confirmed that the maximum temperature reached was lower in the case of using the beam b having a power density distribution having a uniform power density in the beam moving direction than in the case of using the beam a. Further, it was confirmed that the maximum temperature reached was lowest when the beam c having the power density distribution having the peak of the power density on the front side in the relative beam moving direction was used.

【0013】この結果、相対的なビーム移動方向の後側
にパワー密度のピークをもつパワー密度分布を有するビ
ームaを用いた場合に、表面加工深さが最も大きくな
り、表面加工が焼入れである場合に、表面硬化層深さ
は、均一なパワー密度分布を有するレーザ光を用いた場
合に比べてより大きなものとなって焼入れ処理が効率よ
く行えることとなり、均一なパワー密度分布を有するビ
ームbを用いた場合と同程度の焼入れ処理で良い場合に
はレーザ光の出力はより低減してもよいこととなる。
As a result, when the beam a having the power density distribution having the peak of the power density on the rear side in the relative beam moving direction is used, the surface processing depth becomes maximum and the surface processing is quenching. In this case, the depth of the surface-hardened layer becomes larger than that in the case where the laser beam having a uniform power density distribution is used, and the quenching process can be performed efficiently, and the beam b having a uniform power density distribution is obtained. If the quenching treatment to the same extent as that of the case of using, the output of the laser light may be further reduced.

【0014】[0014]

【実施例】次に、この発明の実施例を図4ないし図6に
基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an embodiment of the present invention will be described with reference to FIGS.

【0015】図4は、この発明の実施例および比較例で
用いたレーザ光を示すものであって、ビームの移動方向
においてパワー密度のピークが偏倚したパワー密度分布
を有するビームBacと、ビームの移動方向において均
一なパワー密度をもつパワー密度分布を有するビームB
bのビーム長さ方向における密度の変化の一例を示すも
のである。
FIG. 4 shows laser beams used in the examples and comparative examples of the present invention. The beam Bac has a power density distribution in which the peak of the power density is deviated in the moving direction of the beam, and a beam Bac of the beam. Beam B having a power density distribution having a uniform power density in the moving direction
It shows an example of a change in the density of b in the beam length direction.

【0016】すなわち、偏倚したビームBacでは、ビ
ーム移動方向の前側にパワー密度のピークをもつパワー
密度分布を有する本発明比較例のビームcと、ビーム移
動方向の後側にパワー密度のピークをもつパワー密度分
布を有する本発明実施例のビームaとが含まれる。ま
た、均一なビームBbでは、ビーム移動方向において完
全に均一なパワー密度をもつパワー密度分布を有する本
発明比較例のビームbよりなっている。そして、何れの
ビームa,b,cも出力は1850Wで一定である。
That is, in the deviated beam Bac, the beam c of the comparative example of the present invention has a power density distribution having a power density peak on the front side in the beam moving direction, and the power density peak on the back side in the beam moving direction. The beam a of the embodiment of the present invention having a power density distribution is included. Further, the uniform beam Bb is the beam b of the comparative example of the present invention having a power density distribution having a completely uniform power density in the beam moving direction. The output of each of the beams a, b and c is constant at 1850W.

【0017】図5は、上記3種類のビームa,b,cを
送り速度0.75m/minで被加工部材(S50C製
部材)1に照射してレーザ焼入れした場合に得られた焼
入れ硬化層(表面加工部位)2のパターンを示すもので
ある。
FIG. 5 shows a quench-hardened layer obtained when laser hardening is performed by irradiating the workpiece 1 (member made of S50C) with the above-mentioned three types of beams a, b, and c at a feed rate of 0.75 m / min. The pattern of (surface processed portion) 2 is shown.

【0018】図5に示すように、ビーム移動方向の後側
にパワー密度のピークをもつパワー密度分布を有する本
発明実施例のビームaを用いた場合により深い焼入れ硬
化層2が形成されて加熱作用がもっとも大きいものとな
り(図5の(a)参照)、また、ビーム移動方向におい
て均一なパワー密度をもつパワー密度分布を有する本発
明比較例のビームbを用いた場合に焼入れ硬化層2の深
さが若干浅いものとなって加熱作用は本発明実施例のビ
ームaを用いた場合よりも小さいものとなり(図5の
(b)参照)、さらに、ビーム移動方向の前側にパワー
密度のピークをもつパワー密度分布を有する本発明比較
例のビームcを用いた場合に焼入れ硬化層が実質的に形
成されないものとなって十分な加熱作用をほとんど得る
ことができないものとなっていた。
As shown in FIG. 5, when the beam a of the embodiment of the present invention having a power density distribution having a power density peak on the rear side in the beam moving direction is used, a deeper quench hardening layer 2 is formed and heating is performed. When the beam b of the comparative example of the present invention having the power density distribution having a uniform power density in the beam moving direction is used, the quench hardened layer 2 has the largest effect (see FIG. 5A). Since the depth is slightly shallower, the heating action is smaller than that when the beam a of the embodiment of the present invention is used (see FIG. 5B), and the peak of the power density is on the front side in the beam moving direction. When the beam c of the comparative example of the present invention having a power density distribution having the above is used, the quench hardened layer is not substantially formed and a sufficient heating action is hardly obtained. It is had.

【0019】そして、レーザ焼入れに際して、ビーム表
面中心での温度履歴を調べたところ、図6に示すような
温度変化パターンとなり、被加工部材1とレーザ光との
間での相対的なビーム移動方向の後側にパワー密度のピ
ークをもつパワー密度分布を有する本発明実施例のビー
ムaを用いた場合に最高到達温度が最も高くなる(図6
において、Tmは溶融温度,Aは鋼のA点変態温度
であることを示す。)ことが確認された。一方、ビーム
移動方向に均一なパワー密度をもつパワー密度分布を有
する本発明比較例のビームbを用いた場合には、最高到
達温度はビームaを用いた場合より低くくなることが確
認された。さらに、相対的なビーム移動方向の前側にパ
ワー密度のピークをもつパワー密度分布を有する本発明
比較例のビームcを用いた場合には、最高到達温度が最
も低くなり、鋼のA変態点温度をわずかに超えるだけ
であって鋼の焼入れに必要かつ十分な温度上昇を得るこ
とができないものとなって焼入れ硬化層を実質的に得る
ことができなくなることが確認された。
When the temperature history at the center of the beam surface was examined during laser hardening, a temperature change pattern as shown in FIG. 6 was obtained, and the relative beam movement direction between the workpiece 1 and the laser beam. When the beam a of the embodiment of the present invention having the power density distribution having the power density peak on the rear side is used, the highest temperature reached is highest (FIG. 6).
Indicates that Tm is the melting temperature and A 3 is the A 3 point transformation temperature of the steel. ) Was confirmed. On the other hand, it was confirmed that when the beam b of the comparative example of the present invention having a power density distribution having a uniform power density in the beam moving direction was used, the maximum temperature reached was lower than when the beam a was used. . Further, when the beam c of the comparative example of the present invention having the power density distribution having the peak of the power density on the front side in the relative beam moving direction is used, the maximum temperature reached is the lowest, and the A 3 transformation point of the steel is the lowest. It was confirmed that when the temperature was slightly exceeded, the temperature rise necessary and sufficient for quenching the steel could not be obtained, and the quench-hardened layer could not be substantially obtained.

【0020】したがって、相対的なビーム移動方向の後
側にパワー密度のピークをもつパワー密度分布を有する
本発明実施例のビームaを用いた場合に最も焼入れ硬化
層2が大きくなり、焼入れが効率よく行えることが確か
められた。
Therefore, when the beam a of the embodiment of the present invention having the power density distribution having the peak of the power density on the rear side in the relative beam moving direction is used, the quench hardened layer 2 becomes the largest and the quenching efficiency is high. It was confirmed that it could be done well.

【0021】[0021]

【発明の効果】以上説明してきたように、この発明に係
わるレーザ加工方法では、相対的なビーム移動方向の後
側にパーワ密度のピークをもつパワー密度分布を有する
ビームを用いて加工を行う構成としたことから、被加工
部位の温度上昇が最も容昜に起こり、同一出力のレーザ
光を用いる場合に到達最高温度が最も高くなり、したが
って、レーザ光の持つエネルギを最も効率よく用いるこ
とが可能であり、そのため、被加工部材に対する加熱効
率を上げることができ、加えて、より低いレーザ出力の
設備で焼入れ等の表面加工が可能になるという著しく優
れた効果がもたらされる。
As described above, in the laser processing method according to the present invention, the processing is performed by using the beam having the power density distribution having the peak of the power density on the rear side in the relative beam moving direction. As a result, the temperature rise of the processed part occurs most rigorously, and the maximum temperature reached is highest when using the same output laser light, so the energy of the laser light can be used most efficiently. Therefore, the heating efficiency for the member to be processed can be increased, and in addition, the remarkably excellent effect that the surface processing such as quenching can be performed with the equipment having a lower laser output is brought about.

【図面の簡単な説明】[Brief description of drawings]

【図1】ビームの移動方向において偏倚したパワー密度
分布を有するビームBacと、ビームの移動方向におい
て均一なパワー密度分布を有するビームBbのパワー密
度分布の形態例を示すグラフである。
FIG. 1 is a graph showing a form example of a power density distribution of a beam Bac having a power density distribution deviated in a beam moving direction and a beam Bb having a uniform power density distribution in a beam moving direction.

【図2】ビーム移動方向の後側にパワー密度分布のピー
クを有するビームaを用いた場合の被加工部材に対する
加工効果の一態様(図2の(a))と、ビーム移動方向
において均一なパワー密度分布を有するビームbを用い
た場合の被加工部材に対する加工効果の一態様(図2の
(b))と、ビーム移動方向において前側にパワー密度
分布のピークを有するビームcを用いた場合の被加工部
材に対する加工効果の一態様(図2の(c))を示す説
明図である。
FIG. 2 shows one mode of the processing effect on the member to be processed when the beam a having the peak of the power density distribution is used on the rear side in the beam moving direction ((a) of FIG. 2), and a uniform effect in the beam moving direction. One mode of the processing effect on the member to be processed when the beam b having the power density distribution is used (FIG. 2B), and the case where the beam c having the peak of the power density distribution on the front side in the beam moving direction is used It is explanatory drawing which shows one aspect ((c) of FIG. 2) of the processing effect with respect to the to-be-processed member.

【図3】ビームa,ビームb,ビームcによる加熱冷却
曲線の一態様を示すグラフである。
FIG. 3 is a graph showing one embodiment of heating / cooling curves by beam a, beam b, and beam c.

【図4】この発明の実施例および比較例において用いた
ビームの移動方向において偏倚したパワー密度分布を有
するビームBacと、同じくこの発明の比較例において
用いたビームの移動方向において均一なパワー密度分布
を有するビームBbのパワー密度分布を示すグラフであ
る。
FIG. 4 is a beam Bac having a power density distribution deviated in the moving direction of the beam used in the examples and comparative examples of the present invention, and a uniform power density distribution in the moving direction of the beam used in the comparative example of the present invention. 6 is a graph showing a power density distribution of a beam Bb having a beam density of

【図5】この発明の実施例および比較例において、ビー
ム移動方向の後側にパワー密度分布のピークを有するビ
ームaを用いて焼入れを行った場合の焼入れ硬化層深さ
のパターン(図5の(a))と、ビーム移動方向におい
て均一なパワー密度分布を有するビームbを用いて焼入
れを行った場合の焼入れ硬化層深さのパターン(図5の
(b))と、ビーム移動方向の前側にパワー密度分布の
ピークを有するビームcを用いて焼入れを行った場合の
焼入れ硬化層深さのパターン(図5の(c))を示す説
明図である。
5 is a pattern of a hardened layer depth when quenching is performed using a beam a having a peak of a power density distribution on the rear side in the beam moving direction in Examples and Comparative Examples of the present invention (FIG. 5). (A)), a pattern of the depth of the hardened layer when quenching is performed using the beam b having a uniform power density distribution in the beam moving direction ((b) in FIG. 5), and the front side in the beam moving direction. It is explanatory drawing which shows the pattern ((c) of FIG. 5) of the hardening hardening layer depth when hardening is performed using the beam c which has the peak of a power density distribution.

【図6】図4に示すビームa,ビームb,ビームcを用
いて焼入れを行った場合のビーム表面中心での温度履歴
を示すグラフである(Tm:溶融温度,A:鋼のA
点変態温度)。
6 is a graph showing a temperature history at the center of the beam surface when quenching is performed using the beam a, the beam b, and the beam c shown in FIG. 4 (Tm: melting temperature, A 3 : steel A 3;
Point transformation temperature).

【符号の説明】[Explanation of symbols]

1 被加工部材 2 焼入れ硬化層(表面加工部位) a ビーム移動方向の後側にパワー密度のピークをもつ
パワー密度分布を有するビーム b ビーム移動方向に均一なパワー密度をもつパワー密
度分布を有するビーム c ビーム移動方向の前側にパワー密度のピークをもつ
パワー密度分布を有するビーム
DESCRIPTION OF SYMBOLS 1 Worked member 2 Quench hardened layer (surface processed part) a Beam having a power density distribution having a peak of power density behind the beam moving direction b Beam having a power density distribution having a uniform power density in the beam moving direction c Beam having a power density distribution having a power density peak on the front side in the beam moving direction

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被加工部材の表面にレーザ光を照射して
加工を行うに際し、被加工部材とレーザ光との間での相
対的なビーム移動方向の後側にパワー密度のピークをも
つパワー密度分布を有するビームを用いて加工を行うこ
とを特徴とするレーザ加工方法。
1. A power having a peak of power density behind a relative beam moving direction between a member to be processed and laser light when the surface of the member to be processed is irradiated with laser light for processing. A laser processing method characterized by performing processing using a beam having a density distribution.
JP5036900A 1993-02-25 1993-02-25 Laser beam processing method Pending JPH06248327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5036900A JPH06248327A (en) 1993-02-25 1993-02-25 Laser beam processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5036900A JPH06248327A (en) 1993-02-25 1993-02-25 Laser beam processing method

Publications (1)

Publication Number Publication Date
JPH06248327A true JPH06248327A (en) 1994-09-06

Family

ID=12482660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5036900A Pending JPH06248327A (en) 1993-02-25 1993-02-25 Laser beam processing method

Country Status (1)

Country Link
JP (1) JPH06248327A (en)

Similar Documents

Publication Publication Date Title
DE10290217B4 (en) Laser processing device and thus feasible processing method
EP3271486B1 (en) Method and system for heat treatment of sheet metal
CN112059552B (en) For CfMilling method and device for/SiC composite material
EP0789084A1 (en) Surface finishing method for a metal member and metal member gained by that method
JP2007277636A (en) Laser beam hardening method
JPH06248327A (en) Laser beam processing method
JP2000288752A (en) Method and device for laser beam machining
JPS62133016A (en) Hardening method for sliding surface
JP2000233289A (en) Welding method for aluminum alloy
JPS62104693A (en) Laser cutting method
JP3196429B2 (en) Laser hardening method
Bach et al. Laser transformation hardening of different steels
RU2086359C1 (en) Method for machining high-strength difficult-to-work materials
KR19990079499A (en) Wide Laser Beam Processing Equipment Using Pyramid Mirror
JPS6439318A (en) Heat treatment method by multi mode laser beam
Whealon Laser heat treating of machine tool spindles
JPH01152220A (en) Method for hardening tool edge
JPS552710A (en) Improving method for antiseizing property of parts
BROUSSEAU et al. TRANSFORMATION HARDENING
Bloehs et al. Efficient hardening with high-power solid-state lasers
SU1756370A1 (en) Method of hardening of cutting tools
JPS5837123A (en) Manufacture of discoid tool
JPH06330156A (en) Laser quenching method
Ramalingam et al. Surface hardening of oil-hardened nonshrinking steel using ruby laser
Kovalenko et al. Some aspects of material hardening with pulsed laser beams