JPH06244257A - Decision of impurity concentration in semiconductor substrate - Google Patents

Decision of impurity concentration in semiconductor substrate

Info

Publication number
JPH06244257A
JPH06244257A JP4997893A JP4997893A JPH06244257A JP H06244257 A JPH06244257 A JP H06244257A JP 4997893 A JP4997893 A JP 4997893A JP 4997893 A JP4997893 A JP 4997893A JP H06244257 A JPH06244257 A JP H06244257A
Authority
JP
Japan
Prior art keywords
impurity concentration
substrate
semiconductor substrate
concentration distribution
depth direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4997893A
Other languages
Japanese (ja)
Inventor
Masamune Kusunoki
雅統 楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP4997893A priority Critical patent/JPH06244257A/en
Publication of JPH06244257A publication Critical patent/JPH06244257A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To make it possible to lessen a decision error of an impurity concentration in a semiconductor substrate and to make it possible to lessen also an irregulatity in the imprity concentration by a method wherein an impurity concentration distribution in the depth direction in the substrate is found using a C-V method the arithmetic mean value of an impurity concentration in the extent of a certain depth is decided as the impurity connection in the substrate. CONSTITUTION:In the case where an impurity concentration in a semiconductor substrate is decided utilizing a capacity-voltage method (a C-V method), an impurity concentration distribution in the depth direction in the substrate is found using the C-V method, the arithmetic means value of an impurity concentration in the extent of a certain depth is computed to the impurity concentration distribution and the mean value is decided as the impurity concentration in the substrate. For example, a MOS capacitor, which corresponds to a channel part 10 of a surface channel n-MOS transistor and has an impurity concentration distribution, is formed on a P-type Si substrate. With respect to the impurity concentration distribution of the MOS capacitor a measurement is taken using a C-V method, and after an impurity concentration distribution in the depth direction as shown in the diagram is obtained on the basis of the result measured using the C-V method, the arithmetic mean value of an impurity concentration distribution in the extent of A in the diagram is found and the mean value is decided as an impurity concentration in the substrate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【技術分野】本発明は、非破壊であり、簡便な方法であ
るC−V法を用いて、半導体基板中の深さ方向の不純物
濃度分布を求め、その結果を用いる基板不純物濃度の決
定方法に関するものである。
TECHNICAL FIELD The present invention is a non-destructive and simple method for obtaining an impurity concentration distribution in a depth direction in a semiconductor substrate by using a CV method, and using the result, a method for determining a substrate impurity concentration. It is about.

【0002】[0002]

【従来技術】従来のLSIプロセス開発において、一般
に、不純物濃度分布を求める方法は、SIMS、SR法
(拡がり抵抗法)+ケミカルエッチングなどのサンプル
を破壊しなければならない方法と、CV法などのサンプ
ルを破壊することなく測定できる方法に区別されるが、
前者はウエハ状態での測定はできず、後者はそれが可能
である。LSIの心臓部にあたるトランジスタの素子特
性、特にしきい値電圧(Vth)を左右する半導体基板
の不純物濃度の決定に際し、C−V法を用いて半導体基
板中の深さ方向の不純物濃度分布を求め、その最大空乏
層幅の9割にあたる位置での不純物濃度を基板不純物濃
度とする方法が採用されていたが、この方法では、求め
る半導体基板中の深さ方向の不純物濃度分布の精度が重
要になる。一般に測定容量が小さくなると外乱による誤
差が大きくなり求めた不純物濃度分布の精度は悪くなる
為、その結果前記のような深さ方向一点での不純物濃度
を基板不純物濃度とすると、その値のばらつきが、大き
くなる場合がある。そしてLSIプロセス開発において
は、そのプロセスの信頼性が重要であり数多くの測定数
が必要になる結果、測定におけるばらつきを極力小さく
していかなければプロセスに起因するばらつきを突き止
める事ができず、LSIプロセス開発の効率が悪くな
る。
2. Description of the Related Art In conventional LSI process development, generally, a method for obtaining an impurity concentration distribution is a method such as SIMS, SR method (spread resistance method) + chemical etching, in which a sample must be destroyed, and a sample such as CV method. Is divided into methods that can be measured without destroying
The former cannot measure in a wafer state, and the latter can. In determining the impurity concentration of the semiconductor substrate which influences the device characteristics of the transistor, which is the heart of the LSI, especially the threshold voltage (Vth), the impurity concentration distribution in the depth direction in the semiconductor substrate is obtained by the CV method. In this method, the impurity concentration at the position corresponding to 90% of the maximum depletion layer width is used as the substrate impurity concentration. In this method, the accuracy of the impurity concentration distribution in the depth direction in the semiconductor substrate is important. Become. Generally, when the measurement capacitance becomes small, the error due to disturbance becomes large and the accuracy of the obtained impurity concentration distribution deteriorates.As a result, if the impurity concentration at one point in the depth direction as described above is taken as the substrate impurity concentration, the variation in the value will occur. , May grow. In the LSI process development, the reliability of the process is important and a large number of measurements are required. As a result, it is not possible to identify the variation due to the process unless the variation in the measurement is minimized. Process development becomes less efficient.

【0003】[0003]

【目的】本発明は、基板不純物濃度の決定誤差を小さく
できかつ、ばらつきも小さい半導体基板の不純物濃度の
決定方法の提供を目的とする。
An object of the present invention is to provide a method of determining the impurity concentration of a semiconductor substrate which can reduce the determination error of the impurity concentration of the substrate and has a small variation.

【0004】[0004]

【構成】LSIプロセス開発においては、その心臓部に
あたるトランジスタの素子特性をどう安定に作り込める
かが重要になってくる。特にトランジスタの素子特性の
1つであるしきい値電圧(Vth)を決定するチャネル
部の不純物濃度分布の制御は重要であるが、MOS構造
を用いるLSIの場合、図1に示すように、チャネル部
ではウエルを構成する不純物と同じ伝導型の不純物をウ
エル濃度よりも高めにすることでしきい値電圧(Vt
h)を制御している。一方、多くのトランジスタのチャ
ネル部を構成するMOS構造は、そのままの構造でC−
V特性を測定することができる。そしてそのC−V特性
から図2に示すようにMOS界面から下の深さ方向の不
純物濃度を求めることができる。本発明においては、C
−V法を用いて半導体基板中の深さ方向の不純物濃度分
布を求め半導体基板の不純物濃度を決定する際、前記の
ような従来技術のように深さ方向一点での不純物濃度を
基板不純物濃度とするのではなく、MOS界面から下の
深さ方向のある範囲での不純物濃度の算術平均値を基板
不純物濃度とする。該深さ方向の範囲は、トランジスタ
がONになる、すなわち半導体表面が強反転するまでに
要する空乏度の幅程度で良いという理由から半導体表面
から数十〜数百nmの範囲の大きさが好ましい。一般
に、MOSのCV特性の測定原理から、表面からデバイ
長(LD)以内では、界面に多数キャリアが蓄積してき
て、その範囲(デバイ長以内)の不純物濃度をCV特性
に正確に反映することはできないので、正確に不純物濃
度を決定するためには、LDよりも深い、すなわち、不
純物濃度がCV特性に正確に反映されている範囲で求め
ることが望ましい。前記範囲は、フラットバンド状態か
ら空乏状態を経て、弱反転状態の直前までである。以上
のように非破壊で簡便であるC−V法を用いて不純物濃
度分布を求めて、ばらつきの少ない本発明の方法により
チャネル部の不純物濃度を決定すれば、6インチウエハ
での測定を可能にし、また量産半導体基板(ウエハ)の
パターンの中に正確なC−V測定ができるパターンをい
れておけば、チャネル部の不純物濃度のプロセスモニタ
ーとして活用でき、素子特性異常などの予期せぬトラブ
ル発生に対する迅速な対応を可能にすることができる。
[Structure] In LSI process development, it is important how to stably create the device characteristics of the transistor at the heart of the process. In particular, it is important to control the impurity concentration distribution in the channel portion that determines the threshold voltage (Vth), which is one of the device characteristics of the transistor. However, in the case of an LSI using a MOS structure, as shown in FIG. In the portion, the same conductivity type impurity as that forming the well is made higher than the well concentration so that the threshold voltage (Vt
h) is controlled. On the other hand, the MOS structure that constitutes the channel portion of many transistors is C-
The V characteristic can be measured. From the C-V characteristic, the impurity concentration in the depth direction below the MOS interface can be obtained as shown in FIG. In the present invention, C
When obtaining the impurity concentration distribution in the semiconductor substrate in the depth direction using the -V method to determine the impurity concentration of the semiconductor substrate, the impurity concentration at one point in the depth direction is determined as in the prior art as described above. Instead of this, the arithmetic mean value of the impurity concentration in a certain range in the depth direction below the MOS interface is taken as the substrate impurity concentration. The range in the depth direction is preferably in the range of several tens to several hundreds nm from the semiconductor surface because the depletion width required until the transistor is turned on, that is, the semiconductor surface undergoes strong inversion, is sufficient. . Generally, from the principle of measurement of MOS CV characteristics, majority carriers accumulate at the interface within the Debye length (LD) from the surface, and it is impossible to accurately reflect the impurity concentration within that range (within the Debye length) to the CV characteristics. Therefore, in order to accurately determine the impurity concentration, it is desirable to obtain the impurity concentration deeper than LD, that is, within the range in which the impurity concentration is accurately reflected in the CV characteristics. The range is from the flat band state through the depletion state to immediately before the weak inversion state. As described above, if the impurity concentration distribution is obtained using the CV method which is non-destructive and simple, and the impurity concentration of the channel portion is determined by the method of the present invention with less variation, measurement on a 6-inch wafer is possible. In addition, if a pattern that enables accurate CV measurement is placed in the pattern of the mass-produced semiconductor substrate (wafer), it can be used as a process monitor of the impurity concentration of the channel part, and unexpected problems such as abnormal device characteristics can occur. It is possible to promptly respond to the occurrence.

【0005】[0005]

【実施例】以下に本発明を実施例をもとに説明を加え
る。 実施例1 P型Si基板上に次のようなプロセス工程を経て表面チ
ャネル型nMOSトランジスタのチャネル部に相当する
不純物濃度分布を持つMOSキャパシタを作製した。 ・Pウエル形成(ボロンイオン注入、5×1013個/c
2、40keV) ・ボロンイオン活性化 ・チャネル部形成(ボロンイオン注入、4×1012個/
cm2、30keV) ・熱酸化膜形成(150Å) ・n+Poly−Siゲート形成(3000Å) ・n+Poly−Siゲートパターニング(ゲート面
積:1mm2) ・層間絶縁膜形成など実プロセスと同じ温度履歴を加え
る。 上記MOSキャパシタについてC−V測定をおこない、
C−V結果から図2に示すような深さ方向の不純物濃度
分布を得た。図2のB点が、従来法による不純物濃度の
値であるのに対し、本発明による方法は、図2のA範囲
の不純物濃度分布の算術平均値を求め基板不純物濃度と
した。その結果、同じMOSキャパシタを何度測っても
再現性良く基板不純物濃度を求めることができた。
EXAMPLES The present invention will be described below based on examples. Example 1 A MOS capacitor having an impurity concentration distribution corresponding to the channel portion of a surface channel type nMOS transistor was manufactured on a P type Si substrate through the following process steps.・ P well formation (boron ion implantation, 5 × 10 13 / c
m 2 , 40 keV) ・ Boron ion activation ・ Channel formation (boron ion implantation, 4 × 10 12 /
cm 2, 30 keV), a thermal oxide film formed (150Å) · n + Poly- Si gate formation (3000Å) · n + Poly- Si gate patterning (gate area: 1 mm 2), etc., an interlayer insulating film formed without the same temperature history as the actual process. C-V measurement is performed on the MOS capacitor,
From the CV results, the impurity concentration distribution in the depth direction as shown in FIG. 2 was obtained. The point B in FIG. 2 is the value of the impurity concentration according to the conventional method, while the method according to the present invention obtains the arithmetic mean value of the impurity concentration distribution in the range A of FIG. 2 and sets it as the substrate impurity concentration. As a result, it was possible to obtain the substrate impurity concentration with good reproducibility no matter how many times the same MOS capacitor was measured.

【0006】C−V法を利用して基板不純物濃度を決定
する方法において、C−V法を用いて半導体基板中の深
さ方向の不純物濃度分布を求め、前記不純物濃度分布に
対しある深さの範囲にある不純物濃度の算術平均値を基
板不純物濃度とすれば、誤差を小さく、かつばらつきも
小さくでき、基板不純物濃度を検出できる。また、前記
不純物濃度の算術平均値を求めるための深さ方向の範囲
を基板表面からデバイ長よりも深い領域に設けることで
C−V法の原理的な誤差を除去する事ができる。
In the method of determining the substrate impurity concentration by using the CV method, the impurity concentration distribution in the depth direction in the semiconductor substrate is obtained by using the CV method, and a certain depth with respect to the impurity concentration distribution is obtained. If the arithmetic mean value of the impurity concentrations in the range is defined as the substrate impurity concentration, the error and the variation can be reduced, and the substrate impurity concentration can be detected. Further, by providing a range in the depth direction for obtaining the arithmetic mean value of the impurity concentration in a region deeper than the Debye length from the substrate surface, the principle error of the CV method can be eliminated.

【図面の簡単な説明】[Brief description of drawings]

【図1】表面チャネル型CMOSトランジスタの構造を
模式的に示す図である。
FIG. 1 is a diagram schematically showing the structure of a surface channel type CMOS transistor.

【図2】C−V特性から求めた不純物濃度分布を示す図
である。
FIG. 2 is a diagram showing an impurity concentration distribution obtained from CV characteristics.

【図3】本発明と従来法との不純物濃度算出結果の比較
を示す図である。
FIG. 3 is a diagram showing a comparison of impurity concentration calculation results of the present invention and a conventional method.

【符号の説明】[Explanation of symbols]

1 ゲート電極(過剰N型ポリSiゲート) 1′ ゲート電極(過剰P型ポリSiゲート) 2 ゲート酸化膜 3 ソース 4 ドレイン 5 過剰P型層 6 過剰N型層 7 P型ウエル 8 N型ウエル 9 Si基板 10 チャネル部 A 実施例で採用した不純物濃度の算術平均値の算出に
使用した深さ方向の範囲を示す。 B 実施例において、従来法によって求めた基板不純物
濃度の値を示す。
1 gate electrode (excess N-type poly Si gate) 1'gate electrode (excess P-type poly Si gate) 2 gate oxide film 3 source 4 drain 5 excess P-type layer 6 excess N-type layer 7 P-type well 8 N-type well 9 Si substrate 10 channel part A The range of the depth direction used for calculation of the arithmetic mean value of the impurity concentration adopted in the example is shown. B In Example, the value of the substrate impurity concentration obtained by the conventional method is shown.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 容量−電圧法(以下C−V法)を利用し
て半導体基板不純物濃度を決定する方法において、C−
V法を用いて半導体基板中の深さ方向の不純物濃度分布
を求め、前記不純物濃度分布に対しある深さの範囲の不
純物濃度の算術平均値を算出し、該平均値を基板不純物
濃度とすることを特徴とした半導体基板不純物濃度の決
定方法。
1. A method for determining an impurity concentration of a semiconductor substrate by using a capacitance-voltage method (hereinafter, CV method), wherein C-
The impurity concentration distribution in the depth direction in the semiconductor substrate is obtained by using the V method, the arithmetic average value of the impurity concentration in a certain depth range with respect to the impurity concentration distribution is calculated, and the average value is taken as the substrate impurity concentration. A method for determining the impurity concentration of a semiconductor substrate, which is characterized by the above.
【請求項2】 前記不純物濃度の算術平均値を求めるた
めの深さ方向の範囲は、基板表面からデバイ長よりも深
い領域に設けることを特徴とする請求項1記載の半導体
基板不純物濃度の決定方法。
2. The semiconductor substrate impurity concentration determination according to claim 1, wherein the range in the depth direction for obtaining the arithmetic mean value of the impurity concentration is provided in a region deeper than the Debye length from the substrate surface. Method.
【請求項3】 前記不純物は、チャネル部とウエル部を
構成するものであって、かつ同じ伝導型の不純物である
ことを特徴とした半導体基板不純物濃度の決定方法。
3. The method of determining the impurity concentration of a semiconductor substrate, wherein the impurities are impurities that form a channel portion and a well portion and have the same conductivity type.
【請求項4】 MOS構造トランジスタのチャネル部の
不純物濃度の決定を請求項1、2または3記載の方法に
より行うことを特徴とする前記トランジスタのチャネル
部の不純物濃度の決定方法。
4. A method for determining the impurity concentration of the channel portion of the transistor, wherein the impurity concentration of the channel portion of the MOS structure transistor is determined by the method according to claim 1, 2 or 3.
【請求項5】 半導体基板中に請求項1,2、3または
4記載のC−V法により正確に測定可能な不純物濃度パ
ターンを形成したことを特徴とする半導体基板。
5. A semiconductor substrate, wherein an impurity concentration pattern that can be accurately measured by the CV method according to claim 1, 3 or 4 is formed in the semiconductor substrate.
JP4997893A 1993-02-16 1993-02-16 Decision of impurity concentration in semiconductor substrate Pending JPH06244257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4997893A JPH06244257A (en) 1993-02-16 1993-02-16 Decision of impurity concentration in semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4997893A JPH06244257A (en) 1993-02-16 1993-02-16 Decision of impurity concentration in semiconductor substrate

Publications (1)

Publication Number Publication Date
JPH06244257A true JPH06244257A (en) 1994-09-02

Family

ID=12846111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4997893A Pending JPH06244257A (en) 1993-02-16 1993-02-16 Decision of impurity concentration in semiconductor substrate

Country Status (1)

Country Link
JP (1) JPH06244257A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289534A (en) * 2001-03-26 2002-10-04 Sony Corp Method for fabricating semiconductor device and method for sorting solid-state imaging device
JPWO2007132769A1 (en) * 2006-05-17 2009-09-24 パナソニック株式会社 Cell potential measuring device, substrate used therefor, and method for manufacturing substrate for cell potential measuring device
US8030059B2 (en) 2003-11-21 2011-10-04 Panasonic Corporation Apparatus for measuring extracellular potential
US8071363B2 (en) 2006-05-25 2011-12-06 Panasonic Corporation Chip for cell electrophysiological sensor, cell electrophysiological sensor using the same, and manufacturing method of chip for cell electrophysiological sensor
US8202439B2 (en) 2002-06-05 2012-06-19 Panasonic Corporation Diaphragm and device for measuring cellular potential using the same, manufacturing method of the diaphragm
US8232084B2 (en) 2002-06-05 2012-07-31 Panasonic Corporation Device for measuring extracellular potential and method of manufacturing device
US8257962B2 (en) 2003-03-07 2012-09-04 Panasonic Corporation Extracellular potential measuring device and its manufacturing method
US8314466B2 (en) 2007-09-11 2012-11-20 Panasonic Corporation Silicon structure, method for manufacturing the same, and sensor chip
US8318477B2 (en) 2005-06-07 2012-11-27 Panasonic Corporation Cellular electrophysiological measurement device and method for manufacturing the same
US8445263B2 (en) 2006-07-06 2013-05-21 Panasonic Corporation Device for cellular electrophysiology sensor, cellular electrophysiology sensor using the device, and method for manufacturing the cellular electrophysiology sensor device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289534A (en) * 2001-03-26 2002-10-04 Sony Corp Method for fabricating semiconductor device and method for sorting solid-state imaging device
US8202439B2 (en) 2002-06-05 2012-06-19 Panasonic Corporation Diaphragm and device for measuring cellular potential using the same, manufacturing method of the diaphragm
US8232084B2 (en) 2002-06-05 2012-07-31 Panasonic Corporation Device for measuring extracellular potential and method of manufacturing device
US8257962B2 (en) 2003-03-07 2012-09-04 Panasonic Corporation Extracellular potential measuring device and its manufacturing method
US8030059B2 (en) 2003-11-21 2011-10-04 Panasonic Corporation Apparatus for measuring extracellular potential
US8247218B2 (en) 2003-11-21 2012-08-21 Panasonic Corporation Extracellular potential sensing element, device for measuring extracellular potential, apparatus for measuring extracellular potential and method of measuring extracellular potential by using the same
US8318477B2 (en) 2005-06-07 2012-11-27 Panasonic Corporation Cellular electrophysiological measurement device and method for manufacturing the same
JP2011022153A (en) * 2006-05-17 2011-02-03 Panasonic Corp Device for measuring cellular potential, substrate used for the same, and method of manufacturing the substrate for the same
JP4582146B2 (en) * 2006-05-17 2010-11-17 パナソニック株式会社 Cell potential measuring device, substrate used therefor, and method for manufacturing substrate for cell potential measuring device
JPWO2007132769A1 (en) * 2006-05-17 2009-09-24 パナソニック株式会社 Cell potential measuring device, substrate used therefor, and method for manufacturing substrate for cell potential measuring device
US8071363B2 (en) 2006-05-25 2011-12-06 Panasonic Corporation Chip for cell electrophysiological sensor, cell electrophysiological sensor using the same, and manufacturing method of chip for cell electrophysiological sensor
US8445263B2 (en) 2006-07-06 2013-05-21 Panasonic Corporation Device for cellular electrophysiology sensor, cellular electrophysiology sensor using the device, and method for manufacturing the cellular electrophysiology sensor device
US8314466B2 (en) 2007-09-11 2012-11-20 Panasonic Corporation Silicon structure, method for manufacturing the same, and sensor chip
US8816450B2 (en) 2007-09-11 2014-08-26 Panasonic Corporation Fibrous projections structure

Similar Documents

Publication Publication Date Title
Chern et al. A new method to determine MOSFET channel length
US7019343B2 (en) SnO2 ISFET device, manufacturing method, and methods and apparatus for use thereof
JPH06244257A (en) Decision of impurity concentration in semiconductor substrate
US6514778B2 (en) Method for measuring effective gate channel length during C-V method
US6867059B2 (en) A-C:H ISFET device manufacturing method, and testing methods and apparatus thereof
US4978627A (en) Method of detecting the width of lightly doped drain regions
US5010029A (en) Method of detecting the width of spacers and lightly doped drain regions
US20050032251A1 (en) Method for manufacturing semiconductor devices by monitoring nitrogen bearing species in gate oxide layer
JP2003243468A (en) Semiconductor device, its evaluating method and manufacturing method
US6731130B1 (en) Method of determining gate oxide thickness of an operational MOSFET
US6403979B1 (en) Test structure for measuring effective channel length of a transistor
JP4083878B2 (en) Impurity measurement method
JP2976624B2 (en) Method for measuring carrier concentration distribution in semiconductor
JPS5953702B2 (en) How to measure the specifications of field effect transistors
US7043328B2 (en) Method for manufacturing semiconductor device utilizing monitor wafers
JP3530357B2 (en) Semiconductor device and manufacturing method thereof
JPH03208375A (en) Semiconductor pressure sensor
JPH0799223A (en) Impurity-concentration evaluating method and mass-production-type semiconductor substrate
JP2661641B2 (en) Semiconductor impurity distribution measurement method
JPH01169347A (en) Evaluation of conductive type layer characteristic
JPS6083345A (en) Method of measuring characteristic of field-effect type transistor
KR20040044725A (en) Sample for measuring a resistance of lightly doped silicon and method for fabricating thereof
JPH0574908A (en) Evaluating method for silicon substrate in semiconductor device
JPH0810698B2 (en) Manufacturing method of lateral junction field effect transistor
JPH06196436A (en) Semiconductor device and inspection method thereof