JPH0374010B2 - - Google Patents
Info
- Publication number
- JPH0374010B2 JPH0374010B2 JP59240552A JP24055284A JPH0374010B2 JP H0374010 B2 JPH0374010 B2 JP H0374010B2 JP 59240552 A JP59240552 A JP 59240552A JP 24055284 A JP24055284 A JP 24055284A JP H0374010 B2 JPH0374010 B2 JP H0374010B2
- Authority
- JP
- Japan
- Prior art keywords
- coil
- prepreg tape
- temperature
- winding frame
- insulated conductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004020 conductor Substances 0.000 claims description 37
- 238000004804 winding Methods 0.000 claims description 23
- 238000010438 heat treatment Methods 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 11
- 229920005989 resin Polymers 0.000 claims description 8
- 239000011347 resin Substances 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 238000003825 pressing Methods 0.000 claims description 7
- 238000001723 curing Methods 0.000 claims 1
- 238000013007 heat curing Methods 0.000 claims 1
- 230000002093 peripheral effect Effects 0.000 description 5
- 238000006073 displacement reaction Methods 0.000 description 3
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229910020012 Nb—Ti Inorganic materials 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000004323 axial length Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F6/00—Superconducting magnets; Superconducting coils
- H01F6/06—Coils, e.g. winding, insulating, terminating or casing arrangements therefor
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Insulating Of Coils (AREA)
- Superconductive Dynamoelectric Machines (AREA)
- Manufacture Of Motors, Generators (AREA)
Description
【発明の詳細な説明】
〔技術分野〕
本発明は、超電導筒形コイルの製造方法に係
り、特に大型の筒形コイルの製造に適する方法に
関するものである。DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for manufacturing a superconducting cylindrical coil, and particularly to a method suitable for manufacturing a large cylindrical coil.
一般に超電導筒形コイルは、筒形の巻枠の外周
に絶縁導体を螺旋状に密に巻き付けるか、あるい
は筒形の巻枠の内周面に絶縁導体を密に巻き込ん
でいくことにより形成される。
Generally, superconducting cylindrical coils are formed by tightly wrapping an insulated conductor in a spiral around the outer circumference of a cylindrical winding frame, or by tightly winding an insulated conductor around the inner circumference of a cylindrical winding frame. .
この場合の絶縁導体は、例えば第4図に示すよ
うに、平角形の超電導線1にプリプレグテープ2
を巻いて絶縁したものである。超電導線1は例え
ば内部にNb−Tiの超電導線1aを有し、そのま
わりに99.99%以上の高純度アルミニウムよりな
る安定化材1bを設けたものである。またプリプ
レグテープ2は、ガラス繊維などからなる織布に
エポキシ樹脂などの熱硬化性樹脂を液状で含浸さ
せた後、半硬化状態(Bステージ)にしたもので
ある。 In this case, the insulated conductor is, for example, a rectangular superconducting wire 1 and a prepreg tape 2 as shown in FIG.
It is wound and insulated. The superconducting wire 1 has, for example, an Nb-Ti superconducting wire 1a inside, and a stabilizing material 1b made of high purity aluminum of 99.99% or more is provided around the superconducting wire 1a. Further, the prepreg tape 2 is made by impregnating a woven fabric made of glass fiber or the like with a thermosetting resin such as an epoxy resin in liquid form, and then bringing it into a semi-cured state (B stage).
このような絶縁導体3を巻回して筒形コイルを
形成し、その後プリプレグテープの硬化に必要な
温度と時間の加熱を行つて硬化反応を起こさせ、
隣接する絶縁導体を相互に一体化して完成品とす
る。 Such an insulated conductor 3 is wound to form a cylindrical coil, and then heated to a temperature and time necessary for curing the prepreg tape to cause a curing reaction.
Adjacent insulated conductors are integrated with each other to form a finished product.
しかしながら絶縁導体を螺旋状に巻回していく
と、絶縁導体の蛇行やバネ性による戻り等が発生
し、絶縁導体間に不均一なギヤツプが生じる。こ
のため従来は最終工程でプリプレグテープの加熱
(150〜160℃)硬化を行う際に、コイル長が所定
の寸法に納まるように軸方向の加圧を行つて上記
ギヤツプをなくすようにしている。しかしこの方
法では、コイル長が長く、軸方向の巻き数が多い
場合には、絶縁導体と巻枠間の摩擦抵抗のために
端部加圧部から離れるに従つて軸方向加圧力が
徐々に減じられるため、軸方向の導体密度を均一
にすることが困難である。 However, when the insulated conductor is spirally wound, the insulated conductor may meander or return due to its springiness, resulting in uneven gaps between the insulated conductors. For this reason, conventionally, when the prepreg tape is cured by heating (150 to 160° C.) in the final step, pressure is applied in the axial direction so that the coil length is within a predetermined dimension to eliminate the gap. However, with this method, when the coil length is long and the number of turns in the axial direction is large, the axial pressing force gradually increases as the distance from the end pressurizing part increases due to the frictional resistance between the insulated conductor and the winding frame. This makes it difficult to make the axial conductor density uniform.
このため従来の方法で製造された筒形コイル
は、その内部において均質な磁界が得られないと
いう問題がある。またこの種の筒形コイルは外部
磁気通路部材の中に幾何学的中心が一致するよう
に挿入した状態で使用されるが、上記のように導
体密度が不均一であると、筒形コイルの電磁気的
中心と幾何学的中心のずれが生じるため、励磁さ
れた際にコイルに強大な電磁力が作用してコイル
が破壊されてしまうという問題がある。 For this reason, the cylindrical coil manufactured by the conventional method has a problem in that a homogeneous magnetic field cannot be obtained inside the cylindrical coil. In addition, this type of cylindrical coil is used when inserted into an external magnetic path member so that the geometric centers coincide, but if the conductor density is uneven as described above, the cylindrical coil Since there is a misalignment between the electromagnetic center and the geometric center, there is a problem in that when the coil is excited, a strong electromagnetic force acts on the coil and destroys the coil.
上記のような従来技術の問題点を解決するため
本発明は、超電導線にプリプレグテープを巻いて
絶縁してなる絶縁導体を、巻枠の内周面または外
周面に螺旋状に密巻きして筒形のコイルを形成
し、その後加熱して上記プリプレグテープを硬化
させる超電導筒形コイルの製造方法において、上
記加熱硬化を行う前に、上記コイルを、上記プリ
プレグテープの硬化温度より十分低く、かつ上記
プリプレグテープの樹脂が半硬化状態から軟化し
てフローできる温度に加熱しつつ、軸方向に加圧
して、コイル内の導体配置を整えることを特徴と
するものである。
In order to solve the above-mentioned problems of the prior art, the present invention provides an insulated conductor made by wrapping a prepreg tape around a superconducting wire to insulate it, and tightly winding it in a spiral shape on the inner or outer circumferential surface of a winding frame. In a method for manufacturing a superconducting cylindrical coil in which a cylindrical coil is formed and then the prepreg tape is cured by heating, the coil is heated at a temperature sufficiently lower than the curing temperature of the prepreg tape, and The method is characterized in that the resin of the prepreg tape is heated to a temperature at which it softens from a semi-hardened state and flows, and is pressurized in the axial direction to adjust the conductor arrangement within the coil.
このようにすると、プリプレグテープの樹脂が
軟らかい状態で導体配置の矯正が行われるため、
巻枠と絶縁導体との摩擦抵抗が少なく、容易に軸
方向の導体密度を均一化できる。 In this way, the conductor arrangement is corrected while the resin of the prepreg tape is soft.
There is little frictional resistance between the winding frame and the insulated conductor, and the conductor density in the axial direction can be easily made uniform.
以下、本発明の実施例を図面を参照して詳細に
説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
実施例 1
第1図は本発明の方法により製造された超電導
筒形コイルの断面を示している。この筒形コイル
は例えば直径3m、軸方向長さ5m程度の大型コ
イルである。図において、4は円筒形の巻枠、3
はその巻枠4の内周面に巻き込まれてコイルを形
成する第4図のような絶縁導体である。なお巻枠
4の内周面には予め絶縁材5が内張りされてい
る。6a,6bは絶縁リング、7a,7bは押さ
えリング、8は締付け用のボルトナツトである。Example 1 FIG. 1 shows a cross section of a superconducting cylindrical coil manufactured by the method of the present invention. This cylindrical coil is, for example, a large coil with a diameter of about 3 m and an axial length of about 5 m. In the figure, 4 is a cylindrical winding frame;
is an insulated conductor as shown in FIG. 4 which is wound around the inner peripheral surface of the winding frame 4 to form a coil. Note that the inner peripheral surface of the winding frame 4 is lined with an insulating material 5 in advance. 6a and 6b are insulating rings, 7a and 7b are holding rings, and 8 is a bolt nut for tightening.
このような筒形コイルを製造するに際し、まず
巻枠4の下端に押さえリング7aを固定し、絶縁
リング6aを設置する。この状態で巻枠4の内周
面に絶縁導体3を巻き込んでコイル9を形成す
る。この段階では絶縁導体3の蛇行やバネ性によ
る戻り等で絶縁導体3間に不均一なギヤツプが生
じている。 When manufacturing such a cylindrical coil, first, the holding ring 7a is fixed to the lower end of the winding frame 4, and the insulating ring 6a is installed. In this state, the insulated conductor 3 is wound around the inner peripheral surface of the winding frame 4 to form the coil 9. At this stage, uneven gaps are created between the insulated conductors 3 due to meandering of the insulated conductors 3 or return due to their spring properties.
このギヤツプをなくして軸方向の導体密度を均
一化するために、次に硬化温度より十分低い温度
で加熱しつつ軸方向の加圧を行う。このときの加
熱温度は、プリプレグテープの樹脂が半硬化状態
から軟化し、加圧により容易にフローできる温度
であり、かつ後工程でプリプレグテープを加熱硬
化した際に接着力等プリプレグテープの性能に支
障のない温度とする。 In order to eliminate this gap and make the conductor density uniform in the axial direction, next, pressure is applied in the axial direction while heating at a temperature sufficiently lower than the curing temperature. The heating temperature at this time is the temperature at which the resin of the prepreg tape softens from a semi-cured state and can easily flow under pressure, and the performance of the prepreg tape, such as adhesive strength, will be affected when the prepreg tape is heated and cured in the subsequent process. Keep the temperature at a level that does not cause any problems.
第3図は、巻き数100ターン、軸方向圧力1.5
Kg/mm2のときの、コイルの温度と変位量の関係を
示す。ほぼ50℃でプリプレグテープの樹脂が軟化
し、最大に近い変位量が得られる。使用したプリ
プレグテープは、エポキシ樹脂CY175(CIBA−
GIGEY社製)100部にモノメチルアミン錯体
(BF3−ME)5部を混入してワニス状とし、これ
をガラステープに含浸させ、半硬化させたもので
ある。このプリプレグテープの硬化温度は150℃
であるが、60℃以下の温度での加熱ならば性能低
下のおそれはない。したがつて導体配置を整える
ための加熱は50〜60℃程度で行うとよい。 Figure 3 shows 100 turns, axial pressure 1.5
This shows the relationship between coil temperature and displacement when Kg/mm 2 . At approximately 50℃, the resin of the prepreg tape softens and a displacement close to the maximum can be obtained. The prepreg tape used was epoxy resin CY175 (CIBA-
5 parts of monomethylamine complex (BF 3 -ME) was mixed into 100 parts of GIGEY Co., Ltd. to form a varnish, which was impregnated into a glass tape and semi-cured. The curing temperature of this prepreg tape is 150℃
However, if heated at a temperature below 60°C, there is no risk of performance deterioration. Therefore, heating for adjusting the conductor arrangement is preferably performed at a temperature of about 50 to 60°C.
また軸方向の加圧力は、1.5Kg/mm2程度であれ
ば超電導線および絶縁層に損傷が生じることはな
い。この軸方向の加圧は、圧力により絶縁導体3
が変位してもコイル長が規定寸法になるまでは、
ほぼ一定の圧力が保てるように、油圧装置などを
使つて行うとよい。さらに軸方向の加圧を行う際
には、コイル9を巻枠4の内面に押し付けるよう
な径方向の力をかけておくことが、コイル9と巻
枠4の密着性を向上させる上で好ましい。 Further, if the pressing force in the axial direction is about 1.5 Kg/mm 2 , the superconducting wire and the insulating layer will not be damaged. This axial pressure is applied to the insulated conductor 3 due to the pressure.
Even if the coil is displaced, until the coil length reaches the specified dimension,
It is best to use a hydraulic device to maintain almost constant pressure. Furthermore, when applying pressure in the axial direction, it is preferable to apply a force in the radial direction to press the coil 9 against the inner surface of the winding frame 4 in order to improve the adhesion between the coil 9 and the winding frame 4. .
以上の軟化温度での加熱と軸方向加圧が終了し
たならば、巻枠4の上端に絶縁リング6bを設置
し、押さえリング7bを固定した上で、全体を硬
化温度で加熱(150℃、16時間)して、プリプレ
グテープ絶縁層を硬化させる。これにより超電導
筒形コイルが完成する。 After heating at the above softening temperature and axial pressure are completed, the insulating ring 6b is installed on the upper end of the winding frame 4, the presser ring 7b is fixed, and the whole is heated at the curing temperature (150°C, 16 hours) to cure the prepreg tape insulation layer. This completes the superconducting cylindrical coil.
実施例 2
第2図は本発明の方法により製造された超電導
筒形コイルの他の例を示す。第1図に対応する部
分には同じ符号が付してある。Example 2 FIG. 2 shows another example of a superconducting cylindrical coil manufactured by the method of the present invention. Components corresponding to those in FIG. 1 are given the same reference numerals.
本実施例では筒形コイルを製造するにあたり、
コイルを4つのブロツク9a〜9dに分け、第1
ブロツク9aから順に形成していく。まず巻枠4
内に絶縁導体3を巻き込み、コイルの第1ブロツ
ク9aを形成する。その後、プリプレグテープの
樹脂が軟化する低い温度での加熱と軸方向の加圧
とを行つて導体配置を整える。このときの条件は
実施例1と同じである。これが済んだら室温にも
どし、加圧力を除去して、第1ブロツク9aの形
成を終える。 In this example, when manufacturing a cylindrical coil,
The coil is divided into four blocks 9a to 9d, and the first
Blocks are formed in order starting from block 9a. First, reel frame 4
The insulated conductor 3 is wound inside to form the first block 9a of the coil. Thereafter, conductor arrangement is adjusted by heating at a low temperature that softens the resin of the prepreg tape and applying pressure in the axial direction. The conditions at this time are the same as in Example 1. After this is completed, the temperature is returned to room temperature, the pressure is removed, and the formation of the first block 9a is completed.
次に第1ブロツク9aの巻終わり端に絶縁導体
を接続し、それを巻枠4内に巻き込んで第2ブロ
ツク9bを形成する。その後、第1ブロツク9a
と同様の加熱、加圧を行つて第2ブロツク9bの
形成を終える。なおこのとき第1ブロツク9aは
加熱されないようにしておくことが好ましい。以
後同様の作業を繰り返して第4ブロツク9dまで
の形成を行う。 Next, an insulated conductor is connected to the winding end of the first block 9a and wound into the winding frame 4 to form the second block 9b. After that, the first block 9a
Heating and pressurizing are performed in the same manner as described above to complete the formation of the second block 9b. At this time, it is preferable that the first block 9a is not heated. Thereafter, similar operations are repeated to form up to the fourth block 9d.
このようにブロツク毎に軟化温度での加熱、加
圧を行うと、各ブロツクは巻き数が少なく、巻枠
4との摩擦抵抗も小さいため、軸方向加圧力は各
ターンの絶縁導体3に比較的均一に加わるように
なり、コイル9内における絶縁導体3の軸方向密
度をいつそう均一にできる。 When heating and pressurizing each block at the softening temperature in this way, each block has a small number of turns and the frictional resistance with the winding frame 4 is small, so the axial pressing force is compared to that of the insulated conductor 3 of each turn. As a result, the axial density of the insulated conductor 3 within the coil 9 can be made more uniform.
なお、押さえリング7a,7bおよび絶縁リン
グ6a,6bを取り付けること、最後に全体をプ
リプレグテープの硬化温度で加熱を行うことなど
は実施例1と同じである。 Note that the steps of attaching the presser rings 7a, 7b and the insulating rings 6a, 6b, and finally heating the whole at the curing temperature of the prepreg tape are the same as in Example 1.
以上は本発明の実施例であり、本発明はこれに
限定されるものではない。例えば実施例2では、
コイルを4ブロツクに分けたが、このブロツク数
はコイルの長さや巻き数に応じて適宜定めればよ
い。また上記各実施例では、筒形の巻枠の内周面
に絶縁導体を巻き込む場合を示したが、巻枠の外
周面に絶縁導体を巻き付ける場合でも、本発明は
同様に適用可能である。 The above are examples of the present invention, and the present invention is not limited thereto. For example, in Example 2,
Although the coil is divided into four blocks, the number of blocks may be determined as appropriate depending on the length of the coil and the number of turns. Further, in each of the above embodiments, the case where the insulated conductor is wound around the inner peripheral surface of the cylindrical winding frame is shown, but the present invention is similarly applicable to the case where the insulated conductor is wound around the outer peripheral surface of the winding frame.
以上説明したように本発明によれば、プリプレ
グテープを加熱硬化させる前に、プリプレグテー
プが軟化する温度での加熱と軸方向の加圧とを行
うようにしたので、軸方向加圧時にプリプレグテ
ープの樹脂の軟化、フローにより絶縁導体と巻枠
間の摩擦抵抗が小さくなつて、軸方向の加圧力が
コイルの端部、中間部にかかわらず均等に作用す
るようになり、したがつて筒形コイルの軸方向の
導体密度を均一にすることができ、均質な磁界が
得られるようになる利点がある。また軸方向の導
体密度が均一になれば、筒形コイルの幾何学的中
心と電磁気的中心の一致性が高まるから、筒形コ
イルを外部磁気通路部材の中に挿入して使用して
も、それに作用する電磁力は小さくて済み、破壊
の危険性を低減できる。また同時にコイル支持部
材の強度を下げることも可能となるので、支持部
材を伝わつて外部からの侵入する熱も少なくな
り、冷媒(液化ヘリウム等)の使用量を低減する
ことができる。
As explained above, according to the present invention, heating is performed at a temperature at which the prepreg tape becomes soft and pressure is applied in the axial direction before heating and hardening the prepreg tape. Due to the softening and flow of the resin, the frictional resistance between the insulated conductor and the winding frame becomes smaller, and the axial pressing force is applied evenly to both the ends and the middle of the coil, resulting in a cylindrical shape. This has the advantage that the conductor density in the axial direction of the coil can be made uniform, and a homogeneous magnetic field can be obtained. Furthermore, if the conductor density in the axial direction becomes uniform, the coincidence between the geometric center and the electromagnetic center of the cylindrical coil increases, so even if the cylindrical coil is inserted into an external magnetic path member, The electromagnetic force acting on it can be small, reducing the risk of destruction. At the same time, it is also possible to reduce the strength of the coil support member, so less heat is transmitted from the outside through the support member, and the amount of refrigerant (liquefied helium, etc.) used can be reduced.
第1図および第2図はそれぞれ本発明の方法に
より製造された超電導筒形コイルを示す断面図、
第3図はプリプレグテープで絶縁したコイルを軸
方向に加圧した場合における温度と変位量の関係
を示すグラフ、第4図は超電導筒形コイル形成用
の絶縁導体の一例を示す斜視図である。
1〜超電導線、2〜プリプレグテープ、3〜絶
縁導体、4〜巻枠、9〜コイル。
FIG. 1 and FIG. 2 are cross-sectional views showing superconducting cylindrical coils manufactured by the method of the present invention, respectively;
Fig. 3 is a graph showing the relationship between temperature and displacement when a coil insulated with prepreg tape is pressurized in the axial direction, and Fig. 4 is a perspective view showing an example of an insulated conductor for forming a superconducting cylindrical coil. . 1 - superconducting wire, 2 - prepreg tape, 3 - insulated conductor, 4 - winding frame, 9 - coil.
Claims (1)
てなる絶縁導体を、巻枠の内周面または外周面に
螺旋状に密巻きして筒形のコイルを形成し、その
後加熱して上記プリプレグテープを硬化させる超
電導筒形コイルの製造方法において、上記加熱硬
化を行う前に、上記コイルを、上記プリプレグテ
ープの硬化温度より十分低く、かつ上記プリプレ
グテープの樹脂が半硬化状態から軟化してフロー
できる温度に加熱しつつ軸方向に加圧して、コイ
ル内の導体配置を整えることを特徴とする超電導
筒形コイルの製造方法。1. An insulated conductor made by wrapping a prepreg tape around a superconducting wire to insulate it is tightly wound spirally around the inner or outer circumferential surface of a winding frame to form a cylindrical coil, and then heated to insulate the prepreg tape. In the method for manufacturing a superconducting cylindrical coil to be cured, before performing the heat curing, the coil is heated to a temperature sufficiently lower than the curing temperature of the prepreg tape and at a temperature at which the resin of the prepreg tape softens from a semi-cured state and flows. A method for manufacturing a superconducting cylindrical coil, which comprises heating the coil and applying pressure in the axial direction to adjust the conductor arrangement within the coil.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24055284A JPS61120405A (en) | 1984-11-16 | 1984-11-16 | Manufacture of super conductive cylindrical coil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24055284A JPS61120405A (en) | 1984-11-16 | 1984-11-16 | Manufacture of super conductive cylindrical coil |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61120405A JPS61120405A (en) | 1986-06-07 |
JPH0374010B2 true JPH0374010B2 (en) | 1991-11-25 |
Family
ID=17061221
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24055284A Granted JPS61120405A (en) | 1984-11-16 | 1984-11-16 | Manufacture of super conductive cylindrical coil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61120405A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013048125A (en) * | 2009-11-25 | 2013-03-07 | Fujikura Ltd | Superconducting coil and manufacturing method therefor |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59175101A (en) * | 1983-03-24 | 1984-10-03 | Fuji Electric Corp Res & Dev Ltd | Manufacture of superconductive coil |
-
1984
- 1984-11-16 JP JP24055284A patent/JPS61120405A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59175101A (en) * | 1983-03-24 | 1984-10-03 | Fuji Electric Corp Res & Dev Ltd | Manufacture of superconductive coil |
Also Published As
Publication number | Publication date |
---|---|
JPS61120405A (en) | 1986-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3465273A (en) | Toroidal inductor | |
US3828353A (en) | Integrally-wound antenna helix-coilform | |
US3737988A (en) | Method of bonding armature sub-assemblies | |
KR100897651B1 (en) | High temperature superconducting racetrack coil | |
KR100217550B1 (en) | Superconducting coil and manufacturing method thereof | |
US3760315A (en) | Electrical coil with spacing bands | |
JPH08172013A (en) | Superconducting coil, its manufacture, and superconducting wire | |
US4145804A (en) | Non-circular orthocyclic coil | |
JPH0374010B2 (en) | ||
JP3441734B2 (en) | Coil winding, transformer using the same, and method of manufacturing coil winding | |
US3470289A (en) | Method of manufacturing a coreless rotor | |
JPH07130531A (en) | Manufacture of superconducting coil | |
JPH11195539A (en) | Coil-type inductor and its manufacture | |
US4848135A (en) | Process for making a coil | |
US3953921A (en) | Tieless method for supporting end turns of a dynamoelectric machine | |
JPS614205A (en) | Manufacture of thin superconductive coil | |
JPH01179406A (en) | Manufacture of molded coil | |
JPH0235442B2 (en) | ||
JPH04241403A (en) | Manufacture of superconductive coil | |
US3895334A (en) | Electrical choke coil of the air core type | |
JP2917494B2 (en) | Insulation cap | |
JPH02843B2 (en) | ||
JPH04324605A (en) | Manufacture of superconducting coil | |
JPS6091616A (en) | Cast coil | |
JPS58207603A (en) | Resin-mold coil |