JP3682951B2 - Coil manufacturing method, coil component and manufacturing method thereof - Google Patents

Coil manufacturing method, coil component and manufacturing method thereof Download PDF

Info

Publication number
JP3682951B2
JP3682951B2 JP2000365743A JP2000365743A JP3682951B2 JP 3682951 B2 JP3682951 B2 JP 3682951B2 JP 2000365743 A JP2000365743 A JP 2000365743A JP 2000365743 A JP2000365743 A JP 2000365743A JP 3682951 B2 JP3682951 B2 JP 3682951B2
Authority
JP
Japan
Prior art keywords
core
coil
winding
manufacturing
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000365743A
Other languages
Japanese (ja)
Other versions
JP2002170729A (en
Inventor
克利 黒岩
裕之 樋口
高明 今井
栄一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2000365743A priority Critical patent/JP3682951B2/en
Publication of JP2002170729A publication Critical patent/JP2002170729A/en
Application granted granted Critical
Publication of JP3682951B2 publication Critical patent/JP3682951B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Coil Winding Methods And Apparatuses (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、コイル及びコイル部品の製造方法、特に、所謂アルファ巻のコイルの製造方法及びコイル部品の製造方法に関する。
【0002】
【従来の技術】
コイルの巻き方として所謂アルファ巻(α巻)がある。これは巻回された後の端子への引き出しが両端ともに巻線部の最外周から導出されるように工夫された巻き方である。このα巻については、例えば特開昭61−39835号公報(以下、公報1とする。)や特開昭64−32609号公報(以下、公報2とする。)等に記載されている。
【0003】
即ち、図11〜図13に示されるα巻の巻始めから巻終わりまでを示す図から分かるように、絶縁被覆導線の巻線2の中央付近2cを固定巻軸1に対して斜交いに当てて巻線の両端側2a、2bを互いに反対方向の矢印A、B方向に図12のようにα形状となるように巻回し、最終的に図13に示されるように前記巻軸1の軸方向に2段となる巻線部3を形成する巻き方である。
【0004】
而して、上記α巻を施したコイルでは、従来のように固定巻軸1側に引き出しのための折曲部がないので絶縁破壊や傷等が誘発されず強度及び熱劣化がなく、信頼性を向上することができ、また、巻軸1側から引出線を引き出すスペースが不要になるため、巻線部3の占有率が極めて良好となる。さらに折曲や溶接等の口出し部(端子接合部)の引出し作業が不要になるので生産性が向上するといったメリットがある。
【0005】
ところで、単体のコイル乃至コイル部品に使用されている巻線は、通常、断面が丸の絶縁被覆導線であるが、図14の断面図に示されるような断面形状が矩形で図15のように帯状の平角線5(リボン線とも称される。)も一部に採用されている。断面が丸の通常の巻線と異なり、上記平角線5は巻線部の隙間が殆ど無いように緻密に巻けるので、コイル断面積が大きく取れて直流抵抗Rdcを低く抑えることができ、その結果、直流重畳特性に優れたコイルができる。平角線5を用いたコイルの例として、前記公報2には上記平角線5をドラム形コアにα巻した電磁装置(チョークコイル等)が記載されている。
【0006】
また、コイルとして用いられる絶縁被覆導線に所謂自己融着導線と称されるものがある。この自己融着導線は例えば図14の平角線5の断面図に示されるように、導線10の周囲に絶縁被覆層9と融着材層8とを順次積層した断面構造であり、巻軸に巻回後に前記融着材層8を加熱または溶剤処理により溶融させ隣接する線同士を互いに接着した後、固化して巻線がばらけないようにコイル全体を一体に固められるようになっている。なお、上記絶縁被覆層9の絶縁被覆材料としてはポリウレタン、ポリエステル、ポリアミドイミド等が、融着材層8の融着材料にはポリアミド、エポキシが一般に使用されている。
【0007】
次に、従来のコイル乃至コイル部品における巻軸へのα巻の巻回方法について説明する。
【0008】
前記公報1には、巻線機を用いた2層コイルの製造方法が具体的に記載されている。概説すると、「線材が巻回された供給ボビンから1層分以上の線材を引き出して引き出しボビンに巻回し、上記線材の巻芯に接合した部分が徐々に一方の層から他方の層に移るように変位して上記巻芯に巻き付け、しかる後に上記供給ボビン及び引き出しボビンを互いに逆方向に巻芯に対し遊星回転させて供給ボビンからの線材と上記引き出しボビンからの線材とを互いに隣接して所定回数上記巻芯に巻回し、上記線材の両端を各層の外周に引き出して、少なくとも上記供給ボビンからの線材を切断する。」という2層コイルの製造方法である。
【0009】
【発明が解決しようとする課題】
上記公報1のような従来のα巻の巻線方法によるコイルの製造方法では、予め引き出しボビンにもプーリーやローラを介して線材(巻線)を貯えておく必要があり、その引き出しの際等には平角線によじれが生じないように慎重に扱わなければならず、コイル巻回工程での装置の複雑化、準備の手間の煩雑さが無視できない。然るに、簡単で迅速なα巻の巻線方法の実現が要請されるが、α巻の特殊性からその要請は未だ満たされていない。
【0010】
また、α巻の有効性は認められているものの、α巻を適用した閉磁路構造で高性能のコイル部品の低廉で安定した製造方法が未だ確立されておらず、これらの確立が急務となっている。
【0011】
本発明は、上記事情に鑑みてなされたものであり、α巻を適用した簡単で効率的な巻回方法による新規なコイルの製造方法及び前記巻回方法によるコイルを用いた新規な構造のコイル部品の製造方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明は、
(1)導線の周囲に絶縁被覆層と融着材層とを順次積層した断面が矩形の平角線を巻線材とし、前記平角線の両端を巻線機のクランプ部に各々クランプするとともに前記平角線の中央付近を巻軸に対して斜交いに当てて前記クランプ部が巻軸に近づくように移動させながら前記平角線の両端を互いに反対方向に巻回して前記巻軸の軸方向に2段となる巻線部を形成する工程と、前記クランプ部を通して前記巻軸に巻回した平角線の両端に通電加熱して巻線部を自己融着させる工程と、を有することを特徴とするコイルの製造方法を提供することにより上記目的を達成する。
【0013】
(2)また、断面が凹型の外装コアと巻芯部の一端に鍔部を備える断面がT形の巻芯コアを作る工程と、前記外装コアに端子電極を形成する工程と、上記(1)に記載のコイルの製造方法にて空芯コイルを製作する工程と、前記空芯コイルの両端末を折曲加工して端子接合部を形成する工程と、前記空芯コイルを前記外装コアに内装しつつ端子接合部を前記外装コアの端子電極に接合する工程と、前記巻芯コアの巻芯部を前記空芯コイルに挿通する工程と、前記巻芯コアと前記外装コアとを相互に接着固定する工程と、を有することを特徴とするコイル部品の製造方法を提供することにより、上記目的を達成する。
【0014】
(3)また、断面が凹型の外装コアと巻芯部の一端に鍔部を備える断面がT形の巻芯コアを作る工程と、前記外装コアに端子電極を形成する工程と、上記(1)に記載のコイルの製造方法にて前記巻芯コアの巻芯部にコイルを形成する工程と、前記コイルの両端末を折曲加工して端子接合部を形成する工程と、前記コイルの端子接合部を前記外装コアの端子電極に接合する工程と、前記コイルが形成された巻芯コアと前記外装コアとを相互に接着固定する工程と、を有することを特徴とするコイル部品の製造方法を提供することにより、上記目的を達成する。
【0015】
(4)さらに、上記(2)または(3)に記載のコイル部品の製造方法にて製造されたコイル部品を提供することにより、上記目的を達成する。
【0016】
【発明の実施の形態】
本発明に係るコイル及びコイル部品の製造方法の実施の形態を空芯コイルとチップ状インダクタを典型例として図面に基いて説明する。
【0017】
図1、図2は本発明で使用する巻線機の巻軸に対する巻始めと巻終わりの状態を示す模式図である。図3、図4は本発明で使用する巻線機のT形巻芯コアに対する巻始めと巻終わりの状態を示す模式図である。図5は本発明の製造方法で製造された平角線のα巻による空芯コイルの斜視図であり、図6は端子接合部を形成した空芯コイル完成品の斜視図である。
【0018】
先ず、本発明のコイルの製造方法の一例は、(a)導線の周囲に絶縁被覆層と融着材層とを順次積層した断面が矩形の平角線を巻線とし、(b)前記平角線の両端を巻線機の2つのフライヤーに設けたクランプ部にテンション(引っ張り力)を与えつつ各々クランプするとともに、(c)前記平角線の中央付近を巻軸に対して斜交いに当てて前記クランプ部が巻軸に近づくように移動させながら前記平角線の両端を互いに反対方向に巻回して前記巻軸の軸方向に2段となる巻線部を形成する工程(α巻工程)と、(d)前記クランプ部を通して前記巻軸に巻回した平角線の両端に通電加熱して巻線部を自己融着させる工程と、を有することを基本的特徴とする。
【0019】
上記(a)については、従来例で既述の自己融着導線の平角線5を用いている。上記(b)については、巻線となる平角線5は、巻線部プラス両端の引出線の長さよりも多少長い程度の所定長に予め切断されており、その両端は図1または図3に示されるように、適当な押止機構(挟持、握持、咬持等の機構)によって対向する2つのフライヤー11a、11bのクランパー12a、12bの先端のクランプ部13a、13bにクランプ(固定)される。
【0020】
上記(c)については、前記2つのフライヤー11a、11bは図示しないスプリング等によるテンション機構を備えるとともに巻軸1或いはT形巻芯コア28の中心軸回りに回転するアーム形状又はホイール形状であって、平角線5の両端を押止したクランパー12a、12b先端の各クランプ部13a、13bは図2または図4に示されるように回転とともに平角線5に適当なテンションを与えつつ巻軸1或いはT形巻芯コア28の巻芯に近づくように移動してα巻する。なお、上記のように2つのフライヤー11a、11bを対向させて巻回する巻回方法をダブルフライヤー方式と呼称する。
【0021】
上記(d)については、フライヤー11a、11b自身若しくは少なくともクランプ部13a、13bを導体金属素材として、巻回中又は巻回後に前記クランプ部を通して前記巻軸に巻回した平角線5の両端に電流を流して通電加熱し、巻線部3の融着材層8を溶融して自己融着させる。この点、前記クランプ部13a、13bの平角線5の絶縁被覆層9は通電前に予め剥いて導線10を露出させておくことが好ましい。
【0022】
上記(d)の工程の後、必要により(e)コイルの両端末を折曲加工して端子接合部を形成する工程を加える。例えば、前記(a)〜(d)の工程を経て製造された図5に示されるようなα巻された平角線5の空芯コイル20においては、その両端末21a、21bを折曲加工して、例えば図6に示されるようにそれぞれ端子接合部22a、22bを作る。この端子接合部22a、22bは適宜、半田メッキ等のメッキ処理をしてもよいし、後述のようにコイル部品の構成要素として端子に熱圧着接合するのであれば絶縁被覆層9が付いたままでもよい。
【0023】
なお、上記製造方法において、空芯コイル20の製造の場合は、前記巻軸1は巻線機の巻軸であり、ドラム形コアやT形コア等の巻芯コアに直接巻いてコイル部品を製造する場合は、図3の巻線機の巻始めの状態を示す模式図及び図4に示される巻線機の巻終わりの状態を示す模式図のT形巻芯コア28の場合のように当該T形巻芯コア28の巻芯が巻軸となって巻線機に適宜装着固定される。
【0024】
以上、詳述したコイルの製造方法においては、予め所定長さに切断した平角線5の両端をクランプしてダブルフライヤー方式で同時に巻回するので、従来のような引き出しボビンやプーリーのようなガイドが不要となって、巻線機の準備作業が極めて簡単になり、且つ平角線5のよじれの虞れも生じないので、効率的なコイル製造が可能になる。また、前記平角線5の両端をクランプして巻回するので、巻回中または巻回直後に直ちに通電加熱することで熱風や溶剤処理よりも比較的容易に自己融着させることができるといった利点がある。
【0025】
次に、上記コイルの製造方法で製造された空芯コイル20またはT形巻芯コア28等の磁性コアの巻芯に直接巻回したコイルを構成要素とするコイル部品の製造方法について図7、図9の分解斜視図と図8、図10の断面図を参照して説明する。
【0026】
先ず、図7に示されるような空芯コイル20を構成要素とするコイル部品30は、断面が凹型の円柱状のコイル収納部24を設けた外装コア25と巻芯部26の一端に鍔部27を備える断面がT形巻芯コア28を作る工程と、前記外装コア25に端子電極29a、29bを形成する工程と、前述のコイルの製造方法にて空芯コイル20を製作する工程と、前記空芯コイル20の両端末に端子接合部22a、22bを形成する工程と、前記空芯コイル20を前記外装コア25のコイル収納部24に内装しつつ端子接合部22a、22bを前記外装コア25の端子電極29a、29bに熱圧着やアーク溶接、半田付け等によって接合する工程と、前記T形巻芯コア28の巻芯部26を前記空芯コイル20の中心孔に挿通する工程と、T形巻芯コア28と前記外装コア25とをエポキシ系接着剤等の接着剤にて接着固定する工程と、を有する製造工程を順次経て製造される。その断面は図8の断面図のような構造となり、特性安定(磁気飽和を起きにくくして直流重畳特性を改善)のためのギャップGを設けつつ閉磁路構造となって、平角線5のα巻コイル20と相俟って極めて高性能のコイル部品30が出来上がる。このコイル部品30の製造方法では、空芯コイル20をコアとは別体に製造するため、組み立て工程、特に熱圧着等による端子接合工程が簡単になり且つ高信頼性が得られるメリットがある。
【0027】
次に、図9に示されるようなT形巻芯コア28を構成要素とするコイル部品40は、上記コイル部品30のように空芯コイル20を用いるのではなく、前記T形巻芯コア28に直接に平角線5をα巻した巻線部3を備えるコイル35を構成要素とする。以下、その製造方法は、断面が凹型の外装コア25と巻芯部の一端に鍔部を備える断面がT形のT形巻芯コア28を作る工程と、前記外装コア25に端子電極29a、29bを形成する工程と、前述のコイルの製造方法にて前記T形巻芯コア28の巻芯部26に巻線部3を巻回したコイル35を形成する工程と、前記コイル35の両端末を折曲加工して端子接合部22a、22bを形成する工程と、前記コイル35の端子接合部22a、22bを前記外装コア25の端子電極29a、29bに接合する工程と、前記コイル35が形成されたT形巻芯コア28と前記外装コア25とを相互に接着固定する工程と、を有する製造工程を経て製造される。その断面は図10の断面図のような構造となり、前記コイル部品30との違いは、構成要素のコイル35が初めより有芯コイルである点だけであるが、α巻された巻線部3がT形巻芯コア28の巻芯部26に密着しているので、一定寸法において隙間Sを設けざるを得ない空芯コイル20の場合よりも巻数を多くすることができ、磁気特性も一層良好となる。換言すれば、所定の特性を得るにつき、コイル部品をより小型化することができる。
【0028】
なお、上記コイル部品30、40はチョークコイル等のインダクタであり、使用する磁性コアは特に制限ないが、その巻芯コアの形状は上記T形に限らずI形でもよく、その材質も特に制限はないが、ニッケル亜鉛系フェライトやマンガン−亜鉛系フェライト等が好ましい。また、平角線5に厚さ0.05〜0.1mm、幅1mm程度のものを使用すれば一層の小型化が実現する。
【0029】
【発明の効果】
本発明に係るコイルの製造方法及びコイル部品とその製造方法は、上記のように構成されているため、
(1)請求項1記載のコイルの製造方法によれば、平角線のよじれの虞れも無く、α巻による空芯コイルまたは有芯コイルが極めて効率的に製造することができる。
【0030】
(2)請求項2に記載のコイル部品の製造方法及びこれによって製造されたコイル部品では、特に、空芯コイルの製造が効率的に行われ、且つ組み立て工程の簡略化が実現する。
【0031】
(3)請求項3のコイル部品の製造方法及びこれによって製造されたコイル部品では、特に、有芯コイルの製造が効率的に行われ、且つ磁気特性(直流重畳特性)に極めて優れたコイル部品となる。
【図面の簡単な説明】
【図1】本発明で使用する巻線機の巻軸に対する巻始めの状態を示す模式図である。
【図2】本発明で使用する巻線機の巻軸に対する巻終わりの状態を示す模式図である。
【図3】本発明で使用する巻線機のT形巻芯コアに対する巻始めの状態を示す模式図である。
【図4】本発明で使用する巻線機のT形巻芯コアに対する巻終わりの状態を示す模式図である。
【図5】本発明の製造方法で製造された平角線のα巻による空芯コイルの斜視図である。
【図6】本発明に係る端子接合部を形成した空芯コイル完成品の斜視図である。
【図7】本発明に係る空芯コイルを用いたコイル部品の分解斜視図である。
【図8】本発明に係る空芯コイルを用いたコイル部品の断面図である。
【図9】本発明に係る有芯コイルを用いたコイル部品の分解斜視図である。
【図10】本発明に係る有芯コイルを用いたコイル部品の断面図である。
【図11】コイルのα巻の巻始めを示す図である。
【図12】コイルのα巻の中途状態を示す図である。
【図13】コイルのα巻の巻終わりを示す図である。
【図14】自己融着導線である平角線の断面図である。
【図15】自己融着導線である平角線の形状を示す図である。
【符号の説明】
1 巻軸
2 巻線
3 巻線部
5 平角線
8 融着材層
9 絶縁被覆層
10 導線
11a、11b フライヤー
12a、12b クランパー
13a、13b クランプ部
20 空芯コイル
22a、22b 端子接合部
25 外装コア
26 巻芯部
27 鍔部
28 T形巻芯コア
29a、29b 端子電極
30、40 コイル部品
35 コイル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a coil and a coil component, and more particularly to a method for manufacturing a so-called alpha coil and a method for manufacturing a coil component.
[0002]
[Prior art]
There is a so-called alpha winding (α winding) as a method of winding the coil. This is a winding method devised so that the lead-out to the terminal after winding is led out from the outermost periphery of the winding part at both ends. The volume α is described in, for example, JP-A-61-39835 (hereinafter referred to as JP-A-1) and JP-A-64-32609 (hereinafter referred to as JP-A-2).
[0003]
That is, as can be seen from the drawings from the beginning to the end of winding of the α winding shown in FIGS. The two ends 2a and 2b of the winding are wound in the directions of arrows A and B in opposite directions to form an α shape as shown in FIG. 12, and finally the winding shaft 1 is wound as shown in FIG. This is a winding method for forming the winding portion 3 having two stages in the axial direction.
[0004]
Thus, in the coil with the α winding, since there is no bent portion for pulling out on the fixed winding shaft 1 side as in the prior art, dielectric breakdown and scratches are not induced, and there is no strength and thermal deterioration, and reliability. In addition, since the space for drawing out the lead wire from the winding shaft 1 side becomes unnecessary, the occupation ratio of the winding portion 3 becomes extremely good. Furthermore, there is a merit that productivity is improved because a lead-out operation (terminal joint portion) such as bending or welding is not required.
[0005]
By the way, the winding used for a single coil or coil component is usually an insulation coated conductor having a round cross section, but has a rectangular cross section as shown in the cross section of FIG. 14 as shown in FIG. A strip-shaped rectangular wire 5 (also referred to as a ribbon wire) is also adopted in part. Unlike a normal winding with a round cross section, the rectangular wire 5 can be densely wound so that there is almost no gap between the winding portions, so that the coil cross-sectional area can be increased and the DC resistance Rdc can be kept low. A coil with excellent direct current superposition characteristics can be obtained. As an example of a coil using the flat wire 5, the publication 2 describes an electromagnetic device (choke coil or the like) in which the flat wire 5 is wound around a drum-shaped core.
[0006]
In addition, there is a so-called self-bonding conductive wire among the insulation coated conductive wires used as coils. For example, as shown in the cross-sectional view of the rectangular wire 5 in FIG. 14, the self-bonding lead wire has a cross-sectional structure in which an insulating coating layer 9 and a fusing material layer 8 are sequentially laminated around the lead wire 10. After the winding, the fusing material layer 8 is melted by heating or solvent treatment, and adjacent wires are bonded to each other, and then solidified so that the whole coil is solidified so that the winding does not come apart. . In general, polyurethane, polyester, polyamide imide or the like is used as the insulating coating material of the insulating coating layer 9, and polyamide or epoxy is used as the bonding material of the bonding material layer 8.
[0007]
Next, a method of winding the α winding around the winding shaft in the conventional coil or coil component will be described.
[0008]
The publication 1 specifically describes a method for manufacturing a two-layer coil using a winding machine. In general, “One or more layers of wire rods are drawn out from the supply bobbin around which the wire rod is wound, wound around the pull-out bobbin, and the portion joined to the core of the wire rod gradually moves from one layer to the other. Then, the supply bobbin and the draw-out bobbin are rotated in a planetary direction with respect to the roll core in opposite directions so that the wire rod from the supply bobbin and the wire rod from the draw-out bobbin are adjacent to each other and predetermined. The wire is wound around the winding core a number of times, and both ends of the wire rod are pulled out to the outer periphery of each layer to cut at least the wire rod from the supply bobbin. ”
[0009]
[Problems to be solved by the invention]
In the conventional coil manufacturing method using the α winding method as described in the above publication 1, it is necessary to store the wire (winding) in advance in the drawer bobbin via a pulley or roller. Must be handled with care so as not to cause twisting of the rectangular wire, and the complexity of the apparatus and the troublesome preparation in the coil winding process cannot be ignored. However, although it is required to realize a simple and quick α winding method, the requirement has not yet been satisfied due to the particularity of the α winding.
[0010]
In addition, although the effectiveness of α winding is recognized, a low-cost and stable manufacturing method for high-performance coil parts with a closed magnetic circuit structure using α winding has not yet been established. ing.
[0011]
The present invention has been made in view of the above circumstances, and a novel coil manufacturing method by a simple and efficient winding method to which α winding is applied, and a coil having a novel structure using the coil by the winding method It aims at providing the manufacturing method of components.
[0012]
[Means for Solving the Problems]
The present invention
(1) A rectangular wire having a rectangular cross-section in which an insulating coating layer and a fusion material layer are sequentially laminated around a conducting wire is used as a winding material, and both ends of the flat wire are clamped to a clamp portion of a winding machine, and the rectangular The flat wire is wound in opposite directions while the clamp portion is moved obliquely with respect to the winding axis so that the center of the wire is obliquely inclined with respect to the winding axis, and 2 in the axial direction of the winding axis. A step of forming a stepped winding portion, and a step of energizing and heating both ends of a rectangular wire wound around the winding shaft through the clamp portion to self-fuse the winding portion. The above object is achieved by providing a method for manufacturing a coil.
[0013]
(2) In addition, a step of forming a core core having a T-shaped cross-section having a recess-shaped outer core and a collar portion at one end of the core, a step of forming a terminal electrode on the outer core, and (1 ), The step of bending the both ends of the air core coil to form a terminal joint, and the air core coil as the outer core. The step of bonding the terminal bonding portion to the terminal electrode of the outer core while interiorly, the step of inserting the core portion of the core core into the air core coil, and the core core and the outer core are mutually connected. The object is achieved by providing a method for manufacturing a coil component, comprising the step of bonding and fixing.
[0014]
(3) In addition, a step of forming a core core having a T-shaped cross section having a concave-shaped outer core and a flange at one end of the core, a step of forming a terminal electrode on the outer core, and the above (1) ), A step of forming a coil in the core portion of the core core, a step of bending both ends of the coil to form a terminal joint portion, and a terminal of the coil A method of manufacturing a coil component, comprising: a step of bonding a joint portion to a terminal electrode of the outer core; and a step of bonding and fixing the core core on which the coil is formed and the outer core to each other. By providing the above, the above object is achieved.
[0015]
(4) Further, the object is achieved by providing a coil component manufactured by the method for manufacturing a coil component according to (2) or (3).
[0016]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a coil and coil component manufacturing method according to the present invention will be described with reference to the drawings, taking an air-core coil and a chip-shaped inductor as typical examples.
[0017]
FIG. 1 and FIG. 2 are schematic views showing the state of winding start and winding end with respect to the winding axis of the winding machine used in the present invention. FIG. 3 and FIG. 4 are schematic views showing the winding start and winding end states of the T-shaped core core of the winding machine used in the present invention. FIG. 5 is a perspective view of an air-core coil by α winding of a rectangular wire manufactured by the manufacturing method of the present invention, and FIG. 6 is a perspective view of a completed air-core coil in which a terminal joint portion is formed.
[0018]
First, an example of a method of manufacturing a coil according to the present invention is as follows: (a) a rectangular wire having a rectangular cross section in which an insulating coating layer and a fusion material layer are sequentially laminated around a conducting wire; and (b) the rectangular wire. Are clamped while applying tension (pulling force) to the clamp portions provided on the two flyers of the winding machine, and (c) the center of the rectangular wire is obliquely applied to the winding axis. A step of forming a winding portion having two stages in the axial direction of the winding shaft by winding both ends of the rectangular wire in opposite directions while moving the clamp portion so as to approach the winding shaft (α winding step); And (d) having a step of energizing and heating both ends of a rectangular wire wound around the winding shaft through the clamp portion to self-fuse the winding portion.
[0019]
As for (a), the rectangular wire 5 of the self-bonding conductor described above in the conventional example is used. As for (b), the flat wire 5 serving as the winding is cut in advance to a predetermined length that is slightly longer than the length of the lead wire at the winding portion plus both ends, and both ends thereof are shown in FIG. 1 or FIG. As shown in the figure, it is clamped (fixed) to the clamp portions 13a and 13b at the tips of the clampers 12a and 12b of the two flyers 11a and 11b facing each other by an appropriate pressing mechanism (a mechanism such as clamping, gripping, and biting). The
[0020]
With regard to (c), the two flyers 11a and 11b are provided with a tension mechanism such as a spring (not shown) and have an arm shape or a wheel shape that rotates around the central axis of the winding shaft 1 or the T-shaped core core 28. The clamp portions 13a and 13b at the tips of the clampers 12a and 12b that hold both ends of the flat wire 5 are rotated while applying an appropriate tension to the flat wire 5 with rotation as shown in FIG. It moves so that it may approach the core of the shape core core 28, and alpha winding is carried out. The winding method in which the two flyers 11a and 11b are wound facing each other as described above is referred to as a double flyer method.
[0021]
As for (d) above, current is applied to both ends of the flat wire 5 wound around the winding shaft through the clamp portion during or after winding using the flyer 11a, 11b itself or at least the clamp portions 13a, 13b as a conductive metal material. Is flown and heated, and the fusion material layer 8 of the winding portion 3 is melted and self-fused. In this regard, it is preferable that the insulating coating layer 9 of the flat wire 5 of the clamp portions 13a and 13b is peeled off in advance to expose the conductive wire 10 before energization.
[0022]
After the step (d), if necessary, (e) a step of bending both ends of the coil to form a terminal joint is added. For example, in the air-core coil 20 of the α-wound rectangular wire 5 as shown in FIG. 5 manufactured through the steps (a) to (d), both ends 21a and 21b are bent. Thus, for example, as shown in FIG. 6, terminal joint portions 22a and 22b are formed. The terminal joint portions 22a and 22b may be appropriately subjected to a plating process such as solder plating, or the insulation coating layer 9 remains attached if thermocompression bonding is performed to a terminal as a component of a coil component as will be described later. But you can.
[0023]
In the above manufacturing method, when the air-core coil 20 is manufactured, the winding shaft 1 is a winding shaft of a winding machine, and a coil component is wound directly on a winding core such as a drum core or a T core. In the case of manufacturing, as in the case of the T-shaped core core 28 of the schematic diagram showing the winding start state of the winding machine of FIG. 3 and the schematic diagram showing the winding end state of the winding machine shown in FIG. The core of the T-shaped core core 28 becomes a winding shaft and is appropriately mounted and fixed to the winding machine.
[0024]
In the coil manufacturing method described in detail above, both ends of the rectangular wire 5 cut in advance to a predetermined length are clamped and simultaneously wound by the double flyer method, so that a guide such as a conventional pull-out bobbin or pulley is used. Is not required, and the preparatory work for the winding machine becomes very simple, and there is no fear of kinking of the flat wire 5, so that efficient coil production becomes possible. In addition, since both ends of the rectangular wire 5 are clamped and wound, it is possible to self-fuse relatively easily than hot air or solvent treatment by immediately energizing and heating during winding or immediately after winding. There is.
[0025]
Next, FIG. 7 shows a method for manufacturing a coil component including a coil wound directly on a core of a magnetic core such as the air core coil 20 or the T-shaped core 28 manufactured by the above-described coil manufacturing method. This will be described with reference to the exploded perspective view of FIG. 9 and the cross-sectional views of FIGS.
[0026]
First, a coil component 30 having an air-core coil 20 as a constituent element as shown in FIG. 7 has a collar portion at one end of an outer core 25 and a core portion 26 provided with a cylindrical coil storage portion 24 having a concave cross section. A step of forming a T-shaped core core 28 having a cross section including 27, a step of forming terminal electrodes 29a and 29b on the outer core 25, a step of manufacturing the air-core coil 20 by the above-described coil manufacturing method, The step of forming terminal joint portions 22a and 22b at both ends of the air core coil 20, and the terminal joint portions 22a and 22b are disposed in the outer core while the air core coil 20 is housed in the coil housing portion 24 of the outer core 25. Joining the 25 terminal electrodes 29a and 29b by thermocompression bonding, arc welding, soldering, etc., inserting the core portion 26 of the T-shaped core core 28 into the center hole of the air-core coil 20, and T-shaped core core A step of bonding and fixing 8 and the said outer core 25 by an adhesive such as epoxy adhesive, is manufactured by sequentially through the manufacturing process with. The cross section becomes a structure as shown in the cross section of FIG. 8, and a closed magnetic circuit structure is provided while providing a gap G for stabilizing characteristics (improves magnetic saturation and improves DC superimposition characteristics). Combined with the wound coil 20, an extremely high performance coil component 30 is completed. In this method of manufacturing the coil component 30, since the air-core coil 20 is manufactured separately from the core, there is an advantage that the assembling process, particularly the terminal joining process by thermocompression bonding, is simplified and high reliability is obtained.
[0027]
Next, the coil component 40 having the T-shaped core core 28 as a constituent element as shown in FIG. 9 does not use the air-core coil 20 unlike the coil component 30, but the T-shaped core core 28. A coil 35 including a winding portion 3 in which a flat wire 5 is directly wound with α is used as a constituent element. Hereinafter, the manufacturing method includes a step of forming a T-shaped core core 28 having a T-shaped cross-section having a recess-shaped outer core 25 and a flange portion at one end of the core portion, a terminal electrode 29a on the outer core 25, 29b, a step of forming a coil 35 in which the winding portion 3 is wound around the core portion 26 of the T-shaped core core 28 by the above-described coil manufacturing method, and both ends of the coil 35 Forming the terminal joint portions 22a and 22b, joining the terminal joint portions 22a and 22b of the coil 35 to the terminal electrodes 29a and 29b of the outer core 25, and forming the coil 35. The T-shaped core core 28 and the outer core 25 are bonded and fixed to each other. The cross section has a structure as shown in the cross sectional view of FIG. 10. The only difference from the coil component 30 is that the constituent coil 35 is a cored coil from the beginning. Is closely attached to the core portion 26 of the T-shaped core core 28, so that the number of turns can be increased as compared with the case of the air-core coil 20 in which a gap S must be provided in a certain dimension, and the magnetic characteristics are further improved. It becomes good. In other words, the coil component can be further downsized to obtain predetermined characteristics.
[0028]
The coil components 30 and 40 are inductors such as choke coils, and the magnetic core to be used is not particularly limited. However, the shape of the winding core is not limited to the T shape but may be an I shape, and the material is also particularly limited. However, nickel zinc ferrite and manganese-zinc ferrite are preferred. Further, if a rectangular wire 5 having a thickness of 0.05 to 0.1 mm and a width of about 1 mm is used, further miniaturization can be realized.
[0029]
【The invention's effect】
Since the coil manufacturing method and the coil component and the manufacturing method thereof according to the present invention are configured as described above,
(1) According to the coil manufacturing method of the first aspect, there is no fear of twisting of the rectangular wire, and an air-core coil or a cored coil by α winding can be manufactured very efficiently.
[0030]
(2) In the coil component manufacturing method according to the second aspect and the coil component manufactured thereby, in particular, the air-core coil is efficiently manufactured and the assembly process is simplified.
[0031]
(3) In the method of manufacturing a coil component according to claim 3 and the coil component manufactured thereby, the coil component in which the cored coil is manufactured efficiently and has excellent magnetic characteristics (DC superimposition characteristics). It becomes.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a winding start state with respect to a winding axis of a winding machine used in the present invention.
FIG. 2 is a schematic view showing a winding end state with respect to a winding axis of a winding machine used in the present invention.
FIG. 3 is a schematic view showing a winding start state with respect to the T-shaped core core of the winding machine used in the present invention.
FIG. 4 is a schematic diagram showing a winding end state for a T-shaped core core of a winding machine used in the present invention.
FIG. 5 is a perspective view of an air-core coil by α winding of a rectangular wire manufactured by the manufacturing method of the present invention.
FIG. 6 is a perspective view of a completed air-core coil formed with a terminal joint according to the present invention.
FIG. 7 is an exploded perspective view of a coil component using an air-core coil according to the present invention.
FIG. 8 is a cross-sectional view of a coil component using an air-core coil according to the present invention.
FIG. 9 is an exploded perspective view of a coil component using a cored coil according to the present invention.
FIG. 10 is a cross-sectional view of a coil component using a cored coil according to the present invention.
FIG. 11 is a view showing the start of winding of α winding of a coil.
FIG. 12 is a diagram showing an intermediate state of α winding of the coil.
FIG. 13 is a diagram showing the end of winding of the α winding of the coil.
FIG. 14 is a cross-sectional view of a flat wire that is a self-bonding lead wire.
FIG. 15 is a diagram showing the shape of a flat wire that is a self-bonding lead wire.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Winding axis 2 Winding 3 Winding part 5 Flat wire 8 Fusion material layer 9 Insulation coating layer 10 Conductor 11a, 11b Flyer 12a, 12b Clamper 13a, 13b Clamp part 20 Air-core coil 22a, 22b Terminal junction part 25 Outer core 26 winding core part 27 collar part 28 T-shaped cores 29a and 29b terminal electrodes 30 and 40 coil parts 35 coils

Claims (4)

導線の周囲に絶縁被覆層と融着材層とを順次積層した断面が矩形の平角線を巻線材とし、前記平角線の両端を巻線機のクランプ部に各々クランプするとともに前記平角線の中央付近を巻軸に対して斜交いに当てて前記クランプ部が巻軸に近づくように移動させながら前記平角線の両端を互いに反対方向に巻回して前記巻軸の軸方向に2段となる巻線部を形成する工程と、前記クランプ部を通して前記巻軸に巻回した平角線の両端に通電加熱して巻線部を自己融着させる工程と、を有することを特徴とするコイルの製造方法。A rectangular wire having a rectangular cross section in which an insulating coating layer and a fusion material layer are sequentially laminated around the conducting wire is used as a winding material, and both ends of the flat wire are clamped to a clamp portion of a winding machine, and the center of the rectangular wire is Two ends of the rectangular wire are wound in opposite directions while the vicinity is obliquely applied to the winding shaft and the clamp portion is moved so as to approach the winding shaft, thereby forming two steps in the axial direction of the winding shaft. A coil manufacturing method comprising: a step of forming a winding portion; and a step of energizing and heating both ends of a rectangular wire wound around the winding shaft through the clamp portion to self-fuse the winding portion. Method. 断面が凹型の外装コアと巻芯部の一端に鍔部を備える断面がT形の巻芯コアを作る工程と、前記外装コアに端子電極を形成する工程と、請求項1に記載のコイルの製造方法にて空芯コイルを製作する工程と、前記空芯コイルの両端末を折曲加工して端子接合部を形成する工程と、前記空芯コイルを前記外装コアに内装しつつ端子接合部を前記外装コアの端子電極に接合する工程と、前記巻芯コアの巻芯部を前記空芯コイルに挿通する工程と、前記巻芯コアと前記外装コアとを相互に接着固定する工程と、を有することを特徴とするコイル部品の製造方法。A step of forming a core core having a T-shaped cross-section having a concave-shaped outer core and a flange at one end of the core, a step of forming a terminal electrode on the outer core, and the coil according to claim 1. A step of manufacturing an air-core coil by a manufacturing method, a step of bending both ends of the air-core coil to form a terminal joint, and a terminal joint while the air-core coil is built in the exterior core Bonding to the terminal electrode of the outer core, inserting the core portion of the core core into the air core coil, and bonding and fixing the core core and the outer core to each other; The manufacturing method of the coil components characterized by having. 断面が凹型の外装コアと巻芯部の一端に鍔部を備える断面がT形の巻芯コアを作る工程と、前記外装コアに端子電極を形成する工程と、請求項1に記載のコイルの製造方法にて前記巻芯コアの巻芯部にコイルを形成する工程と、前記コイルの両端末を折曲加工して端子接合部を形成する工程と、前記コイルの端子接合部を前記外装コアの端子電極に接合する工程と、前記コイルが形成された巻芯コアと前記外装コアとを相互に接着固定する工程と、を有することを特徴とするコイル部品の製造方法。A step of forming a core core having a T-shaped cross-section having a concave-shaped outer core and a flange at one end of the core, a step of forming a terminal electrode on the outer core, and the coil according to claim 1. A step of forming a coil in the core portion of the core core by a manufacturing method; a step of bending both ends of the coil to form a terminal joint portion; and a terminal joint portion of the coil as the outer core. A method of manufacturing a coil component, comprising: a step of bonding to the terminal electrode; and a step of bonding and fixing the core core on which the coil is formed and the exterior core to each other. 請求項2または請求項3に記載のコイル部品の製造方法にて製造されたコイル部品。A coil component manufactured by the method for manufacturing a coil component according to claim 2.
JP2000365743A 2000-11-30 2000-11-30 Coil manufacturing method, coil component and manufacturing method thereof Expired - Fee Related JP3682951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000365743A JP3682951B2 (en) 2000-11-30 2000-11-30 Coil manufacturing method, coil component and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000365743A JP3682951B2 (en) 2000-11-30 2000-11-30 Coil manufacturing method, coil component and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002170729A JP2002170729A (en) 2002-06-14
JP3682951B2 true JP3682951B2 (en) 2005-08-17

Family

ID=18836461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000365743A Expired - Fee Related JP3682951B2 (en) 2000-11-30 2000-11-30 Coil manufacturing method, coil component and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3682951B2 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005142459A (en) * 2003-11-10 2005-06-02 Toko Inc Surface mounted inductor
JP4550469B2 (en) * 2004-04-13 2010-09-22 コーセル株式会社 Inductor manufacturing method
JP4517979B2 (en) * 2005-07-20 2010-08-04 東洋電装株式会社 Edgewise coil winding device
JP2008041818A (en) * 2006-08-03 2008-02-21 Nidec Sankyo Corp Air-core coil, motor, and manufacturing method of the air-core coil
JP2008112881A (en) * 2006-10-31 2008-05-15 Densei Lambda Kk Coil, and its manufacturing method
JP2009182121A (en) * 2008-01-30 2009-08-13 Murata Mfg Co Ltd Coil, and method of winding coil wire
JP4981727B2 (en) * 2008-03-21 2012-07-25 株式会社神戸製鋼所 Superconducting coil winding method, superconducting coil winding machine and superconducting coil
JP5136204B2 (en) * 2008-05-21 2013-02-06 トヨタ自動車株式会社 Winding method and winding apparatus
JP4813525B2 (en) * 2008-07-30 2011-11-09 延行 小林 Manufacturing method of medical coil
JP5534442B2 (en) * 2009-10-16 2014-07-02 スミダコーポレーション株式会社 coil
JP2014033037A (en) * 2012-08-02 2014-02-20 Denso Corp Reactor and manufacturing method of coil used in the same
JP6024905B2 (en) * 2013-01-08 2016-11-16 トヨタ自動車株式会社 Winding processing method and processing apparatus
KR101501922B1 (en) * 2013-10-31 2015-03-12 코아시스 (주) Apparatus for manufacturing of air-core coil
CN103996528B (en) * 2014-05-23 2017-02-01 芜湖市卓亚电气有限公司 Manufacturing method of transformer winding
JP6287761B2 (en) * 2014-10-31 2018-03-07 株式会社村田製作所 Surface mount inductor and manufacturing method thereof
JP6299560B2 (en) * 2014-10-31 2018-03-28 株式会社村田製作所 Surface mount inductor and manufacturing method thereof
JP6287762B2 (en) * 2014-10-31 2018-03-07 株式会社村田製作所 Manufacturing method of surface mount inductor
JP6299567B2 (en) * 2014-11-21 2018-03-28 株式会社村田製作所 Surface mount inductor and manufacturing method thereof
JP6287819B2 (en) * 2014-12-26 2018-03-07 株式会社村田製作所 Surface mount inductor and manufacturing method thereof
JP6287821B2 (en) * 2014-12-26 2018-03-07 株式会社村田製作所 Surface mount inductor and manufacturing method thereof
JP6355592B2 (en) * 2015-05-20 2018-07-11 三映電子工業株式会社 Resin mold coil and manufacturing method thereof
KR101825222B1 (en) * 2015-10-21 2018-03-14 주식회사 에이텀 protect coil and transformer using the same
EP3625810B1 (en) 2017-05-15 2021-06-09 Comsys AB Alpha-coil with transposition of the multi-filament conductor
JPWO2021176773A1 (en) * 2020-03-05 2021-09-10
CN112040378B (en) * 2020-09-02 2021-08-31 瑞声新能源发展(常州)有限公司科教城分公司 Loudspeaker, voice coil manufacturing method and coil winding device
CN112053846B (en) * 2020-09-02 2021-09-28 瑞声新能源发展(常州)有限公司科教城分公司 Coil winding device
CN112040377B (en) * 2020-09-02 2021-08-31 瑞声新能源发展(常州)有限公司科教城分公司 Loudspeaker, voice coil manufacturing method and coil winding device
CN116072420B (en) * 2023-03-08 2023-10-20 珠海市日创工业自动化设备有限公司 Winding machine and winding method for pin-free I-shaped framework

Also Published As

Publication number Publication date
JP2002170729A (en) 2002-06-14

Similar Documents

Publication Publication Date Title
JP3682951B2 (en) Coil manufacturing method, coil component and manufacturing method thereof
US7113067B2 (en) Wire-wound coil and method for manufacturing the same
JPH04128057U (en) Ribbon coil for armature
JP6004568B2 (en) Chip coil manufacturing method
JP3562052B2 (en) Manufacturing method of solenoid for magnet switch
JP6369577B2 (en) Coil device
JP4343871B2 (en) Coil parts
JPH07320961A (en) Surface-mounting type transformer
US6819213B2 (en) Inductive device
JPS62147714A (en) Manufacture of inductor with toroidal core
JPS63209443A (en) Winding coil of motor and its end processing method
JPH04317534A (en) Brushless motor
JP4323710B2 (en) Leadless coil
JP5879769B2 (en) Winding type electronic component manufacturing method and winding type electronic component
JPH0720890Y2 (en) Air core coil
JPH01110714A (en) Small-sized transformer coil
JPH0590035A (en) Built-up type choke coil
AU2003205309A1 (en) Inductive device
JP2600131B2 (en) Voice coil for speaker
JPH10248217A (en) Method for processing terminal of coil
JPH0611309U (en) coil
JPH0537448Y2 (en)
JP2000030960A (en) Manufacture of coil
JPS5941158A (en) Manufacture of coil unit for coreless type armature
JPH0611310U (en) coil

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050523

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090603

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees