JPH06235855A - Focus detector - Google Patents

Focus detector

Info

Publication number
JPH06235855A
JPH06235855A JP2413993A JP2413993A JPH06235855A JP H06235855 A JPH06235855 A JP H06235855A JP 2413993 A JP2413993 A JP 2413993A JP 2413993 A JP2413993 A JP 2413993A JP H06235855 A JPH06235855 A JP H06235855A
Authority
JP
Japan
Prior art keywords
light
reflecting
focus detection
lens
different
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2413993A
Other languages
Japanese (ja)
Other versions
JP3359682B2 (en
Inventor
Hisashi Goto
尚志 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP2413993A priority Critical patent/JP3359682B2/en
Publication of JPH06235855A publication Critical patent/JPH06235855A/en
Application granted granted Critical
Publication of JP3359682B2 publication Critical patent/JP3359682B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To satisfy both of the enlargement of a focusing range and the improvement of focusing accuracy and also to make the structure compact by making a direction of reflection light with respect to incident light different from at least one of the other reflection faces. CONSTITUTION:Plural luminous fluxes transmitted through different areas in a photographic lens 11 are received by a photoelectric conversion means through reflecting members 14a and 14b, brightness diaphragms 15a and 15b and image reforming lenses 16a and 16b, and such the focus detection that the phase difference between plural luminous fluxes is detected based on the light intensity distribution on the light receiving face of the photoelectric conversion means is carried out. At least one of the reflecting faces of the reflecting members 14a and 14b is arranged on a plane different from the other one reflecting face, that is, arranged so that the reflecting faces may not be on the same plane, then, the direction of the reflecting light with respect to the incident light is made different from at least one of the other reflecting faces. Thus, the focusing accuracy is improved, the focusing range is enlarged, and also, the structure of the device can be made compact.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、カメラの焦点検出装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a focus detecting device for a camera.

【0002】[0002]

【従来の技術】撮影レンズによって形成される像を再結
像光学系により二つに分割して光電変換素子列(受光素
子列)上に再形成し、その二像の位置ずれを検出するこ
とによって合焦検出を行う焦点検出光学系は、これまで
に数多く提案されており、例えば特開昭55−1180
19号公報,特開昭58−106511号公報及び特開
昭60−32012号公報に記載のものがある。かかる
焦点検出光学系における、測距範囲の広さと合焦精度と
の関係は以下のようになる。
2. Description of the Related Art An image formed by a taking lens is divided into two by a re-imaging optical system and re-formed on a photoelectric conversion element array (light receiving element array), and a positional deviation between the two images is detected. A number of focus detection optical systems for performing focus detection have been proposed so far, for example, Japanese Patent Laid-Open No. 55-1180.
19, JP-A-58-106511 and JP-A-60-32012. The relationship between the width of the distance measuring range and the focusing accuracy in the focus detection optical system is as follows.

【0003】即ち、受光素子列の各受光素子は通常等間
隔で配列しているが、その間隔を1ピッチとすると、合
焦精度は1ピッチに対する相対尺度として表される。合
焦精度を1ピッチのM分の1(Mは定数)とし、像面に
おける1ピッチあたりのデフォーカス量をαとすると、
像面における合焦精度Δは、 Δ = ±(1/M)・α (1) である。ここで、Δが大きいほど合焦精度は悪く、Δが
小さいほど合焦精度は良い。また、受光素子の数をN個
とすると、像面における測距可能なデフォーカス範囲Σ
は、 Σ = |±N・α| (2) である。ここで、αを大きくすると測距範囲Σは大きく
なるが、合焦精度Δは劣化する。これとは逆に、αを小
さくすると合焦精度Δは良くなるが、測距範囲Σは小さ
くなってしまう。つまり、合焦精度Δを劣化させず且つ
測距範囲Σを大きくするには、受光素子数Nを大きくす
れば良いことがわかる。
That is, although the respective light receiving elements of the light receiving element array are normally arranged at equal intervals, if the interval is 1 pitch, the focusing accuracy is expressed as a relative scale with respect to 1 pitch. When the focusing accuracy is 1 / M of one pitch (M is a constant), and the defocus amount per pitch on the image plane is α,
The focusing accuracy Δ on the image plane is Δ = ± (1 / M) · α (1). Here, the larger Δ is, the worse the focusing accuracy is, and the smaller Δ is, the better the focusing accuracy is. Further, when the number of light receiving elements is N, the defocus range Σ on the image plane where distance measurement is possible
Is Σ = | ± N · α | (2). Here, if α is increased, the range Σ is increased, but the focusing accuracy Δ is deteriorated. On the contrary, if α is reduced, the focusing accuracy Δ is improved, but the distance measuring range Σ is reduced. In other words, it can be understood that the number N of light receiving elements should be increased in order to increase the distance measuring range Σ without degrading the focusing accuracy Δ.

【0004】しかし、受光素子数Nが大きいと、受光素
子列の全長が長くなり、構造上の不都合を生じさせる。
図5は、上述の関係を有する焦点検出光学系の一例を示
しており、図中、1は撮影レンズ、2は予定結像面、3
はコンデンサレンズ、5は開口5a,5bを有する明る
さ絞り、6a,6bは再結像レンズ、7a,7bは受光
素子列、Oはコンデンサレンズ3の光軸である。図5よ
り明らかなように、実線で示す長さの受光素子列7a,
7bの受光素子の数を増やした場合、夫々の受光素子列
は点線で示す長さまで全長が伸長し、斜線で示す部分で
は受光素子列同士が干渉し、焦点検出光学系が構成でき
なくなる。そして、受光素子列同士が干渉しないよう
に、受光素子列7a,7bの夫々の中心C7a,C7bの間
隔Lを拡げると焦点検出光学系自体の大型化を余儀なく
される。
However, if the number N of light receiving elements is large, the total length of the light receiving element array becomes long, which causes structural inconvenience.
FIG. 5 shows an example of the focus detection optical system having the above-mentioned relationship. In the figure, 1 is a taking lens, 2 is a planned imaging plane, and 3 is
Is a condenser lens, 5 is an aperture stop having apertures 5a and 5b, 6a and 6b are re-imaging lenses, 7a and 7b are light receiving element arrays, and O is an optical axis of the condenser lens 3. As is clear from FIG. 5, the light receiving element array 7a having the length shown by the solid line,
When the number of light receiving elements 7b is increased, the entire length of each light receiving element array extends to the length shown by the dotted line, and the light receiving element arrays interfere with each other at the shaded portion, and the focus detection optical system cannot be configured. If the distance L between the centers C 7a and C 7b of the light-receiving element rows 7a and 7b is increased so that the light-receiving element rows do not interfere with each other, the focus detection optical system itself must be upsized.

【0005】このような、全体の構造をコンパクトに保
ちつつ、測距範囲を拡大し且つ合焦精度を向上させると
いう要請を満足する焦点検出光学系としては、例えば特
開昭52−95221号公報,特開昭59−42507
号公報及び特開平2−253222号公報に記載のもの
がある。図6及び図7は、夫々特開平2−253222
号公報に記載の焦点検出光学系の概略構成を示す図及び
その斜視図である。図中、8a,8bはコンデンサレン
ズ3と明るさ絞り5の開口5a,5bで決定される焦点
検出光学系の入射瞳、また、図6中の受光素子列7a,
7bはその長手方向が紙面に対して垂直となるように配
置されている。
As a focus detecting optical system which satisfies the demands of expanding the range-finding range and improving focusing accuracy while keeping the overall structure compact, for example, Japanese Patent Laid-Open No. 52-95221. , JP-A-59-42507
JP-A-2-253222 and JP-A-2-253222. FIG. 6 and FIG. 7 respectively show JP-A-2-253222.
FIG. 3 is a diagram showing a schematic configuration of a focus detection optical system described in Japanese Patent Publication and a perspective view thereof. In the figure, 8a and 8b are the entrance pupils of the focus detection optical system determined by the condenser lens 3 and the apertures 5a and 5b of the aperture stop 5, and the light receiving element arrays 7a and 7a in FIG.
7b is arranged such that its longitudinal direction is perpendicular to the paper surface.

【0006】図において、合焦すべき物体を発した光束
は、撮影レンズ1を通過して予定結像面2に達し、撮影
レンズ1が合焦状態の場合、予定結像面2上に結像す
る。予定結像面2を通過した光束はコンデンサレンズ3
で瞳をリレーされ、明るさ絞り5の開口5a,5bを通
過して再結像レンズ6a,6bに入射する。再結像レン
ズ6a,6bは、その面頂が夫々光軸Oと予定結像面2
に結像する入射瞳8a,8bの夫々の主光線とを含む図
示されない平面(図6において光軸Oを含む紙面に対し
て垂直な平面)に関し対称となる位置に配置されてお
り、これら再結像レンズ6a,6bに入射した光束は、
同じく図示されない平面に関して対称となる位置に平行
に配置された受光素子列7a,7bに導かれるようにな
っている。このように構成することにより、焦点検出光
学系を大きくすることなく、受光素子列の全長を長くす
ることができる。
In the figure, a light beam emitted from an object to be focused passes through the photographing lens 1 and reaches a planned image forming surface 2, and when the photographing lens 1 is in focus, it is formed on the planned image forming surface 2. Image. The light flux that has passed through the planned image plane 2 is a condenser lens 3
Then, the pupil is relayed, passes through the openings 5a and 5b of the aperture stop 5, and enters the re-imaging lenses 6a and 6b. The re-imaging lenses 6a and 6b have their respective tops on the optical axis O and the planned imaging plane 2 respectively.
Are arranged at positions symmetrical with respect to a plane (not shown) including the respective principal rays of the entrance pupils 8a and 8b that form an image on the plane (a plane perpendicular to the paper surface including the optical axis O in FIG. 6). The light flux incident on the imaging lenses 6a and 6b is
Similarly, the light is guided to the light receiving element rows 7a and 7b which are arranged in parallel at positions symmetrical with respect to a plane not shown. With this configuration, the total length of the light receiving element array can be increased without increasing the size of the focus detection optical system.

【0007】[0007]

【発明が解決しようとする課題】然し乍ら、図6及び図
7に示す構成では、瞳の分割方向に垂直な成分で二つの
光束が受ける屈折作用が異なり、また、光束が再結像レ
ンズの光軸外から入射するため収差が発生し易くなると
共に、受光素子列の伸長化に伴って収差補正範囲が拡が
り、かかる収差の補正が困難になるという問題があっ
た。この場合、特に重要な測距範囲の中心の収差が異な
ると、これが合焦精度の劣化要因となり、却って合焦精
度を劣化させてしまうという問題があった。また、合焦
精度の劣化要因は、この他にも、部品の製作誤差、組立
誤差、位相差の算出誤差等があるが、上記従来技術の構
成ではこれらの要因を少なくする或いは抑えることはで
きなかった。
However, in the configuration shown in FIGS. 6 and 7, the two light beams have different refraction effects due to the component perpendicular to the pupil division direction, and the light beams are reflected by the re-imaging lens. Since the light enters from the off-axis, aberrations are likely to occur, and the aberration correction range expands as the light receiving element array expands, which makes it difficult to correct the aberrations. In this case, if the aberration at the center of a particularly important range-finding range is different, this becomes a factor of degrading the focusing accuracy, which rather deteriorates the focusing accuracy. In addition to these factors, there are other manufacturing factors such as component manufacturing error, assembly error, and phase difference calculation error. However, these factors cannot be reduced or suppressed in the configuration of the prior art described above. There wasn't.

【0008】本発明は、従来の技術の有するこのような
問題点に鑑みてなされたものであり、その目的とすると
ころは、測距範囲の拡大と合焦精度の向上の両方を同時
に満足し、且つ構造がコンパクトな焦点検出装置を提供
することにある。
The present invention has been made in view of the above problems of the prior art, and an object of the present invention is to satisfy both the expansion of the distance measuring range and the improvement of focusing accuracy at the same time. And to provide a focus detection device having a compact structure.

【0009】[0009]

【課題を解決するための手段及び作用】本発明の焦点検
出装置は、合焦精度を確保し得る間隔を以て並ぶ複数の
入射瞳を有する焦点検出光学系が、撮影レンズの予定結
像面の近傍に設置されたコンデンサレンズと、複数の開
口部を有する明るさ絞りと、コンデンサレンズと明るさ
絞りとの間に設置されていて上記開口部に対応した反射
面を有する反射部材と、再結像レンズと、上記開口部の
各々に対応して並設された複数の受光素子列からなる光
電変換手段とから構成されていて、撮影レンズの異なる
領域を通過した複数の光束を反射部材,明るさ絞り及び
再結像レンズを介して光電変換手段で受け、光電変換手
段の受光面の光強度分布から上記複数の光束の位相差を
検出することにより焦点検出を行うようにした焦点検出
装置において、反射部材の反射面のうち少なくとも一つ
は、他の少なくとも一つの反射面とは異なる平面上に,
即ち同一の面でないように、設けられていて、入射光に
対する反射光の方向を他の少なくとも一つの反射面とは
異ならせるようにしたことを特徴としてなるものであ
る。
In the focus detecting device of the present invention, a focus detecting optical system having a plurality of entrance pupils arranged at intervals capable of ensuring focusing accuracy is provided in the vicinity of a planned image forming surface of a photographing lens. A condenser lens, an aperture stop having a plurality of apertures, a reflecting member disposed between the condenser lens and the aperture stop and having a reflection surface corresponding to the aperture, and re-imaging. The photoelectric conversion means comprises a lens and a plurality of light receiving element rows arranged in parallel corresponding to each of the openings, and a plurality of light fluxes passing through different areas of the photographing lens are reflected by a reflecting member and brightness. In the focus detecting device, which is received by the photoelectric conversion unit through the diaphragm and the re-imaging lens, and which performs focus detection by detecting the phase difference of the plurality of light beams from the light intensity distribution of the light receiving surface of the photoelectric conversion unit, Anti At least one of the reflecting surface of the member, on a different plane from the other of the at least one reflecting surface,
That is, it is characterized in that they are provided so as not to be on the same surface, and the direction of reflected light with respect to incident light is made different from that of at least one other reflecting surface.

【0010】上記構成によれば、先ず、合焦すべき物体
から発した光束は、撮影レンズで結像作用を受けて予定
結像面を通過する。このとき、光束は、見かけ上合焦精
度を確保し得る間隔を以て並ぶ複数の焦点検出光学系の
入射瞳を通過している。また、撮影レンズが合焦状態に
あれば予定結像面に結像する。更にこの光束は、コンデ
ンサレンズより瞳の伝達作用を受けた後、反射部材で反
射して光路を変え、明るさ絞りに達する。反射部材の反
射面のうち少なくとも一つは、他の反射面とは異なる平
面上に設けられているので、同一物点を発して各明るさ
絞りの中心に導かれる光束は、各明るさ絞り毎に異なる
光路の傾きを持つことになる。そして、夫々の明るさ絞
りを通過した光束は、再結像レンズで結像作用を受け、
受光素子列に導かれる。
According to the above arrangement, first, the light flux emitted from the object to be focused is subjected to the image forming action by the photographing lens and passes through the planned image forming surface. At this time, the light flux passes through the entrance pupils of the plurality of focus detection optical systems arranged at intervals that can apparently secure the focusing accuracy. Further, if the taking lens is in focus, it forms an image on the planned image forming surface. Further, this light flux is transmitted by the pupil from the condenser lens, is reflected by the reflecting member, changes the optical path, and reaches the aperture stop. Since at least one of the reflecting surfaces of the reflecting member is provided on a plane different from other reflecting surfaces, the light fluxes that emit the same object point and are guided to the centers of the respective aperture diaphragms are different from each other. Each has a different optical path inclination. Then, the light fluxes that have passed through the respective aperture diaphragms are subjected to the image forming action by the re-imaging lens,
It is guided to the light receiving element array.

【0011】従って、夫々の反射面の反射光路上に、各
明るさ絞りに対応させて再結像レンズを夫々配置すれ
ば、瞳の分割方向に垂直な成分での夫々の光束が受ける
屈折作用をほぼ同じにすることができ、収差の発生を抑
えることができる。また、夫々の明るさ絞りを通過した
光束に同一入射面で対応する一つの再結像レンズを設置
すれば、複数の再結像レンズで構成した場合に問題とな
る、再結像レンズの配置間隔の精度による組立誤差や、
再結像レンズ個々の性能のバラツキ等の、製作誤差に起
因する合焦精度劣化要因を少なくすることができる。
Therefore, if re-imaging lenses are arranged on the reflection optical paths of the respective reflecting surfaces so as to correspond to the respective aperture diaphragms, the refraction effect received by the respective light fluxes in the component perpendicular to the pupil division direction. Can be made substantially the same, and the occurrence of aberration can be suppressed. Further, if one re-imaging lens that corresponds to the light fluxes that have passed through the respective aperture diaphragms on the same incident surface is installed, the re-imaging lens arrangement becomes a problem when it is composed of a plurality of re-imaging lenses. Assembly error due to the accuracy of the spacing,
It is possible to reduce factors of deterioration in focusing accuracy due to manufacturing errors, such as variations in performance of individual reimaging lenses.

【0012】明るさ絞りに対応して並設される複数の受
光素子列は、同一平面上に夫々配置すると一つのチップ
上で構成され得、製作コスト上及び検出精度上好まし
い。更に、反射部材と明るさ絞りを一体的に構成するこ
とにより、組立精度が向上され得、好ましい。尚、反射
面の傾きを異ならせた反射部材の代わりにプリズムを用
いる方法も考えられるが、この場合、瞳の分割方向に垂
直な成分での各光束が受けるプリズムの屈折作用が異な
り、また夫々のプリズムの製作及び組立誤差が合焦精度
に影響するので好ましくない。
A plurality of light receiving element rows arranged in parallel corresponding to the aperture stop can be formed on one chip when they are arranged on the same plane, which is preferable in terms of manufacturing cost and detection accuracy. Further, by integrally forming the reflecting member and the aperture stop, the assembly accuracy can be improved, which is preferable. It should be noted that a method of using a prism instead of the reflecting member having a different inclination of the reflecting surface is also conceivable, but in this case, the refraction action of the prism received by each light beam in a component perpendicular to the pupil division direction is different, and Since the manufacturing and assembling errors of the prism No. 1 influence focusing accuracy, it is not preferable.

【0013】[0013]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。第1実施例 図1は本実施例の焦点検出装置を底部に配置した一眼レ
フカメラの略断面図、図2は図1の要部拡大図である。
図において、本実施例の焦点検出装置は、撮影レンズ1
1の予定結像面12の近傍に設置されたコンデンサレン
ズ13と、平面反射面を有し該反射面の反射角度を互い
に異ならせてコンデンサレンズ13の後方に夫々配置さ
れた反射部材14a,14bと、開口部を有し反射部材
14a,14bの後方に夫々配置された明るさ絞り15
a,15bと、予定結像面12の中心を通り反射部材1
4a,14bを反射して明るさ絞り15a,15bの開
口部中心を通る光束とほぼ光軸を一致させて夫々配置さ
れた再結像レンズ16a,16bと、再結像レンズ16
a,16bを射出した光束の結像位置付近に夫々配置さ
れた受光素子列17a,17bとから構成されている。
明るさ絞り15a,15bはその開口部の中心を通る光
束に対して各開口面が垂直となるように夫々配置されて
おり、また、かかる明るさ絞り15a,15b、反射部
材14a,14b及び再結像レンズ16a,16bの夫
々の部材は、図において紙面と垂直な方向に並設されて
いる。また、受光素子列17a,17bはその長手方向
が紙面に対して垂直となるように配置されている。18
はクイックリターンミラー、19はサブミラーである。
Embodiments of the present invention will be described below with reference to the drawings. First Embodiment FIG. 1 is a schematic cross-sectional view of a single-lens reflex camera in which the focus detection device of the present embodiment is arranged at the bottom, and FIG. 2 is an enlarged view of a main part of FIG.
In the figure, the focus detection apparatus of the present embodiment includes a photographing lens 1
The condenser lens 13 installed in the vicinity of the first planned image forming surface 12 and the reflecting members 14a and 14b each having a flat reflecting surface and are arranged behind the condenser lens 13 with different reflection angles from each other. And the aperture diaphragms 15 having openings and arranged behind the reflecting members 14a and 14b, respectively.
a, 15b, and the reflecting member 1 passing through the center of the planned image plane 12
Re-imaging lenses 16a and 16b, which are respectively arranged with their optical axes substantially coincident with the light fluxes that reflect the light beams 4a and 14b and pass through the aperture centers of the aperture stops 15a and 15b, respectively.
The light receiving element arrays 17a and 17b are arranged in the vicinity of the image forming positions of the light beams emitted from a and 16b, respectively.
The aperture stops 15a and 15b are arranged so that their aperture planes are perpendicular to the light flux passing through the center of the apertures, and the aperture stops 15a and 15b, the reflection members 14a and 14b, and the re-illuminators 15a and 15b. The respective members of the imaging lenses 16a and 16b are arranged side by side in the direction perpendicular to the paper surface in the figure. Further, the light receiving element rows 17a and 17b are arranged so that the longitudinal direction thereof is perpendicular to the paper surface. 18
Is a quick return mirror, and 19 is a sub-mirror.

【0014】上記構成において、合焦すべき物体を発し
た光束は、撮影レンズ11を通過し、ハーフミラーで構
成されるクイックリターンミラー18を透過してからサ
ブミラー19で光路を変え、予定結像面12に達する。
撮影レンズ11が合焦状態の場合、予定結像面12上に
結像する。予定結像面12を通過した光束は、コンデン
サレンズ13で瞳をリレーされ、反射部材14a,14
bで反射して光路が変換される。このとき、反射部材1
4a,14bの夫々の反射面は、入射光に対する反射光
の方向が異なるように、同一ではない異なった平面上に
夫々設けられているので、かかる反射面に入射する夫々
の光束は異なる方向に反射せしめられ、夫々の反射光路
上に設けられた明るさ絞り15a,15bに達する。従
って、夫々の光束が明るさ絞り15a,15bを通過す
ることにより、コンデンサレンズ13と明るさ絞り15
a,15bで決定される焦点検出光学系の入射瞳は、合
焦精度を確保し得る間隔を以て並んでいることになる。
In the above structure, the light flux emitted from the object to be focused passes through the taking lens 11 and the quick return mirror 18, which is a half mirror, and then changes the optical path by the sub-mirror 19 to form a projected image. Reach surface 12.
When the taking lens 11 is in focus, an image is formed on the planned image forming surface 12. The light flux that has passed through the planned image forming surface 12 is relayed to the pupil by the condenser lens 13, and is reflected by the reflecting members 14a, 14
The light path is changed by reflecting at b. At this time, the reflection member 1
Since the respective reflecting surfaces of 4a and 14b are respectively provided on different planes which are not the same so that the directions of the reflected light with respect to the incident light are different, the respective light fluxes incident on the reflecting surfaces are directed in different directions. The light is reflected and reaches the aperture diaphragms 15a and 15b provided on the respective reflection optical paths. Therefore, when the respective light fluxes pass through the aperture diaphragms 15a and 15b, the condenser lens 13 and the aperture diaphragm 15
The entrance pupils of the focus detection optical system, which are determined by a and 15b, are arranged at intervals that can secure the focusing accuracy.

【0015】明るさ絞り15a,15bを通過した光束
は、再結像レンズ16a,16bに入射するが、このと
き、再結像レンズ16a,16bの光軸は、予定結像面
12の中心に対応する物点からの光束の主光線とほぼ一
致しているため、かかる再結像レンズ16a,16bよ
り射出する光束の収差の発生は極めて少なく抑えられ
る。更に、再結像レンズ16a,16bを射出した光束
は、その長手方向が互いに平行となるように並設された
受光素子列17a,17bに導かれ、受光素子列17
a,17bにおける夫々の受光面の光強度分布から、図
示されない演算回路により光束の位相差が検出され、撮
影レンズ11の合焦状態が判別されるようになってい
る。
The light fluxes passing through the aperture stops 15a and 15b are incident on the re-imaging lenses 16a and 16b. At this time, the optical axes of the re-imaging lenses 16a and 16b are located at the center of the planned image forming surface 12. Since the principal rays of the light flux from the corresponding object point substantially coincide with each other, the occurrence of aberration of the light flux emitted from the re-imaging lenses 16a and 16b can be suppressed to an extremely small level. Further, the light beams emitted from the re-imaging lenses 16a and 16b are guided to the light receiving element rows 17a and 17b arranged side by side so that their longitudinal directions are parallel to each other, and the light receiving element row 17 is provided.
From the light intensity distributions of the light receiving surfaces of a and 17b, the phase difference of the light flux is detected by an arithmetic circuit (not shown), and the focus state of the photographing lens 11 is determined.

【0016】本実施例は上述の如く構成されているの
で、反射部材の夫々の反射面を反射した光束の光路は異
なる方向に変換せしめられ、明るさ絞りに対応させ、且
つ各光路上に光軸を一致させて再結像レンズ及び受光素
子列を配置することにより、再結像レンズを射出する光
束の収差の発生を抑えることができると共に、伸長化し
た受光素子列を干渉させることなく配置することができ
る。従って、合焦精度を向上することができると同時
に、測距範囲が拡大され得、而も装置構造をコンパクト
にすることが可能である。この場合、再結像レンズは、
コンデンサレンズ等との収差のバランス上、予定結像面
の中心に対応する物点からの光束の主光線と再結像レン
ズの光軸とを偏心させた方が合焦精度が向上するとき
は、そのように配置しても良い。尚、本実施例では、明
るさ絞りは夫々の開口面が異なる平面上にあるように配
置したが、これらを同一平面上に配置するようにしても
実用上問題はない。
Since this embodiment is constructed as described above, the optical paths of the light fluxes reflected by the respective reflecting surfaces of the reflecting member are changed in different directions so as to correspond to the aperture stop, and the light on each optical path is changed. By arranging the re-imaging lens and the light-receiving element array so that their axes are aligned with each other, it is possible to suppress the occurrence of aberration of the light beam emitted from the re-imaging lens, and to arrange the extended light-receiving element array without causing interference. can do. Therefore, the focusing accuracy can be improved, the distance measuring range can be expanded, and the device structure can be made compact. In this case, the reimaging lens
When focusing accuracy is improved by decentering the principal ray of the light beam from the object point corresponding to the center of the planned image forming surface and the optical axis of the re-imaging lens in terms of balance of aberrations with the condenser lens, etc. , May be arranged as such. In the present embodiment, the aperture stops are arranged so that their respective aperture surfaces are on different planes, but there is no practical problem even if they are arranged on the same plane.

【0017】第2実施例 図3は本実施例の焦点検出装置を示す図である。図にお
いて、本実施例の焦点検出装置は、図示されない撮影レ
ンズの予定結像面12の近傍に設置されたコンデンサレ
ンズ13と、平面反射面を有し該反射面の反射角度を互
いに異ならせてコンデンサレンズ13の後方に配置され
た反射部材14a,14bと、開口部を有し反射部材1
4a,14bの後方に夫々配置された明るさ絞り15
a,15bと、予定結像面12の中心を通り反射部材1
4a,14bを反射して明るさ絞り15a,15bの夫
々の開口部の中心を通る二本の光束からほぼ等距離の位
置に光軸が有るように配置された再結像レンズ26と、
再結像レンズ26を射出した光束の結像位置付近に夫々
配置された受光素子列17a,17bとから構成されて
いる。明るさ絞り15a,15bはその開口部の中心を
通る光束に対して開口面が垂直となるように配置されて
おり、また、かかる明るさ絞り15a,15b,反射部
材14a,14b及び受光素子列17a,17bの、夫
々の部材の配置位置及び方向は第1実施例と同様であ
る。
Second Embodiment FIG. 3 is a diagram showing a focus detection device of this embodiment. In the figure, the focus detection apparatus of the present embodiment has a condenser lens 13 installed in the vicinity of an expected image forming surface 12 of a photographing lens (not shown) and a flat reflecting surface, and makes the reflecting angles of the reflecting surfaces different from each other. Reflecting members 14a, 14b arranged behind the condenser lens 13 and a reflecting member 1 having an opening
Brightness diaphragms 15 arranged behind 4a and 14b, respectively
a, 15b, and the reflecting member 1 passing through the center of the planned image plane 12
A re-imaging lens 26 arranged such that the optical axes are located at substantially equal distances from the two light beams that reflect the light beams 4a and 14b and pass through the centers of the respective apertures of the aperture diaphragms 15a and 15b;
The re-imaging lens 26 includes light receiving element arrays 17a and 17b arranged near the image forming position of the light beam. The brightness diaphragms 15a and 15b are arranged so that their aperture planes are perpendicular to the light flux passing through the center of the apertures, and the brightness diaphragms 15a and 15b, the reflecting members 14a and 14b, and the light receiving element array. The arrangement positions and directions of the respective members of 17a and 17b are the same as those in the first embodiment.

【0018】上記構成おいて、合焦すべき物体を発した
光束は、図示されない撮影レンズ,クイックリターンミ
ラー及びサブミラーを経て予定結像面12に達し、撮影
レンズが合焦状態の場合、予定結像面12上に結像す
る。予定結像面12を通過した光束は、コンデンサレン
ズ13で瞳をリレーされ、反射部材14a,14bで反
射して光路が変換される。このとき、反射部材14a,
14bの夫々の反射面は、入射光に対する反射光の方向
が異なるように、同一ではない異なった平面上に夫々設
けられているので、かかる反射面に入射する夫々の光束
は異なる方向に反射せしめられ、夫々の反射光路上に設
けられた明るさ絞り15a,15bに達する。従って、
夫々の光束が明るさ絞り15a,15bを通過すること
により、コンデンサレンズ13と明るさ絞り15a,1
5bで決定される焦点検出光学系の入射瞳は、合焦精度
を確保し得る間隔を以て並んでいることになる。
In the above structure, the light flux emitted from the object to be focused reaches the planned image forming surface 12 through the photographic lens, quick return mirror and sub-mirror (not shown), and when the photographic lens is in focus, the scheduled light is formed. An image is formed on the image plane 12. The light flux that has passed through the planned image forming surface 12 is relayed to the pupil by the condenser lens 13 and is reflected by the reflecting members 14a and 14b to change the optical path. At this time, the reflection member 14a,
Since the respective reflecting surfaces of 14b are provided on different planes which are not the same so that the directions of the reflected light with respect to the incident light are different, the respective light fluxes incident on the reflecting surface are reflected in different directions. And reach the brightness diaphragms 15a and 15b provided on the respective reflected light paths. Therefore,
The respective luminous fluxes pass through the aperture stops 15a and 15b, so that the condenser lens 13 and the aperture stops 15a and 15b
The entrance pupils of the focus detection optical system, which are determined by 5b, are arranged at intervals that can ensure the focusing accuracy.

【0019】明るさ絞り15a,15bを通過した光束
は、再結像レンズ26に入射する。このとき、受光素子
列17a,17bの並ぶ方向に対して垂直な方向(紙面
上の平面)において、予定結像面12の中心に対応する
物点からの光束の主光線が再結像レンズ26に入射する
位置は異なっており、かかる再結像レンズ26より射出
される光束を、平行に並設された受光素子列17a,1
7bに夫々導くことができる。そして、受光素子列17
a,17bにおける夫々の受光面の光強度分布から、光
束の位相差が検出され、撮影レンズ11の合焦状態が判
別されるようになっている。
The light flux that has passed through the aperture stops 15a and 15b is incident on the re-imaging lens 26. At this time, the principal ray of the light flux from the object point corresponding to the center of the planned image forming surface 12 is perpendicular to the direction in which the light receiving element arrays 17a and 17b are arranged (the plane on the paper surface). The light beams emitted from the re-imaging lens 26 are arranged in parallel with each other, and the light receiving element rows 17a, 1 are arranged in parallel.
7b respectively. Then, the light receiving element array 17
The phase difference of the light flux is detected from the light intensity distributions of the light receiving surfaces of a and 17b, and the focusing state of the photographing lens 11 is determined.

【0020】本実施例は上述の如く構成されているの
で、反射部材の夫々の反射面を反射した光束の光路は異
なる方向に変換せしめられ、これを同一入射面で対応す
る一つの再結像レンズを介して受光素子列に導くように
することにより、複数の再結像レンズを配置した場合に
問題となる、再結像レンズの配置間隔の精度による組立
誤差や、再結像レンズ個々の性能のバラツキ等の、製作
誤差に起因する合焦精度劣化要因を少なくすることがで
きると共に、伸長化した受光素子列を干渉させることな
く配置することができる。従って、合焦精度を向上する
ことができると同時に、測距範囲が拡大され得、而も装
置構造をコンパクトにすることが可能である。尚、本実
施例でも、明るさ絞りは夫々の開口面が異なる平面上に
あるように配置したが、これらを同一平面上に配置する
ようにしても実用上問題はない。図3における反射部材
14aと14bは、合焦精度が向上するのであればコン
デンサーレンズ13の光軸と平行な光線を紙面に垂直な
成分において異なる方向にも反射するように構成しても
良い。
Since the present embodiment is constructed as described above, the optical paths of the light beams reflected by the respective reflecting surfaces of the reflecting member are changed in different directions, and this is re-imaged correspondingly on the same incident surface. By guiding the light through the lens to the light receiving element array, there is a problem when a plurality of re-imaging lenses are arranged. It is possible to reduce factors of deterioration in focusing accuracy due to manufacturing errors such as variations in performance, and it is possible to arrange the extended light receiving element arrays without interfering with each other. Therefore, the focusing accuracy can be improved, the distance measuring range can be expanded, and the device structure can be made compact. In the present embodiment as well, the aperture diaphragms are arranged so that their respective aperture surfaces are on different planes, but there is no practical problem even if they are arranged on the same plane. The reflecting members 14a and 14b in FIG. 3 may be configured to reflect light rays parallel to the optical axis of the condenser lens 13 in different directions in a component perpendicular to the paper surface as long as the focusing accuracy is improved.

【0021】第3実施例 図4は本実施例の焦点検出装置を示す図である。図にお
いて、本実施例の焦点検出装置は、図示されない撮影レ
ンズの予定結像面12の近傍に設置されたコンデンサレ
ンズ13と、平面反射面を有し該反射面の反射角度を互
いに異ならせてコンデンサレンズ13の後方に配置され
た反射部材14a,14bと、反射部材14a,14b
の夫々の反射面上に該反射部材と一体的に設けられた明
るさ絞り25a,25bと、予定結像面12の中心を通
り反射部材14a,14bを反射して明るさ絞り25
a,25bの夫々の開口部の中心を通る二本の光束から
ほぼ等距離の位置に光軸が有るように配置された再結像
レンズ26と、再結像レンズ26を射出した光束の結像
位置付近に夫々配置された受光素子列17a,17bと
から構成されている。反射部材14a,14b、明るさ
絞り15a,15b及び受光素子列17a,17bの、
夫々の部材の配置位置及び方向は第1実施例と同様であ
る。
Third Embodiment FIG. 4 is a diagram showing a focus detection device of this embodiment. In the figure, the focus detection apparatus of the present embodiment has a condenser lens 13 installed in the vicinity of an expected image forming surface 12 of a photographing lens (not shown) and a flat reflecting surface, and makes the reflecting angles of the reflecting surfaces different from each other. Reflecting members 14a and 14b arranged behind the condenser lens 13 and reflecting members 14a and 14b
The brightness diaphragms 25a and 25b provided integrally with the reflecting members on the respective reflecting surfaces, and the brightness diaphragms 25a and 25b reflecting the reflecting members 14a and 14b through the center of the planned image forming surface 12.
The re-imaging lens 26 arranged such that the optical axes are located at substantially equal distances from the two light beams passing through the centers of the respective apertures a and 25b, and the light beam emerging from the re-imaging lens 26. It is composed of light receiving element rows 17a and 17b respectively arranged near the image position. Of the reflecting members 14a and 14b, the aperture diaphragms 15a and 15b, and the light receiving element arrays 17a and 17b,
The arrangement position and direction of each member are the same as those in the first embodiment.

【0022】上記構成おいて、合焦すべき物体を発した
光束は、図示されない撮影レンズ,クイックリターンミ
ラー及びサブミラーを経て予定結像面12に達し、撮影
レンズが合焦状態の場合、予定結像面12上に結像す
る。予定結像面12を通過した光束は、コンデンサレン
ズ13で瞳をリレーされ、反射部材14a,14bで反
射して光路が変換される。このとき、反射部材14a,
14bの夫々の反射面は、入射光に対する反射光の方向
が異なるように、同一ではない異なった平面上に夫々設
けられているので、かかる反射面に入射する夫々の光束
は異なる方向に反射せしめられる。また、夫々の反射面
上には、反射部材14a,14bと一体的に、明るさ絞
り25a,25bが設けられており、明るさ絞り25
a,25bにおいて、反射面を反射して受光素子列17
a,17bに入射する光束の広がり(NA)が決定され
る。光束が明るさ絞り25a,25bを夫々通過するこ
とにより、コンデンサレンズ13と明るさ絞り25a,
25bで決定される焦点検出光学系の入射瞳は、合焦精
度を確保し得る間隔を以て並んでいることになる。
In the above structure, the light flux emitted from the object to be focused reaches the planned image forming surface 12 through the photographic lens, quick return mirror and sub-mirror (not shown), and when the photographic lens is in focus, the scheduled light is formed. An image is formed on the image plane 12. The light flux that has passed through the planned image forming surface 12 is relayed to the pupil by the condenser lens 13 and is reflected by the reflecting members 14a and 14b to change the optical path. At this time, the reflection member 14a,
Since the respective reflecting surfaces of 14b are provided on different planes which are not the same so that the directions of the reflected light with respect to the incident light are different, the respective light fluxes incident on the reflecting surface are reflected in different directions. To be Brightness diaphragms 25a and 25b are provided on the respective reflecting surfaces integrally with the reflecting members 14a and 14b.
In a and 25b, the light receiving element array 17 is reflected by the reflecting surface.
The spread (NA) of the light flux incident on a and 17b is determined. The light flux passes through the aperture diaphragms 25a and 25b respectively, so that the condenser lens 13 and the aperture diaphragms 25a and 25a
The entrance pupils of the focus detection optical system, which are determined by 25b, are arranged at intervals that can secure the focusing accuracy.

【0023】明るさ絞り25a,25bを通過した光束
は、再結像レンズ26に入射する。このとき、受光素子
列17a,17bの並ぶ方向に対して垂直な方向(紙面
上の平面)において、予定結像面12の中心に対応する
物点からの光束の主光線が再結像レンズ26に入射する
位置は異なっており、かかる再結像レンズ26より射出
される光束を、平行に並設された受光素子列17a,1
7bに導くことができる。そして、受光素子列17a,
17bにおける夫々の受光面の光強度分布から、光束の
位相差が検出され、撮影レンズ11の合焦状態が判別さ
れるようになっている。
The light flux that has passed through the aperture stops 25a and 25b is incident on the re-imaging lens 26. At this time, the principal ray of the light flux from the object point corresponding to the center of the planned image forming surface 12 is perpendicular to the direction in which the light receiving element arrays 17a and 17b are arranged (the plane on the paper surface). The light beams emitted from the re-imaging lens 26 are arranged in parallel with each other, and the light receiving element rows 17a, 1 are arranged in parallel.
Can lead to 7b. Then, the light receiving element array 17a,
The phase difference of the light flux is detected from the light intensity distribution of each light receiving surface in 17b, and the focusing state of the photographing lens 11 is determined.

【0024】本実施例は上述の如く構成されているの
で、反射部材と明るさ絞りを一体化することにより、装
置製作及び組立上のバラツキ等の誤差による合焦精度劣
化要因を少なくすることができる。また、反射部材の夫
々の反射面を反射した光束の光路は異なる方向に変換せ
しめることにより、伸長化した受光素子列を干渉させる
ことなく配置することができる。従って、合焦精度を向
上することができると同時に、測距範囲が拡大され得、
而も装置構造をコンパクトにすることが可能である。
Since the present embodiment is constructed as described above, by integrating the reflecting member and the aperture stop, it is possible to reduce the factor of deterioration of the focusing accuracy due to errors such as variations in device manufacturing and assembly. it can. Further, by converting the optical paths of the light fluxes reflected by the respective reflecting surfaces of the reflecting member in different directions, it is possible to arrange the extended light receiving element rows without interfering with each other. Therefore, the focusing accuracy can be improved, and at the same time, the distance measuring range can be expanded.
Moreover, the device structure can be made compact.

【0025】尚、上記各実施例では、明るさ絞りを二つ
用いるように構成されているが、明るさ絞りを三つ以上
用いて各明るさ絞りを通過する光束を夫々受光素子列に
導き、二つ以上の受光素子列からの情報により焦点検出
を行うように構成しても良い。この場合、全ての受光素
子列からの情報を用いても良いし、合焦範囲,撮影レン
ズ等の条件により二つ以上の受光素子列を選択し、選択
した受光素子列から得られる情報を用いても良い。ま
た、反射部材の反射面は曲面又はその他の形状でも構わ
ない。
In each of the above embodiments, two brightness diaphragms are used, but three or more brightness diaphragms are used to guide the light fluxes passing through each brightness diaphragm to the light receiving element array. Alternatively, focus detection may be performed based on information from two or more light receiving element arrays. In this case, information from all the light-receiving element arrays may be used, or two or more light-receiving element arrays may be selected depending on the conditions such as the focusing range and the taking lens, and the information obtained from the selected light-receiving element arrays may be used. May be. Further, the reflecting surface of the reflecting member may be a curved surface or another shape.

【0026】[0026]

【発明の効果】以上、本発明によれば、測距範囲の拡大
と合焦精度の向上の両方を同時に満足し、且つ構造がコ
ンパクトな焦点検出装置を提供することができる。
As described above, according to the present invention, it is possible to provide a focus detection device which has a compact structure and which simultaneously satisfies both the expansion of the distance measuring range and the improvement of focusing accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例の焦点検出装置を底部に配
置した一眼レフカメラの略断面図である。
FIG. 1 is a schematic cross-sectional view of a single-lens reflex camera in which a focus detection device according to a first exemplary embodiment of the present invention is arranged at a bottom portion.

【図2】図1の要部拡大図である。FIG. 2 is an enlarged view of a main part of FIG.

【図3】第2実施例の焦点検出装置を示す図である。FIG. 3 is a diagram showing a focus detection device according to a second embodiment.

【図4】第3実施例の焦点検出装置を示す図である。FIG. 4 is a diagram showing a focus detection device according to a third embodiment.

【図5】従来の焦点検出光学系の一例を示す図である。FIG. 5 is a diagram showing an example of a conventional focus detection optical system.

【図6】従来の他の焦点検出光学系の概略構成を示す図
である。
FIG. 6 is a diagram showing a schematic configuration of another conventional focus detection optical system.

【図7】図6の斜視図である。FIG. 7 is a perspective view of FIG.

【符号の説明】[Explanation of symbols]

11・・・撮影レンズ 12・・・予定結像面 13・・・コンデンサレンズ 14a,14b・・・反射部材 15a,15b,25a,25b・・・明るさ絞り 16a.16b,26・・・再結像レンズ 17a.17b・・・受光素子列 11 ... Photographing lens 12 ... Planned image forming surface 13 ... Condenser lens 14a, 14b ... Reflecting member 15a, 15b, 25a, 25b ... Brightness diaphragm 16a. 16b, 26 ... Reimaging lens 17a. 17b: Light receiving element array

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 合焦精度を確保し得る間隔を以て並ぶ複
数の入射瞳を有する焦点検出光学系が、撮影レンズの予
定結像面の近傍に設置されたコンデンサレンズと、複数
の開口部を有する明るさ絞りと、上記コンデンサレンズ
と明るさ絞りとの間に設置されていて上記開口部に対応
した反射面を有する反射部材と、再結像レンズと、上記
開口部の各々に対応して並設された複数の受光素子列か
らなる光電変換手段とから構成されていて、 上記撮影レンズの異なる領域を通過した複数の光束を上
記反射部材,明るさ絞り及び再結像レンズを介して上記
光電変換手段で受け、該光電変換手段の受光面の光強度
分布から上記複数の光束の位相差を検出することにより
焦点検出を行うようにした焦点検出装置において、 上記反射部材の反射面のうち少なくとも一つは、当該他
の少なくとも一つの反射面とは異なる平面上に設けられ
ていて、入射光に対する反射光の方向を上記他の少なく
とも一つの反射面とは異ならせるようにしたことを特徴
とする焦点検出装置。
1. A focus detection optical system having a plurality of entrance pupils arranged at intervals capable of ensuring focusing accuracy, has a condenser lens installed in the vicinity of a planned image forming surface of a photographing lens, and has a plurality of openings. An aperture stop, a reflecting member provided between the condenser lens and the aperture stop and having a reflection surface corresponding to the aperture, a re-imaging lens, and a parallel arrangement corresponding to each of the apertures. And a plurality of light beams passing through different regions of the photographing lens through the reflecting member, the aperture stop and the re-imaging lens. In a focus detection device for performing focus detection by detecting the phase difference of the plurality of light fluxes from the light intensity distribution of the light receiving surface of the photoelectric conversion means, the focus detection device having a smaller number of reflection surfaces of the reflection member. One is that it is provided on a plane different from the other at least one reflecting surface, and the direction of the reflected light with respect to the incident light is different from that of the other at least one reflecting surface. Focus detection device.
【請求項2】 合焦精度を確保し得る間隔を以て並ぶ複
数の入射瞳を有する焦点検出光学系が、撮影レンズの予
定結像面の近傍に設置されたコンデンサレンズと、複数
の開口部を有する明るさ絞りと、該明るさ絞りと一体に
設けられていて上記開口部に対応した反射面を有する反
射部材と、再結像レンズと、上記開口部の各々に対応し
て並設された複数の受光素子列からなる光電変換手段と
から構成されていて、 上記撮影レンズの異なる領域を通過した複数の光束を上
記明るさ絞りと一体の反射部材及び再結像レンズを介し
て上記光電変換手段で受け、該光電変換手段の受光面の
光強度分布から上記複数の光束の位相差を検出すること
により焦点検出を行うようにした焦点検出装置におい
て、 上記反射部材の反射面のうち少なくとも一つは、当該他
の少なくとも一つの反射面とは異なる平面上に設けられ
ていて、入射光に対する反射光の方向を上記他の少なく
とも一つの反射面とは異ならせるようにしたことを特徴
とする焦点検出装置。
2. A focus detection optical system having a plurality of entrance pupils arranged at intervals capable of ensuring focusing accuracy, having a condenser lens installed in the vicinity of a planned image forming surface of a photographing lens and a plurality of openings. A brightness stop, a reflecting member integrally provided with the brightness stop and having a reflection surface corresponding to the opening, a re-imaging lens, and a plurality of juxtaposed corresponding to each of the openings. And a photoelectric conversion means composed of a light receiving element array of the above-mentioned, wherein a plurality of light fluxes passing through different regions of the photographing lens are passed through the reflecting member and the re-imaging lens integrated with the aperture stop, and the photoelectric conversion means. In the focus detection device, the focus detection is performed by detecting the phase difference of the plurality of light beams from the light intensity distribution of the light receiving surface of the photoelectric conversion means, and at least one of the reflection surfaces of the reflection member Is A focus detection device, which is provided on a plane different from that of the other at least one reflecting surface, and the direction of reflected light with respect to incident light is made different from that of the other at least one reflecting surface. .
JP2413993A 1993-02-12 1993-02-12 Focus detection device Expired - Fee Related JP3359682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2413993A JP3359682B2 (en) 1993-02-12 1993-02-12 Focus detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2413993A JP3359682B2 (en) 1993-02-12 1993-02-12 Focus detection device

Publications (2)

Publication Number Publication Date
JPH06235855A true JPH06235855A (en) 1994-08-23
JP3359682B2 JP3359682B2 (en) 2002-12-24

Family

ID=12129992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2413993A Expired - Fee Related JP3359682B2 (en) 1993-02-12 1993-02-12 Focus detection device

Country Status (1)

Country Link
JP (1) JP3359682B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6349937B1 (en) 1998-07-10 2002-02-26 Gammerler Ag Switching mechanism

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6349937B1 (en) 1998-07-10 2002-02-26 Gammerler Ag Switching mechanism

Also Published As

Publication number Publication date
JP3359682B2 (en) 2002-12-24

Similar Documents

Publication Publication Date Title
JP2008286816A (en) Focus detection optical system and imaging apparatus using the same
JPH067223B2 (en) Focus detection device
US4580042A (en) Focusing position detecting device using a sector shaped mirror
JP3359682B2 (en) Focus detection device
US4455065A (en) Optical device
CN111090223B (en) Optical measurement system
JPH07333493A (en) Focus detector
JP3647223B2 (en) Focus detection apparatus and optical instrument
JPH05264894A (en) Focus detecting device
JP3404066B2 (en) Focus detection device
JP3179162B2 (en) Focus detection device
US5037188A (en) Optical system for detecting focusing condition
JP2001343580A (en) Focus detector
JPH06138382A (en) Focus detector
JP3434621B2 (en) Focus detection and photometric optical system
JP4323592B2 (en) Focus detection device
JPH0553049A (en) Focus detecting device
US5321461A (en) Focus detecting device
JPH01243009A (en) Focus detecting device
JPH0378715A (en) Optical system for distance measurement
JP3984679B2 (en) Light receiving element position adjustment device
JP4569268B2 (en) Focus detection module and camera
JPS59129811A (en) Focusing detecting device
JP2821145B2 (en) Focus detection device
JPH11352396A (en) Focus detector and optical equipment using the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020924

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071011

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081011

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091011

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101011

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101011

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111011

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees