JPH0624165B2 - Method for manufacturing thin superconducting coil - Google Patents

Method for manufacturing thin superconducting coil

Info

Publication number
JPH0624165B2
JPH0624165B2 JP12609084A JP12609084A JPH0624165B2 JP H0624165 B2 JPH0624165 B2 JP H0624165B2 JP 12609084 A JP12609084 A JP 12609084A JP 12609084 A JP12609084 A JP 12609084A JP H0624165 B2 JPH0624165 B2 JP H0624165B2
Authority
JP
Japan
Prior art keywords
coil
winding frame
partial
winding
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12609084A
Other languages
Japanese (ja)
Other versions
JPS614205A (en
Inventor
春雄 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP12609084A priority Critical patent/JPH0624165B2/en
Priority to US06/741,255 priority patent/US4649248A/en
Publication of JPS614205A publication Critical patent/JPS614205A/en
Publication of JPH0624165B2 publication Critical patent/JPH0624165B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は電子または陽子等の衝突反応粒子検出器用の薄
肉超電導コイルの製作方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method of manufacturing a thin-walled superconducting coil for a detector of collision reaction particles such as electrons or protons.

この種のコイルは強力な電磁場を効率よく均一に発生さ
せる必要がある。このため超電導状態で数千アンペアの
直流電流をコイルに流すことにより導体断面積を著しく
小形化するとともに、前記超電導コイルから生ずる磁束
を回帰させるために帰路鉄心を前記コイルの周囲に装着
するよう構成される。ところがかかる構成では、前記コ
イルの磁気的中心と帰路鉄心の磁気中心とが一致してい
ないと両者間に軸方向の電磁推力が作用して、前記コイ
ルまたはコイル支持構造物が破壊してしまうという問題
があり、コイルおよび鉄心の磁気中心がよく一致した超
電導コイルの製作方法の確立が求められている。
This type of coil needs to generate a strong electromagnetic field efficiently and uniformly. For this reason, in the superconducting state, a direct current of several thousand amperes is passed through the coil to significantly reduce the conductor cross-sectional area, and a return iron core is mounted around the coil in order to return the magnetic flux generated from the superconducting coil. To be done. However, in such a configuration, if the magnetic center of the coil and the magnetic center of the return iron core do not match, an axial electromagnetic thrust acts between them and the coil or the coil support structure is destroyed. There is a problem, and it is required to establish a method of manufacturing a superconducting coil in which the magnetic centers of the coil and the iron core are well matched.

〔従来技術とその問題点〕[Prior art and its problems]

第1図は従来の薄肉超電導コイルの製作方法を示す断面
図である。図において1は超電導コイルで、金属製の筒
状の巻枠2と、この巻枠2の内周面に密接して絶縁被覆
された平角超電導々体(以下超電導線とよぶ)よりなる
筒状コイル3とで構成されており、筒状コイルは軸方向
および半径方向に所定の面圧が加えられた状態で接着剤
等によって超電導線相互間ならびに筒状コイル3と巻枠
2とが一体に固着されて超電導コイル1が形成される。
つぎに超電導コイル1の製作方法を第1図について説明
する。4は巻枠2の内側に嵌挿されて筒状コイル3の巻
き始め位置(a位置)を規制する筒状の嵌合部4aを有
するコイル受けで、まず巻枠2の一方端をコイル受け4
に挿入して固定する。つぎに筒状コイル3をa位置を起
点として図の左方向にコイルの外周面が巻枠2の内周面
に密着するように圧力を加えながら所定の回数N回巻回
する。ついで巻枠2の他方端から筒状の嵌合部5aを有
する加圧治具5を挿入し、筒状コイル3の軸方向に荷重
Pを加えて押圧し筒状コイル3の巻き終り位置が所定位
置bに達するまで圧縮する。ついでコイル受け4と加圧
治具5とを図示しない圧力保持ボルト等で連結して筒状
コイル3端面に加えられた荷重Pを保持した状態で超電
導コイル1を加熱硬化炉に入れて加熱する。この際筒状
コイル3を形成する超電導線の絶縁被覆に予め接着剤等
を被着しておけば、加熱硬化することにより、筒状コイ
ル3および巻枠2は互いに固着して一体化される。この
ようにして形成された超電導コイルは、コイルに流れる
大電流によって生ずる半径方向の電磁力および軸方向の
内部圧縮力に対して金属製巻枠2を補強部材として充分
機能させることができ、したがって薄肉の超電導コイル
で強力な電磁場を発生させることを可能にしている。
FIG. 1 is a sectional view showing a method of manufacturing a conventional thin superconducting coil. In the figure, reference numeral 1 denotes a superconducting coil, which is a tubular shape made of a metal tubular winding frame 2 and a rectangular superconducting body (hereinafter referred to as a superconducting wire) closely insulatively coated on the inner peripheral surface of the winding frame 2. The tubular coil is composed of the coil 3 and the tubular coil 3 and the bobbin 2 are integrally formed between the superconducting wires by an adhesive or the like while a predetermined surface pressure is applied in the axial direction and the radial direction. The superconducting coil 1 is fixed and fixed.
Next, a method of manufacturing the superconducting coil 1 will be described with reference to FIG. Reference numeral 4 is a coil receiver having a tubular fitting portion 4a which is fitted inside the winding frame 2 and regulates a winding start position (position a) of the tubular coil 3. First, one end of the winding frame 2 is coiled. Four
Insert and fix. Next, the tubular coil 3 is wound a predetermined number of times N times while applying pressure such that the outer peripheral surface of the coil closely contacts the inner peripheral surface of the winding frame 2 in the left direction of the drawing starting from the position a. Then, the pressurizing jig 5 having the tubular fitting portion 5a is inserted from the other end of the winding frame 2, and a load P is applied in the axial direction of the tubular coil 3 to press the tubular jig 3 to set the winding end position of the tubular coil 3. Compress until reaching a predetermined position b. Then, the coil receiver 4 and the pressurizing jig 5 are connected by a pressure holding bolt or the like (not shown), and the superconducting coil 1 is put in a heating and hardening furnace and heated while the load P applied to the end face of the tubular coil 3 is held. . At this time, if the insulating coating of the superconducting wire forming the tubular coil 3 is previously coated with an adhesive or the like, the tubular coil 3 and the winding frame 2 are fixed and integrated with each other by heating and curing. . The superconducting coil formed in this way can sufficiently function the metal reel 2 as a reinforcing member against the electromagnetic force in the radial direction and the internal compressive force in the axial direction generated by the large current flowing in the coil. It is possible to generate a strong electromagnetic field with a thin superconducting coil.

ところが筒状コイル3を巻回するにあたって、巻枠2を
半径方向に広げようとする放射状の圧力を加えながら超
電導線を巻回しているために巻枠2と筒状コイル3との
間に滑り摩擦抵抗が発生する。したがって加圧治具5に
よって筒状コイル3の軸方向に荷重Pを加えて圧力保持
ボルトでコイル受け4と加圧治具5とを連結し前記荷重
Pを保持するようにした場合、コイル受け4は巻枠2に
より固定されているために軸方向への移動は規制されて
コイル受け4からは筒状コイル3の端面へには面圧が加
わらない。このため筒状コイルの各巻回間に作用する面
圧Pは前記滑り摩擦抵抗により減殺されて第2図に示す
ように、加圧治具5に接したb部で最も高く加圧治具か
ら離れるとともに急激に減少し加圧治具から最も離れた
a部で最小になるような軸方向に不均等な分布になる。
前記衝突反応粒子検出器用超電導コイルは1個の長さが
10メートル前後にも及ぶものがあり、超電導線の巻回数
も極めて多いために、各巻回間の面圧の差,言いかえれ
ば各巻回間の絶縁寸法の差が累積されるとコイル軸方向
の巻数密度(軸方向単位長さ当りの巻回数)にかなりの
差が発生する。すなわち第1図において、巻枠の軸方向
の長さをLとしてその軸方向中央位置をO1とする、ま
た巻枠の両端A,Bからそれぞれ等しい寸法内側に入っ
たa,b間に全巻数Nなる筒状コイル3が巻回され、
a,b位置からそれぞれ全巻数の2分の1宛コイル内に
入った位置をo(以下筒状コイルの磁気中心と呼ぶ)と
する。筒状コイル3の面圧分布が第2図に示されるよう
な場合、筒状コイルの磁気中心oは巻枠2の中央位置よ
りΔlだけ加圧治具5側に移動する。
However, when the cylindrical coil 3 is wound, the superconducting wire is wound while applying a radial pressure to expand the winding frame 2 in the radial direction, and therefore, there is a slip between the winding frame 2 and the cylindrical coil 3. Friction resistance occurs. Therefore, when the load P is applied in the axial direction of the tubular coil 3 by the pressing jig 5 and the coil receiver 4 and the pressing jig 5 are connected by the pressure holding bolt to hold the load P, Since 4 is fixed by the winding frame 2, movement in the axial direction is restricted, and no surface pressure is applied from the coil receiver 4 to the end surface of the tubular coil 3. Therefore, the surface pressure P acting between each winding of the cylindrical coil is reduced by the sliding friction resistance, and as shown in FIG. As the distance increases, the distribution sharply decreases, and the distribution becomes non-uniform in the axial direction such that it becomes minimum at the portion a farthest from the pressing jig.
The superconducting coil for the collision reaction particle detector has a length of one.
Some of them extend up to around 10 meters, and the number of turns of the superconducting wire is extremely large. Therefore, when the difference in surface pressure between turns, in other words, the difference in insulation dimensions between turns, accumulates in the coil axis direction. A considerable difference occurs in the winding number density (the number of windings per unit length in the axial direction). That is, in FIG. 1, the axial length of the winding frame is L, and its axial center position is O 1, and the entire winding is between a and b that are inwardly equal in size from both ends A and B of the winding frame. A number N of cylindrical coils 3 are wound,
Positions (hereinafter referred to as the magnetic centers of the tubular coil) that are located in the coils addressed to ½ of the total number of turns from the positions a and b are referred to as o. When the surface pressure distribution of the cylindrical coil 3 is as shown in FIG. 2, the magnetic center o of the cylindrical coil moves from the center position of the winding frame 2 toward the pressing jig 5 side by Δl.

第3図は従来の衝突反応粒子検出器の概略断面図で、巻
枠2の軸方向中央位置O1と帰路鉄心6の磁気中心位置
2とが一致するよう巻枠2は帰路鉄心6に固定され
る。この時筒状コイルの磁気中心oが帰路鉄心6の磁気
中心O2とΔlだけずれているために、筒状コイル両端
部の磁束φが図のように左右対称な分布にならない。こ
のために筒状コイルの両端部で筒状コイルの軸方向に作
用する電磁機械力が異なり、筒状コイルに電磁推力が作
用するという問題がある。このようにして筒状コイルの
軸方向に作用する外部推力は例えばΔlが10mmあると10
4Kgにも達する巨大な力となる場合があり、超電導コイ
ルまたは支持構造材がこのような外部推力に耐えきれず
に破損するという問題があった。
In Figure 3 is a schematic cross-sectional view of a conventional collision reaction particle detector, bobbin 2 so that the magnetic center position O 2 is coincident axial center position O 1 and return core 6 of the bobbin 2 in the return core 6 Fixed. At this time, since the magnetic center o of the tubular coil deviates from the magnetic center O 2 of the return iron core 6 by Δl, the magnetic flux φ at both ends of the tubular coil does not have a bilaterally symmetrical distribution as shown in the figure. Therefore, there is a problem in that the electromagnetic mechanical force acting in the axial direction of the tubular coil is different at both ends of the tubular coil, and the electromagnetic thrust acts on the tubular coil. In this way, the external thrust acting in the axial direction of the tubular coil is 10 when Δl is 10 mm, for example.
In some cases, the force may reach as high as 4 Kg, and the superconducting coil or supporting structure could not withstand such external thrust and was damaged.

〔発明の目的〕[Object of the Invention]

本発明は上述の状況に鑑みてなされたもので、金属製の
巻枠の軸方向中央位置と筒状コイルの磁気的中心位置と
が一致し、かつ筒状コイルの磁気的中心位置に対して面
圧の軸方向分布が左右対称な薄肉超電導コイルの製作方
法を提供することを目的とする。
The present invention has been made in view of the above situation, and the axial center position of the metal reel and the magnetic center position of the tubular coil match, and the magnetic center position of the tubular coil with respect to the magnetic center position. It is an object of the present invention to provide a method for manufacturing a thin-walled superconducting coil in which the surface pressure axial distribution is symmetrical.

〔発明の要点〕[Main points of the invention]

本発明によれば、上述の目的は、筒状の巻枠の内周面に
密接して筒状コイルを巻回するのに、前記筒状コイルを
それぞれ総巻数の2分の1宛の第1,第2の部分コイル
に分けてそれぞれ前記巻枠の軸方向中央位置を巻き始め
として両方向に巻回するとともに、第1,第2の部分コ
イル別々に前記巻き始め位置を支点として巻き終り側か
らコイル端面に互いに逆向きの軸方向荷重を加えるとい
う着想により、前記巻枠の軸方向中央位置と筒状コイル
の磁気的中心位置とが一致し、かつ前記中央位置に対し
て対称な面圧分布言いかえれば対称な磁束分布を発生で
きるコイルを得られるようにしたもので、具体的には、
前記巻枠の一方端から巻枠内に嵌挿され嵌挿部の先端位
置が前記巻枠の軸方向中央位置に一致するよう規制され
た筒状のコイル受けに前記巻枠を固定し、前記コイル受
けの先端部を巻き始めとして前記巻枠と他方端に向けて
前記超電導線を筒状コイルの全巻数の2分の1だけ巻回
して第1の部分コイルを形成する第1の工程と、前記巻
枠の他方端から筒状の第1の加圧治具を挿入して前記第
1の部分コイルの端面に所定の面圧を加え、この面圧を
保持しつつ前記第1の部分コイルを前記巻枠の内周面に
固定する第2の工程と、前記巻枠を前記第1の加圧治具
に固定して前記コイル受けを取り外し、前記第1の部分
コイルの巻き始め位置から前記第1の部分コイルとは逆
方向に向けて筒状コイルの全巻数の残りの2分の1を巻
回して第2の部分コイルを形成する第3の工程と、前記
巻枠の一方端から筒状の第2の加圧治具を挿入し前記第
2の部分コイルの端面に所定の面圧を加える第4の工程
と、この面圧を保持しつつ前記第2の部分コイルおよび
第1の部分コイルと前記巻枠とを加熱固化して一体化す
る第5の工程とで構成することにより達成された。
According to the present invention, the above-described object is to close the inner peripheral surface of the tubular winding frame and to wind the tubular coil, in which each of the tubular coils is directed to a half of the total number of turns. First and second partial coils are respectively wound in both directions starting from the axial center position of the winding frame, and the first and second partial coils are separately wound around the winding start position as a fulcrum. From the idea that axially opposite loads are applied to the coil end faces from the above, the axial center position of the winding frame and the magnetic center position of the cylindrical coil are coincident with each other, and the surface pressure is symmetrical with respect to the center position. Distribution In other words, it is a coil that can generate a symmetrical magnetic flux distribution. Specifically,
The winding frame is fixed to a tubular coil receiver that is inserted into the winding frame from one end of the winding frame and is regulated so that the tip end position of the fitting insertion portion coincides with the axial center position of the winding frame, A first step of forming a first partial coil by winding the superconducting wire toward the winding frame and the other end, starting from the front end of the coil receiver, and halving the total number of turns of the tubular coil; A cylindrical first pressing jig is inserted from the other end of the winding frame to apply a predetermined surface pressure to the end surface of the first partial coil, and the first portion is held while maintaining the surface pressure. The second step of fixing the coil to the inner peripheral surface of the winding frame, the fixing of the winding frame to the first pressure jig to remove the coil receiver, and the winding start position of the first partial coil. To the second portion by winding the remaining half of the total number of turns of the tubular coil in the direction opposite to the first partial coil. And a fourth step of inserting a cylindrical second pressing jig from one end of the winding frame and applying a predetermined surface pressure to the end surface of the second partial coil. This is achieved by the fifth step of heating and solidifying the second partial coil and the first partial coil and the winding frame while maintaining this surface pressure.

〔発明の実施例〕Example of Invention

第4ないし第7図は本発明の製作方法を説明するための
概念図である。まず第4図によって第1〜第2の工程を
説明する。11はコイル受けで、筒状の巻枠2の内側に嵌
挿される筒状の嵌合部11 aとフランジ部11 bとからな
り、嵌合部11 aの先端が巻枠2の軸方向中央位置O1
一致するよう、フランジ部11 bが巻枠2の一方の端面A
部と当接することにより位置が規制されており、巻枠2
はコイル受け11に固定される。12は第1の部分コイル
で、コイル受け11の端面oを巻き始めとして、プリプレ
グ絶縁被覆された平角超電導線を巻枠2の内周面に外向
きの圧力を加えながら筒状コイルの全巻数の2分の1だ
け巻回し、まず第1の工程が終了する。つぎに巻枠の他
方端から加圧治具13が巻枠2に嵌挿され、第1の部分コ
イルの巻き終り端面b部に軸方向の荷重Pが加えられ
る。この時荷重Pは第1の部分コイルの巻き始め端面o
を支点として巻線を軸方向に押し縮めるように作用する
が、巻枠2の一方端がコイル受け11に固定されているた
めに、巻枠2と第1の部分コイル12との接触面の滑り摩
擦抵抗が作用して、部分コイル内の各巻回間の面圧pは
一様にならず第5図に示すように加圧端b部で最も高
く、コイル内で指数関数的に減少する分布となる。しか
しコイルの軸方向の長さおよび巻回数が共に従来の2分
の1になっているために滑り摩擦抵抗も減少し、加圧点
と支持点との面圧分布の差は従来方法によるよりは減少
する。ついで加圧治具13によって第1の部分コイルに与
えられた面圧pの分布を保持しつつ第1の部分コイル12
を巻枠2に固定するが、例えばコイル受け11と加圧治具
13とを双方のフランジ部において図示しない連結ボルト
等で連結した状態で加熱乾燥炉に収納し、超電導線に予
め被着された接着剤等を加熱硬化することにより第1の
筒状コイルおよび巻枠を一体化することができる。超電
導線の絶縁被覆としてはガラス布テープ等に例えばエポ
キシ樹脂等を含浸しこれを加熱乾燥したいわゆるBステ
ージのプリプレグ絶縁被覆が適しており、筒状コイルに
巻回後、コイルの軸方向ならびに半径方向に荷重を加え
た状態で加熱すれば、絶縁被覆中の樹脂が軟化して接着
面にしみ出して空隙をうずめ超電導線相互ならびに超電
導線と巻枠とを完全に一体化することができる。なお巻
枠の内周面に必要には応じて予め接着用の樹脂を塗布す
る。
4 to 7 are conceptual views for explaining the manufacturing method of the present invention. First, the first and second steps will be described with reference to FIG. Reference numeral 11 denotes a coil receiver, which is composed of a tubular fitting portion 11 a and a flange portion 11 b which are fitted and inserted inside the tubular winding frame 2, and the tip of the fitting portion 11 a is the axial center of the winding frame 2. The flange portion 11 b has one end surface A of the winding frame 2 aligned with the position O 1.
The position of the bobbin 2 is regulated by abutting on the reel part.
Is fixed to the coil receiver 11. Reference numeral 12 is a first partial coil, which starts winding the end surface o of the coil receiver 11 and applies a flat superconducting wire with prepreg insulation coating to the inner peripheral surface of the winding frame 2 while applying outward pressure to the total number of windings of the tubular coil. And the first step is completed. Next, the pressing jig 13 is fitted into the winding frame 2 from the other end of the winding frame, and the axial load P is applied to the winding end face b of the first partial coil. At this time, the load P is the winding start end surface o of the first partial coil.
Acts as a fulcrum to compress the winding in the axial direction, but since one end of the winding frame 2 is fixed to the coil receiver 11, the contact surface between the winding frame 2 and the first partial coil 12 is Due to the sliding frictional resistance, the surface pressure p between each winding in the partial coil is not uniform and is highest at the pressing end b portion and exponentially decreases in the coil as shown in FIG. Distribution. However, since the axial length of the coil and the number of turns are both half of the conventional one, the sliding friction resistance also decreases, and the difference in the surface pressure distribution between the pressurizing point and the supporting point is better than that of the conventional method. Decreases. Next, while maintaining the distribution of the surface pressure p given to the first partial coil by the pressing jig 13, the first partial coil 12
Is fixed to the bobbin 2. For example, the coil receiver 11 and the pressing jig are fixed.
The first cylindrical coil and the winding 13 are housed in a heating and drying furnace in a state where both flanges are connected to each other by connecting bolts (not shown), and the adhesive or the like previously applied to the superconducting wire is cured by heating. The frame can be integrated. A so-called B-stage prepreg insulation coating obtained by impregnating a glass cloth tape with epoxy resin or the like and heating and drying it is suitable as the insulation coating for the superconducting wire. When the resin is heated in a state where a load is applied in the direction, the resin in the insulating coating softens and exudes to the adhesive surface to fill the voids, and the superconducting wires and the superconducting wire and the bobbin can be completely integrated. If necessary, an adhesive resin is applied to the inner peripheral surface of the winding frame in advance.

第1の部分コイルが固定された巻枠2は、第1の加圧治
具13側に固定してコイル受け11を取り外す。この時第1
の加圧治具13の代りに第6図に示すようにB位置で巻枠
2の他方の端面と当接するフランジ部を有する別のコイ
ル受け14と交換してもよい。いずれにしても巻枠2の他
方端B側で支持された巻枠2の内周面には、第1の部分
コイル12の巻き始め端部に導電接続された超電導線を巻
枠2の一方端B側に向かって筒状コイルの総巻数の残り
の2分の1だけ巻回して第2の部分コイル15を形成す
る。これが第3の工程である。つぎに巻枠の一方端A側
から第2の加圧治具16を嵌挿し、第2の部分コイル15の
巻き終り端面に前記第2の工程とは逆向きの軸方向荷重
Pを加え第2の部分コイル15の巻終り端面をa位置まで
圧縮する。この時第1の部分コイル12はすでに巻枠2に
固定されているので、第2の部分コイル15はo位置を支
点として軸方向に圧縮され、各巻回間に発生する軸方向
の面圧は第7図に示すようにa位置で最も高くコイル内
部で指数関数的に減少する分布となる。その結果第1の
部分コイル12内部の面圧分布と対称な分布となり、磁気
的中心位置oが巻枠2の軸方向中央位置Oと一致し、面
圧分布が磁気的中心位置oに対して対称な超電導コイル
が形成される。これが第4の工程である。つぎに加圧治
具16と加圧治具(またはコイル受け)14とを図示しない
圧力保持ボルト等で連結して面圧を保持するとともに、
第2の部分コイル15の内周面から半径方向の圧力を放射
状に加えつつ加熱乾燥炉に収納し、超電導線に被着され
た接着樹脂等を含む絶縁被覆を加熱硬化させ、超電導コ
イル全体を一体化する。加熱硬化を終った超電導コイル
は常温に戻した後治具類を取り外し、第5の工程を終了
する。
The winding frame 2 to which the first partial coil is fixed is fixed to the first pressing jig 13 side and the coil receiver 11 is removed. At this time the first
Instead of the pressure jig 13, the coil holder 14 may be replaced with another coil receiver 14 having a flange portion that comes into contact with the other end surface of the winding frame 2 at the position B as shown in FIG. In any case, on the inner peripheral surface of the winding frame 2 supported on the other end B side of the winding frame 2, a superconducting wire conductively connected to the winding start end of the first partial coil 12 is provided on one side of the winding frame 2. The second partial coil 15 is formed by winding the remaining one-half of the total number of turns of the tubular coil toward the end B side. This is the third step. Next, the second pressurizing jig 16 is inserted and inserted from the one end A side of the winding frame, and the axial load P in the direction opposite to the second step is applied to the winding end face of the second partial coil 15 in the first direction. The winding end face of the second partial coil 15 is compressed to the position a. At this time, since the first partial coil 12 is already fixed to the winding frame 2, the second partial coil 15 is axially compressed with the o position as a fulcrum, and the axial surface pressure generated between the windings is As shown in FIG. 7, the distribution is highest at the position a and decreases exponentially inside the coil. As a result, the distribution becomes symmetrical with the surface pressure distribution inside the first partial coil 12, the magnetic center position o coincides with the axial center position O of the winding frame 2, and the surface pressure distribution with respect to the magnetic center position o. A symmetrical superconducting coil is formed. This is the fourth step. Next, the pressurizing jig 16 and the pressurizing jig (or coil receiver) 14 are connected by a pressure holding bolt or the like (not shown) to hold the surface pressure,
The second partial coil 15 is housed in a heating / drying furnace while radially applying a radial pressure from the inner peripheral surface, and the insulating coating containing the adhesive resin and the like adhered to the superconducting wire is cured by heating, so that the entire superconducting coil is formed. Unify. The superconducting coil that has been cured by heating is returned to room temperature, and then the jigs are removed to complete the fifth step.

前述の実施例の説明では、第2の工程で第1の部分コイ
ルを加熱硬化し、第5の工程で第2の部分コイルを加熱
硬化するよう構成した場合について述べたが、第2の工
程では第1の部分コイルの内周面側に内張りばね等の拘
束治具を取り付けて面圧を保持しておき、第5の工程で
第1,第2の部分コイルを同時に加熱硬化するよう構成
することも可能である。この場合超電導線の絶縁被覆お
よび巻枠の内周面にプリプレグ絶縁を施し、第1,第2
の工程で第1の部分コイルに加える半径方向および軸方
向の圧力によって、前記プリプレグ絶縁同志が粘着して
面圧を保持するようにすると一層効果的である。超電導
コイルの製作方法をこのように構成することにより、第
2の工程が簡略化されるとともに、第1の部分コイルを
2回加熱硬化することによって、第1の加熱硬化によっ
て一体化された接着面が2回目の加熱によって剥離する
等の劣化を防止できる効果がある。なお前述の実施例に
おいて筒状コイルを複数対の部分コイルに分割すれば各
巻回間の面圧分布をより均等化できる。
In the above description of the embodiments, the case where the first partial coil is heat-cured in the second step and the second partial coil is heat-cured in the fifth step has been described. Then, a constraining jig such as an lining spring is attached to the inner peripheral surface side of the first partial coil to maintain the surface pressure, and the first and second partial coils are simultaneously heat-cured in the fifth step. It is also possible to do so. In this case, prepreg insulation is applied to the insulation coating of the superconducting wire and the inner peripheral surface of the winding frame,
It is more effective if the prepreg insulating members adhere to each other by the pressure in the radial direction and the axial direction applied to the first partial coil in the step of (1) to hold the surface pressure. By configuring the manufacturing method of the superconducting coil in this way, the second step is simplified, and the first partial coil is heat-cured twice so that the first heat-cured adhesive is integrated. This has the effect of preventing deterioration such as peeling of the surface due to the second heating. In the above-mentioned embodiment, if the tubular coil is divided into a plurality of pairs of partial coils, the surface pressure distribution between the windings can be made more uniform.

つぎに本発明における部分コイルの巻回方法について説
明する。第8図および第9図は部分コイルの巻回方法を
説明する概念図である。まず第8図において、筒状の巻
枠2の内周面に密接して第1の部分コイル12を巻回する
場合、まず回動自在に支持され巻枠2内に挿入された巻
線機21に、第1の部分コイル12を巻回するに必要な長さ
の超電導線を第1の部分コイル12の巻回方向とは逆方向
に巻回して仮巻きコイル22を形成し巻き終り端相当部は
巻線機21に固定する。つぎに巻き始め端を案内ローラー
23を介して巻枠2に導き固定する。つぎに巻線機21を仮
コイル22を巻き戻す方向に回転させ、超電導線を巻枠2
の内周面に押し込むように案内ローラー23によって導く
ことにより、第1の部分コイル12を所定回数巻回する。
第3の工程で第2の部分コイルを巻回する場合も前記と
同様に第2の部分コイルに対応する仮コイルを巻縁機に
挿入し、第1,第2の部分コイルのそれぞれの巻き始め
端を導電接続した後所定回数巻回する。このようにして
第1,第2の部分コイルを巻枠2の内周面に密接して巻
回することができる。
Next, a method of winding the partial coil in the present invention will be described. 8 and 9 are conceptual diagrams for explaining the winding method of the partial coil. First, in FIG. 8, when the first partial coil 12 is wound in close contact with the inner peripheral surface of the cylindrical winding frame 2, the winding machine first supported rotatably and inserted into the winding frame 2. At 21, a superconducting wire having a length required to wind the first partial coil 12 is wound in a direction opposite to the winding direction of the first partial coil 12 to form a temporary winding coil 22, and a winding end end is formed. The corresponding part is fixed to the winding machine 21. Next, the winding start end is a guide roller
It is guided to the reel 2 via 23 and fixed. Next, the winding machine 21 is rotated in the direction in which the temporary coil 22 is rewound, and the superconducting wire is wound onto the bobbin 2.
The first partial coil 12 is wound a predetermined number of times by being guided by the guide roller 23 so as to be pushed into the inner peripheral surface of the.
When the second partial coil is wound in the third step as well, a temporary coil corresponding to the second partial coil is inserted into the winding edge machine in the same manner as described above, and each of the first and second partial coils is wound. After the starting end is conductively connected, it is wound a predetermined number of times. In this way, the first and second partial coils can be wound closely on the inner peripheral surface of the winding frame 2.

第9図は第1,第2の部分コイルを1本の超電導線を用
いて接続部なしに巻回する方法を示したものである。こ
の実施例ではまず筒状コイルの全巻数を巻回するのに必
要な超電導線を巻線機21に巻回して、仮巻きコイル24を
形成する。つぎに仮巻きコイル24の中央部を案内ローラ
ー23を介してコイル受け11に固定された巻枠2の軸方向
中央位置に導く、この時第1の部分コイルに対応する仮
コイル24a の終端は巻線機21に固定し、第2の部分コイ
ルに対応する仮コイル24b は終端部を固定せずに自由に
する。このようにして第1の工程では巻線機21を仮コイ
ル24a を巻き戻す方向に回転して第1の部分コイルを形
成する。この場合仮コイル24b は終端部が拘束されてい
ないので超電導線の弾性によって複数の案内ローラー23
によって規制される直径の範囲内で幾分巻き戻り、巻線
機を回転させた時巻線機の周囲を自由に滑動するので第
1の部分コイルを巻回する作業に支障を与えない。また
第3の工程で第2の部分コイルを巻回する場合は仮コイ
ル24b の終端を巻線機21に固定し、仮コイル24b を巻き
戻す方向,言いかえれば、第1の部分コイルを巻回した
場合とは逆方向に回転させて所定回数巻回する。このよ
うにして第1,第2の部分コイルからなる超電導コイル
を継ぎ目なしに形成することができる。一般に極めて細
い超電導線材を純アルミニウム等の安定化材中に埋設さ
れてなる超電導線の接続作業は高度の技術を必要とする
が、前述の実施例のような継ぎ目なしコイルの製作方法
を提供することにより、高度の技術を必要とせずかつ信
頼性の高い薄肉超電導コイルを提供できる。
FIG. 9 shows a method of winding the first and second partial coils by using one superconducting wire without a connecting portion. In this embodiment, first, the superconducting wire required to wind the entire number of turns of the tubular coil is wound around the winding machine 21 to form the temporary winding coil 24. Next, the center of the temporary winding coil 24 is guided to the axial center position of the winding frame 2 fixed to the coil receiver 11 via the guide roller 23. At this time, the end of the temporary coil 24a corresponding to the first partial coil is The temporary coil 24b, which is fixed to the winding machine 21 and corresponds to the second partial coil, does not fix the end portion and is free. In this way, in the first step, the winding machine 21 is rotated in the direction in which the temporary coil 24a is rewound to form the first partial coil. In this case, since the temporary coil 24b is not constrained at its end, the elasticity of the superconducting wire causes a plurality of guide rollers 23b.
The coil is unwound to some extent within the range of the diameter regulated by the above, and when the winding machine is rotated, it freely slides around the winding machine, so that there is no hindrance to the work of winding the first partial coil. When the second partial coil is wound in the third step, the terminal end of the temporary coil 24b is fixed to the winding machine 21 and the temporary coil 24b is rewound in other words, in other words, the first partial coil is wound. It is rotated in the opposite direction to the case where it is turned and wound a predetermined number of times. In this way, the superconducting coil including the first and second partial coils can be seamlessly formed. Generally, an extremely thin superconducting wire is embedded in a stabilizing material such as pure aluminum to connect a superconducting wire, which requires a high level of technology, but provides a method for producing a seamless coil as in the above-described embodiment. As a result, it is possible to provide a highly reliable thin superconducting coil that does not require high technology.

〔発明の効果〕〔The invention's effect〕

本発明によれば、金属製の筒状の巻枠の内周面に密着し
て一体化された筒状の超電導コイルを製作するのに、筒
状コイルを第1,第2の部分コイルに分割して、前記巻
枠の軸方向中央位置を巻き始めとして互いに巻枠の異な
る端部に向かって巻回し、前記巻き始め位置を支点とし
てまず第1の部分コイルを軸方向に押圧して巻枠に固定
し、ついで第2の部分コイルを第1の部分コイルとは逆
方向に押圧して巻枠に固定するように構成した導肉超電
導コイルの製作方法を提供した。その結果巻枠の軸方向
中央位置とコイルの磁気的中心位置とが完全に一致し、
かつ前記軸方向中央位置に対して面圧分布あるいは磁束
分布が対称な超電導コイルの製作を可能にした。したが
って本発明の方法によって製作された薄肉超電導コイル
を例えば衝突反応粒子検出器に適用する場合、前記巻枠
と鉄心との軸方向中央位置が互いに一致するよう両者を
組み合わせれば、超電導コイルに流れる大電流によって
発生する電磁機械力,ことに電磁推力が最も少ない装置
を提供することができる。またコイル支持構造材の軽量
化,簡素化が可能になる。また上述の効果が相乗的に作
用して電磁機械力に対して安定かつ信頼性の高い超電導
機器を提供することに貢献できる。
According to the present invention, in manufacturing a tubular superconducting coil which is in close contact with and integrated with the inner peripheral surface of a metallic tubular winding frame, the tubular coil is formed into first and second partial coils. The winding is started at the center position in the axial direction of the winding frame and wound toward different ends of the winding frame, and the first partial coil is first pressed in the axial direction with the winding start position as a fulcrum. Provided is a method of manufacturing a metal-conducting superconducting coil configured to be fixed to a frame and then to press the second partial coil in a direction opposite to that of the first partial coil to be fixed to the winding frame. As a result, the axial center position of the winding frame and the magnetic center position of the coil completely match,
Moreover, it is possible to manufacture a superconducting coil having a symmetrical surface pressure distribution or magnetic flux distribution with respect to the axial center position. Therefore, when the thin superconducting coil manufactured by the method of the present invention is applied to, for example, a collision reaction particle detector, if the two are combined so that the axial center positions of the bobbin and the iron core coincide with each other, the superconducting coil flows. It is possible to provide a device that has the least electromagnetic mechanical force generated by a large current, especially the electromagnetic thrust. In addition, the weight and simplification of the coil support structure can be achieved. In addition, the above-mentioned effects act synergistically, which can contribute to providing a superconducting device that is stable and highly reliable against electromagnetic mechanical force.

【図面の簡単な説明】[Brief description of drawings]

第1図ないし第3図は従来の薄肉超電導コイルと製作方
法および問題点を説明するための概念図、第4図ないし
第7図は本発明の薄肉超電導コイルの製作方法および特
徴を説明するための概念図、第8図および第9図は本発
明の薄肉超電導コイルの巻回方法を説明するための概念
図である。 図において、1……薄肉超電導コイル、2……筒状の巻
枠、3……筒状コイル、4,11,14……コイル受け、12
……第1の部分コイル、15……第2の部分コイル、13…
…第1の加圧治具、16……第2の加圧治具、22,24……
仮巻コイル、O……巻枠の軸方向中心位置、o……筒
状コイルの磁気的中心位置、である。
1 to 3 are conceptual views for explaining a conventional thin-walled superconducting coil and a manufacturing method and problems, and FIGS. 4 to 7 are for explaining a manufacturing method and features of the thin-walled superconducting coil of the present invention. And FIGS. 8 and 9 are conceptual diagrams for explaining the winding method of the thin superconducting coil of the present invention. In the figure, 1 ... Thin superconducting coil, 2 ... Cylindrical winding frame, 3 ... Cylindrical coil, 4, 11, 14 ... Coil receiver, 12
...... First partial coil, 15 ...... Second partial coil, 13 ...
… First pressurizing jig, 16 …… Second pressurizing jig, 22,24 ……
Temporary winding coil, O 1 ... axial center position of winding frame, o ... magnetic center position of tubular coil.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】筒状の巻枠の内周面に密接してプリプレグ
絶縁被覆された超電導線を巻回し所定の巻数の一層の筒
状コイルを形成した後プリプレグ絶縁被覆を加熱硬化さ
せて前記巻枠と一体化する方法において、前記巻枠の軸
方向中央位置を起点として巻枠の一方端に向けて前記超
電導線を筒状コイルの全巻数の2分の1だけ巻回して第
1の部分コイルを形成し、該第1の部分コイルを前記軸
方向中央位置に対して軸方向に加圧し、次いでこの加圧
力を保持しつつ前記軸方向中央位置を起点として巻枠の
他方端に向けて前記超電導線を筒状コイルの残りの巻数
だけ巻回して第2の部分コイルを形成し、該第2の部分
コイルを前記軸方向中央位置に対し前記加圧力と同じ圧
力で加圧することを特徴とする薄肉超電導コイルの製作
方法。
1. A superconducting wire covered with a prepreg insulating coating is wound in close contact with an inner peripheral surface of a cylindrical winding frame to form a single-layer cylindrical coil having a predetermined number of turns, and then the prepreg insulating coating is cured by heating. In the method of integrating with a winding frame, the superconducting wire is wound toward one end of the winding frame starting from a central position in the axial direction of the winding frame by ½ of the total number of turns of the tubular coil. Forming a partial coil, pressurizing the first partial coil in the axial direction with respect to the central position in the axial direction, and then maintaining the applied pressure and directing the axial central position toward the other end of the winding frame To form a second partial coil by winding the superconducting wire by the remaining number of turns of the tubular coil, and pressurizing the second partial coil at the same axial pressure as the pressing force. A method for producing a thin superconducting coil.
【請求項2】特許請求の範囲第1項記載の方法におい
て、製作工程が、前記巻枠の一方端から巻枠内に嵌挿さ
れ嵌挿部の先端位置が前記巻枠の軸方向中央位置に一致
するよう規制された筒状のコイル受けに前記巻枠を固定
し、前記コイル受けの先端部を巻き始めとして巻枠の他
方端に向けて前記超電導線を前記筒状コイルの全巻数の
2分の1だけ巻回して第1の部分コイルを形成する第1
の工程と、前記巻枠の他方端から筒状の第1の加圧治具
を挿入して前記第1の部分コイルの端面に所定の面圧を
加え、この面圧を保持しつつ第1の部分コイルを巻枠の
内周面に固定する第2の工程と、前記巻枠を第1の加圧
治具に固定して前記コイル受けを取り外し、前記第1の
部分コイルの巻き始め位置から第1の部分コイルとは逆
方向に向けて前記筒状コイルの全巻数の残りの2分の1
を巻回して第2の部分コイルを形成する第3の工程と、
前記巻枠の一方端から筒状の第2の加圧治具を挿入し第
2の部分コイルの端面に所定の面圧を加える第4の工程
と、この面圧を保持しつつ第2の部分コイルを巻枠の内
周面に固定する第5の工程とからなることを特徴とする
薄肉超電導コイルの製作方法。
2. The method according to claim 1, wherein in the manufacturing process, one end of the winding frame is inserted into the winding frame and a tip end position of the fitting insertion portion is a center position in the axial direction of the winding frame. The winding frame is fixed to a cylindrical coil receiver regulated so as to match with, and the superconducting wire is wound toward the other end of the winding frame starting from the leading end of the coil receiver to the total number of turns of the cylindrical coil. First wound by half to form a first partial coil
And the step of inserting the cylindrical first pressing jig from the other end of the winding frame to apply a predetermined surface pressure to the end surface of the first partial coil, Second step of fixing the partial coil to the inner peripheral surface of the winding frame, fixing the winding frame to a first pressing jig to remove the coil receiver, and the winding start position of the first partial coil. From the first partial coil in the opposite direction to the other half of the total number of turns of the tubular coil.
A third step of forming a second partial coil by winding
A fourth step of inserting a cylindrical second pressing jig from one end of the winding frame to apply a predetermined surface pressure to the end surface of the second partial coil, and a second step while maintaining this surface pressure. A fifth step of fixing the partial coil to the inner peripheral surface of the winding frame, the method for producing a thin superconducting coil.
【請求項3】特許請求の範囲第1項または第2項記載の
方法において、各部分コイルを巻回加圧後部分コイルの
内周面側から外側に向けて放射状の圧力を加える拘束治
具を取り付け、全体を所定温度に加熱してプリプレグ絶
縁被覆を加熱硬化させて部分コイルをそれぞれ前記巻枠
と一体化することを特徴とする薄肉超電導コイルの製作
方法。
3. The restraint jig according to claim 1 or 2, wherein each partial coil is wound and pressurized, and a radial pressure is applied from the inner peripheral surface side of the partial coil toward the outside. And heating the whole to a predetermined temperature to heat and cure the prepreg insulating coating to integrate the partial coils with the winding frame, respectively.
【請求項4】特許請求の範囲第1項ないし第3項のいず
れかに記載の方法において、各部分コイルのプリプレグ
絶縁被覆を同時に加熱硬化することを特徴とする薄肉超
電導コイルの製作方法。
4. A method for manufacturing a thin superconducting coil according to any one of claims 1 to 3, wherein the prepreg insulating coating of each partial coil is heat-cured at the same time.
【請求項5】特許請求の範囲第1項ないし第4項のいず
れかに記載の方法において、第3の工程が前記第1およ
び第2の部分コイルのそれぞれの巻き始め端部を導電接
続する工程を含むことを特徴とする薄肉超電導コイルの
製作方法。
5. A method according to any one of claims 1 to 4, wherein the third step conductively connects the winding start ends of the first and second partial coils, respectively. A method of manufacturing a thin-walled superconducting coil, which comprises the steps of:
【請求項6】特許請求の範囲第1項ないし第5項のいず
れかに記載の方法において、第1の工程が、予め前記筒
状コイルの全巻数に相当する長さの超電導線を前記筒状
コイルより小なる直径の仮コイルに形成し、該仮コイル
を巻枠内に回動自在に挿入しておき、前記仮コイルの中
央部を前記巻枠の軸方向中央部に誘導し、仮コイルの半
分を巻き戻しながら第1の部分コイルを巻回する工程を
含み、第3の工程において前記仮コイルの残りの半分を
巻き戻しながら第2の部分コイルを前記第1の部分コイ
ルの巻き始め端部と連続して巻回するようにしたことを
特徴とする薄肉超電導コイルの製作方法。
6. The method according to any one of claims 1 to 5, wherein in the first step, the superconducting wire having a length corresponding to the total number of turns of the tubular coil is previously provided in the tube. Formed into a temporary coil having a diameter smaller than that of the spiral coil, and the temporary coil is rotatably inserted into the winding frame, and the central portion of the temporary coil is guided to the axial central portion of the winding frame. Winding the first partial coil while rewinding half of the coil, and winding the second partial coil of the first partial coil while rewinding the other half of the temporary coil in the third step. A method for manufacturing a thin-walled superconducting coil, characterized in that it is wound continuously with a starting end portion.
JP12609084A 1984-06-05 1984-06-19 Method for manufacturing thin superconducting coil Expired - Lifetime JPH0624165B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP12609084A JPH0624165B2 (en) 1984-06-19 1984-06-19 Method for manufacturing thin superconducting coil
US06/741,255 US4649248A (en) 1984-06-05 1985-06-04 Annealing furnace for annealing magnetic cores in a magnetic field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12609084A JPH0624165B2 (en) 1984-06-19 1984-06-19 Method for manufacturing thin superconducting coil

Publications (2)

Publication Number Publication Date
JPS614205A JPS614205A (en) 1986-01-10
JPH0624165B2 true JPH0624165B2 (en) 1994-03-30

Family

ID=14926352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12609084A Expired - Lifetime JPH0624165B2 (en) 1984-06-05 1984-06-19 Method for manufacturing thin superconducting coil

Country Status (1)

Country Link
JP (1) JPH0624165B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0329387D0 (en) * 2003-12-18 2004-01-21 Rolls Royce Plc Coils for electrical machines
GB2444508B (en) * 2006-12-06 2010-09-29 Siemens Magnet Technology Ltd Method of centralising and retaining moulded end coils in magnet formers

Also Published As

Publication number Publication date
JPS614205A (en) 1986-01-10

Similar Documents

Publication Publication Date Title
JP3682951B2 (en) Coil manufacturing method, coil component and manufacturing method thereof
US3507039A (en) Method of making a miniature inductive device
JPH0624165B2 (en) Method for manufacturing thin superconducting coil
KR100217550B1 (en) Superconducting coil and manufacturing method thereof
JP2847800B2 (en) Mounting method of armature winding of slotless iron core
JP2000021669A (en) Method and device for manufacturing electromagnetic coil
JP4750089B2 (en) Electromagnetic forming coil and manufacturing method thereof
JP3331113B2 (en) Dry transformer winding, method of manufacturing the same, and dry transformer
JPS59157937A (en) Electromagnetic deflector
JPH07130531A (en) Manufacture of superconducting coil
NZ200399A (en) Forming paperless electric coils:winding conductor on gelled insulation coating
US3534312A (en) Electrical coil and method of attaching leads
CA2269453C (en) Dynamo-electric machine components and methods of making same
JP2840721B2 (en) Winding method of saddle coil
JP2984102B2 (en) Superconducting baked coil winding method and apparatus
US3895334A (en) Electrical choke coil of the air core type
JP3847224B2 (en) Manufacturing method of coil for electromagnetic tube expansion
JPH0374010B2 (en)
JPH07249527A (en) Magnetic core
JP2984046B2 (en) Manufacturing method of coaxial rotary transformer
JP2661993B2 (en) Manufacturing method of arc-shaped race track type coil
JPH0447938Y2 (en)
JPH04324605A (en) Manufacture of superconducting coil
JPH04127507A (en) Deflection coil forming method
SU1053226A1 (en) Method of assembling electric machine stator