JPH06235806A - Reflection mirror for laser - Google Patents

Reflection mirror for laser

Info

Publication number
JPH06235806A
JPH06235806A JP4453693A JP4453693A JPH06235806A JP H06235806 A JPH06235806 A JP H06235806A JP 4453693 A JP4453693 A JP 4453693A JP 4453693 A JP4453693 A JP 4453693A JP H06235806 A JPH06235806 A JP H06235806A
Authority
JP
Japan
Prior art keywords
laser
multilayer film
substrate
diamond
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4453693A
Other languages
Japanese (ja)
Inventor
Minoru Otani
実 大谷
Atsumichi Ishikura
淳理 石倉
Hidehiko Fujimura
秀彦 藤村
Mitsuharu Sawamura
光治 沢村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP4453693A priority Critical patent/JPH06235806A/en
Publication of JPH06235806A publication Critical patent/JPH06235806A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To obtain a reflection mirror having high durability against laser beams of high average power. CONSTITUTION:A thin film of diamond or the like is formed by vapor deposition to 50nm to 1mm thickness on a substrate, and then a multilayer film of dielectric material is formed by vapor deposition thereon. Since diamond has the highest thermal conductivity among all of materials, it effectively diffuses the thermal energy absorbed by the multilayer film and prevents temp. increase of the multilayer film. Thereby, even when the mirror is irradiated with laser beams of high output with a high frequency of repetition, the multilayer film does not cause thermal deformation or peeling.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、特に、高出力で繰返し
頻度が高く、従って平均パワーの高いレーザ光を発生す
るレーザ共振器、あるいは、このようなレーザ光を用い
る光学系に適したレーザ用反射鏡に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention particularly relates to a laser resonator for generating a laser beam having a high output and a high repetition frequency, and thus a high average power, or a laser suitable for an optical system using such a laser beam. It relates to a reflector.

【0002】[0002]

【従来の技術】紫外域から赤外域の波長のレーザ光を反
射するレーザ用反射鏡は、光学ガラスや石英で作られた
基板に、前記波長域で吸収の少ない誘電体材料からなる
多層膜を形成させたものが一般的であり、特に露光装置
の露光光やアライメント光として用いられるエキシマレ
ーザ光のように、高出力で繰返し頻度が高く、従って平
均パワーの高いレーザ光に用いられるレーザ用反射鏡
は、その耐久性を向上させるために様々な工夫がなされ
ている。例えば、1/2波長光学膜厚の整数倍のアンダ
ーコートやオーバコートを行うことによって、多層膜の
レーザ損傷しきい値を上げたり(特開平2−97901
号公報参照)、熱伝導率の高い金属を基板の材料に用い
るか、または、熱伝導率の高い珪素化合物等を基板の表
面へ蒸着したうえで多層膜を形成することで多層膜の放
熱を促進する方法(特開平2−248093号公報およ
び特開昭60−66202号公報参照)が提案されてい
る。
2. Description of the Related Art A laser reflecting mirror for reflecting laser light having a wavelength from the ultraviolet region to the infrared region is a substrate made of optical glass or quartz, on which a multilayer film made of a dielectric material having low absorption in the wavelength region is formed. It is generally formed, especially for excimer laser light used as exposure light or alignment light for exposure equipment, which has a high output and a high repetition frequency, and is therefore a reflection for a laser used for high average power laser light. Mirrors have been devised in various ways to improve their durability. For example, by performing undercoating or overcoating which is an integral multiple of the 1/2 wavelength optical film thickness, the laser damage threshold value of the multilayer film may be increased (Japanese Patent Laid-Open No. 2-97901).
(See Japanese Laid-Open Patent Publication No. 2004-242242), a metal having a high thermal conductivity is used as a material of the substrate, or a silicon compound having a high thermal conductivity is vapor-deposited on the surface of the substrate to form a multilayer film to dissipate heat from the multilayer film. A method for promoting it (see JP-A-2-248093 and JP-A-60-66202) has been proposed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら上記従来
の技術によれば、多層膜がレーザ光に対して、弱い吸収
をもつ場合には、微小吸収であっても、レーザ光の平均
パワーが高いと多層膜に蓄積される熱エネルギーも増大
し、前述のように、基板の材料に金属を用いたり、ある
いは珪素化合物を第1層として基板へ蒸着しても、これ
らによる放熱量は依然として不充分であり、多層膜の温
度上昇を避けることができない。その結果、多層膜の熱
変形や密着性の低下等の問題が発生する。
However, according to the above conventional technique, when the multilayer film has a weak absorption for the laser light, even if the absorption is minute, the average power of the laser light is high. The thermal energy accumulated in the multilayer film also increases, and even if a metal is used as the material of the substrate or a silicon compound is vapor-deposited on the substrate as the first layer as described above, the amount of heat released by these is still insufficient. Therefore, the temperature rise of the multilayer film cannot be avoided. As a result, problems such as thermal deformation of the multilayer film and deterioration of adhesion occur.

【0004】加えて、金属や珪素化合物は誘電体材料に
比べて吸収係数が可視域から近赤外域にかけて大きいた
めに、多層膜に対するレーザ光の入射角が設計値よりず
れた場合や、多層膜の反射率が100%未満の場合は、
レーザ光の一部が基板に到達し、これによって基板が損
傷するおそれがあり、また、可視域(560nm付近)
に吸収端があるために、可視光レーザによる透過アライ
メントは難しい。
In addition, since the absorption coefficient of metals and silicon compounds is larger than that of dielectric materials from the visible region to the near-infrared region, the incident angle of laser light on the multilayer film deviates from the design value, or the multilayer film. If the reflectance of is less than 100%,
Part of the laser light may reach the substrate, which may damage the substrate, and the visible range (around 560 nm).
Since there is an absorption edge at, transmission alignment by a visible light laser is difficult.

【0005】本発明は上記従来の技術の有する未解決の
課題に鑑みてなされたものであり、平均パワーの高いレ
ーザ光に対する耐久性にすぐれたレーザ用反射鏡を提供
することを目的とするものである。
The present invention has been made in view of the above-mentioned unsolved problems of the prior art, and an object of the present invention is to provide a reflecting mirror for a laser having excellent durability against a laser beam having a high average power. Is.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明のレーザ用反射鏡は、基板と、誘電体材料の
多層膜からなるレーザ用反射鏡であって、前記基板と前
記多層膜の間にダイヤモンド類の材料からなる薄膜が設
けられていることを特徴とする。
In order to achieve the above-mentioned object, a laser reflecting mirror of the present invention is a laser reflecting mirror comprising a substrate and a multilayer film of a dielectric material. It is characterized in that a thin film made of a diamond type material is provided between the films.

【0007】また、ダイヤモンド類の材料からなる薄膜
の膜厚が50nmないし1mmであるとよい。
Further, the thickness of the thin film made of a diamond type material is preferably 50 nm to 1 mm.

【0008】さらに、ダイヤモンド類の材料からなる薄
膜の表面粗さが100nm rms以下であるとよい。
Further, it is preferable that the surface roughness of the thin film made of a diamond type material is 100 nm rms or less.

【0009】[0009]

【作用】ダイヤモンド類の材料は、あらゆる物質中熱伝
導率が最大であるから、基板と多層膜の間にこのような
ダイヤモンド類の薄膜を設けることによって、多層膜に
吸収された熱エネルギーの発散を大幅に促進させ、多層
膜の温度上昇を防ぐことができる。また、ダイヤモンド
類は可視域から近赤外域の波長の光に対して吸収率がゼ
ロに近いために、レーザ用反射鏡に入射するレーザ光の
入射角が設計値よりずれたり、多層膜の反射率が100
%に満たない場合でも、レーザ光が基板まで到達してこ
れを損傷するおそれはない。加えて、240nm付近に
吸収端があるため、可視光レーザによる透過アライメン
トが容易になる。
[Function] Since diamond materials have the highest thermal conductivity in all substances, by disposing such a diamond thin film between the substrate and the multilayer film, the heat energy absorbed by the multilayer film is radiated. Can be greatly promoted and the temperature rise of the multilayer film can be prevented. In addition, since diamonds have an absorptance near zero for light in the visible to near-infrared wavelength range, the incident angle of the laser light incident on the laser reflecting mirror may deviate from the design value, or the reflection of the multilayer film may occur. Rate is 100
Even if it is less than%, there is no possibility that the laser light reaches the substrate and damages it. In addition, since there is an absorption edge near 240 nm, transmission alignment with a visible light laser becomes easy.

【0010】ダイヤモンド類からなる薄膜の膜厚は50
nmないし1mmであることが望ましく、また、該薄膜
の表面粗さが100nm rms以下であれば、多層膜
の密着性を高めることができる。
The thin film made of diamond has a film thickness of 50.
The thickness is preferably 1 nm to 1 mm, and when the surface roughness of the thin film is 100 nm rms or less, the adhesion of the multilayer film can be improved.

【0011】[0011]

【実施例】本発明の実施例を説明する。EXAMPLES Examples of the present invention will be described.

【0012】(第1実施例)直径40mm、厚さ3mm
の基板である合成石英基板に、マイクロ波CVD法によ
って膜厚2μmのダイヤモンド類の材料からなる薄膜を
蒸着したうえで、Nd:YAGレーザの基本波(106
4nm)用の多層膜および3倍高調波(355nm)用
の多層膜を製作した。基本波用の多層膜は、1/4波長
膜厚のSiO2 とTiO2 の薄膜を交互に5層ずつ積層
した第1群と、同じく1/4波長膜厚のSiO2 とZr
2 の薄膜を交互に6層ずつ積層した第2群から構成さ
れ、3倍高調波用の多層膜は、1/4波長膜厚のSiO
2 とZrO2 を交互に5層ずつ積層した第1群と、同じ
く1/4波長膜厚のSiO2 とAl23 を交互に12
層ずつ積層した第2群から構成され、また、最終層の表
面には1/2波長膜厚のSiO2 のオーバーコートが設
けられ、反射率はレーザ波長で99%以上である。
(First embodiment) Diameter 40 mm, thickness 3 mm
After depositing a thin film of a diamond-like material with a film thickness of 2 μm on the synthetic quartz substrate which is the substrate of No. 2 by the microwave CVD method, the fundamental wave of the Nd: YAG laser (106
A multilayer film for 4 nm) and a multilayer film for the third harmonic (355 nm) were manufactured. The multilayer film for the fundamental wave includes a first group in which five thin films of SiO 2 and TiO 2 having a thickness of ¼ wavelength are alternately laminated, and SiO 2 and Zr having a thickness of ¼ wavelength are also used.
The multilayer film for triple harmonics is composed of a second group in which thin films of O 2 are alternately laminated by 6 layers each, and the multilayer film for triple harmonics is made of SiO having a quarter wavelength film thickness.
2 and ZrO 2 are alternately laminated in groups of 5 layers, and SiO 2 and Al 2 O 3 having the same quarter wavelength thickness are alternately arranged to form 12 layers.
It is composed of a second group in which each layer is laminated, and the surface of the final layer is provided with an overcoat of ½ wavelength film of SiO 2 , and the reflectance is 99% or more at the laser wavelength.

【0013】次に、本実施例のレーザ用反射鏡のレーザ
光に対する耐力性を従来例と比較するために、同様の合
成石英基板に膜厚2μmのSiCの薄膜を蒸着したうえ
で上記と同様の多層膜を形成させたレーザ用反射鏡をサ
ンプルA、同様の合成石英基板に膜厚2μmの硬質炭素
の薄膜を蒸着したうえで上記と同様の多層膜を形成させ
たレーザ用反射鏡をサンプルB、本実施例のレーザ用反
射鏡をサンプルC、同様の合成石英基板に直接多層膜を
形成させたレーザ用反射鏡をサンプルDとして、各サン
プルの1ショットレーザ耐力と20Hz連続照射のレー
ザ耐力を測定した。その結果を表1に示す。なお、1シ
ョットレーザ耐力は、Nd:YAGレーザの基本波およ
び3倍高調波を各ショットごとに照射位置およびエネル
ギーを変えて照射し、レーザ用反射鏡の損傷の有無を観
察したものであり、20Hz連続照射のレーザ耐力は、
同じ照射位置に同じエネルギーのレーザ光を20Hzの
周波数で5分間照射してレーザ用反射鏡の損傷の有無を
観察したものである。
Next, in order to compare the durability of the laser reflecting mirror of this embodiment with respect to the laser beam to the conventional example, a 2 μm-thickness SiC thin film is vapor-deposited on a similar synthetic quartz substrate and the same as above. Sample A is a laser reflecting mirror having a multilayer film formed thereon, and sample is a laser reflecting mirror having the same multilayer film formed as described above after vapor-depositing a hard carbon thin film having a thickness of 2 μm on a similar synthetic quartz substrate. B, the laser reflecting mirror of the present embodiment is referred to as a sample C, and the laser reflecting mirror in which a multilayer film is directly formed on a similar synthetic quartz substrate is referred to as a sample D. The 1-shot laser proof strength and the laser proof strength of 20 Hz continuous irradiation of each sample. Was measured. The results are shown in Table 1. The 1-shot laser proof stress is obtained by irradiating the fundamental wave and the triple harmonic wave of the Nd: YAG laser at different irradiation positions and energies for each shot, and observing whether the laser reflecting mirror is damaged or not. The laser resistance of 20Hz continuous irradiation is
The same irradiation position was irradiated with laser light of the same energy for 5 minutes at a frequency of 20 Hz, and the presence or absence of damage to the laser reflecting mirror was observed.

【0014】[0014]

【表1】 表1から、基本波と3倍高調波についてほぼ同じ傾向が
確認され、1ショットレーザ耐力は、合成石英基板に直
接多層膜を形成したサンプルDとサンプルCが最もすぐ
れており、次いで、サンプルA、サンプルBの順である
が、20Hz連続照射のレーザ耐力では、サンプルC、
サンプルD、サンプルA、サンプルBの順であり、特
に、基本波の場合には、サンプルC、すなわち、本実施
例のダイヤモンド類の材料の薄膜を合成石英基板に蒸着
したうえで多層膜を形成させたもののレーザ耐力が他の
サンプルのレーザ耐力を大幅に上まわることが判明し
た。
[Table 1] From Table 1, almost the same tendency was confirmed for the fundamental wave and the third harmonic, and the 1-shot laser proof stress was the best for Sample D and Sample C in which the multilayer film was directly formed on the synthetic quartz substrate, and then for Sample A. , Sample B, but in the laser proof strength of 20 Hz continuous irradiation, sample C,
Sample D, sample A, and sample B are in this order. Particularly, in the case of a fundamental wave, sample C, that is, a thin film of the diamond-like material of this embodiment is deposited on a synthetic quartz substrate and then a multilayer film is formed. It was found that the laser yield strength of the sample was significantly higher than that of other samples.

【0015】(第2実施例)直径40mm、厚さ3mm
の基板である合成石英基板に高周波スパッタ法(RFス
パッタ法)によって膜厚5μmのダイヤモンド類の材料
からなる薄膜を蒸着し、該薄膜の表面を表面粗さ10n
m rms以下に研磨したうえで、KrF(248n
m)エキシマレーザ用の多層膜を製作した。該多層膜
は、Al23 とSiO2 の薄膜を交互に28層ずつ積
層したものである。
(Second embodiment) Diameter 40 mm, thickness 3 mm
On the synthetic quartz substrate which is the substrate of No. 3, a thin film made of a diamond material having a film thickness of 5 μm is vapor-deposited by a high frequency sputtering method (RF sputtering method), and the surface of the thin film has a surface roughness of 10 n.
After polishing to less than mrms, KrF (248n
m) A multilayer film for an excimer laser was manufactured. The multilayer film is formed by alternately stacking 28 layers of Al 2 O 3 and SiO 2 thin films.

【0016】次に、本実施例のレーザ用反射鏡のレーザ
光に対する耐久性を従来例と比較するために、同様の合
成石英基板に膜厚5μmのSiCの薄膜を蒸着し、その
表面を上記と同じ表面粗さに研磨したうえで上記と同様
の多層膜を形成させたレーザ用反射鏡をサンプルAと
し、本実施例のレーザ用反射鏡をサンプルBとし、上記
と同様の合成石英基板に直接上記と同様の多層膜を形成
させたものをサンプルCとして、各サンプルについて耐
久試験を行った。該耐久試験は、パルス幅15nsのK
rFレーザを、周波数200Hz、スポット直径5mm
で、エネルギーを一定にして5×107 回照射したの
ち、各サンプルの表面をノマルスキー顕微鏡で観察する
ことによって行った。1ショット当りのエネルギーを3
段階に変化させて耐久試験を行った結果を表2に示す。
Next, in order to compare the durability of the laser reflecting mirror of this embodiment with respect to the laser beam to the conventional example, a 5 μm-thickness SiC thin film was vapor-deposited on a similar synthetic quartz substrate, and the surface thereof was treated as described above. A laser reflecting mirror having the same surface roughness as above and having a multilayer film similar to the above formed thereon was designated as sample A, and the laser reflecting mirror of this example was designated as sample B, and a synthetic quartz substrate similar to the above was used. A durability test was conducted on each sample, with the sample C having a multilayer film directly formed thereon as described above. The durability test was performed with a pulse width of 15 ns K
rF laser, frequency 200Hz, spot diameter 5mm
After irradiating 5 × 10 7 times with the energy kept constant, the surface of each sample was observed with a Nomarski microscope. 3 energy per shot
Table 2 shows the results of the durability test performed by changing the stages.

【0017】[0017]

【表2】 ○:変化なし △:やや変化有り膜剥れなし ×:膜剥れ 表2から、照射されるレーザ光のエネルギーが高い場合
には、サンプルB、すなわち、本実施例のレーザ用反射
鏡の耐久性が他の2つのサンプルを大きく上まわること
が判かる。
[Table 2] ◯: No change Δ: Slight change, no film peeling ×: Film peeling From Table 2, when the energy of the laser light to be irradiated is high, the durability of Sample B, that is, the laser reflecting mirror of the present example. It turns out that the sex far exceeds the other two samples.

【0018】[0018]

【発明の効果】本発明は上述のとおり構成されているの
で、以下に記載するような効果を奏する。
Since the present invention is configured as described above, it has the following effects.

【0019】平均パワーの高いレーザ光に対するレーザ
用反射鏡の耐久性を大幅に向上できる。
The durability of the laser reflecting mirror for a laser beam having a high average power can be greatly improved.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 沢村 光治 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koji Sawamura 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基板と、誘電体材料の多層膜からなるレ
ーザ用反射鏡であって、前記基板と前記多層膜の間にダ
イヤモンド類の材料からなる薄膜が設けられていること
を特徴とするレーザ用反射鏡。
1. A laser reflection mirror comprising a substrate and a multilayer film of a dielectric material, wherein a thin film made of a diamond-like material is provided between the substrate and the multilayer film. Laser reflector.
【請求項2】 ダイヤモンド類の材料からなる薄膜の膜
厚が50nmないし1mmであることを特徴とする請求
項1記載のレーザ用反射鏡。
2. The laser reflecting mirror according to claim 1, wherein the thin film made of a diamond material has a thickness of 50 nm to 1 mm.
【請求項3】 ダイヤモンド類の材料からなる薄膜の表
面粗さが100nmrms以下であることを特徴とする
請求項1または2記載のレーザ用反射鏡。
3. The laser reflecting mirror according to claim 1, wherein the thin film made of a diamond material has a surface roughness of 100 nmrms or less.
JP4453693A 1993-02-09 1993-02-09 Reflection mirror for laser Pending JPH06235806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4453693A JPH06235806A (en) 1993-02-09 1993-02-09 Reflection mirror for laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4453693A JPH06235806A (en) 1993-02-09 1993-02-09 Reflection mirror for laser

Publications (1)

Publication Number Publication Date
JPH06235806A true JPH06235806A (en) 1994-08-23

Family

ID=12694234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4453693A Pending JPH06235806A (en) 1993-02-09 1993-02-09 Reflection mirror for laser

Country Status (1)

Country Link
JP (1) JPH06235806A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017502333A (en) * 2013-12-09 2017-01-19 エレメント シックス テクノロジーズ リミテッド Synthetic diamond optical mirror
US9835778B1 (en) * 2013-09-13 2017-12-05 Lockheed Martin Corporation Apparatus and method for a diamond substrate for a multi-layered dielectric diffraction grating
CN112713499A (en) * 2020-12-30 2021-04-27 武汉光谷航天三江激光产业技术研究院有限公司 Optical element heat dissipation device and method
DE112019006508T5 (en) 2018-12-25 2021-09-30 Sony Group Corporation LASER DEVICE
WO2022015504A1 (en) * 2020-07-13 2022-01-20 Raytheon Company High-energy laser apparatus for thin film temperature sensing

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9835778B1 (en) * 2013-09-13 2017-12-05 Lockheed Martin Corporation Apparatus and method for a diamond substrate for a multi-layered dielectric diffraction grating
JP2017502333A (en) * 2013-12-09 2017-01-19 エレメント シックス テクノロジーズ リミテッド Synthetic diamond optical mirror
US10191190B2 (en) 2013-12-09 2019-01-29 Element Six Technologies Limited Synthetic diamond optical mirrors
DE112019006508T5 (en) 2018-12-25 2021-09-30 Sony Group Corporation LASER DEVICE
WO2022015504A1 (en) * 2020-07-13 2022-01-20 Raytheon Company High-energy laser apparatus for thin film temperature sensing
CN112713499A (en) * 2020-12-30 2021-04-27 武汉光谷航天三江激光产业技术研究院有限公司 Optical element heat dissipation device and method

Similar Documents

Publication Publication Date Title
KR101388570B1 (en) Antireflection film, method for heating metal film, and heating apparatus
US4856019A (en) Reflector for excimer laser and excimer laser apparatus using the reflector
JP7495922B2 (en) Reflective Optical Elements
US6529321B2 (en) Protective overcoat for replicated diffraction gratings
JP4549019B2 (en) Protective film for replicated diffraction gratings
US5283692A (en) Multi-layer graded reflectivity mirror
JP2017027077A (en) Excimer laser element with improved endurance
JP2001074931A (en) Optical thin film, optical element and optical device
JPH06235806A (en) Reflection mirror for laser
JP3033323B2 (en) Method for manufacturing X-ray multilayer mirror
JPH0336402B2 (en)
JP2993261B2 (en) X-ray multilayer reflector
JP2004523797A (en) Distributed multilayer mirror
JP2006308483A (en) Multilayer film and method for manufacturing multilayer film
JPS6126768A (en) Reflection mirror in optical apparatus
EP4203205A1 (en) A laser amplification module for a solid-state laser system and a method for manufacturing thereof
JPH06300906A (en) Mirror for high-output laser beam and synchrotron radiation light
Schulz et al. Plasma pretreatment and coating of PMMA Fresnel lenses
JP3283145B2 (en) Reflector umbrella for strobe light using reflector
JPS62238504A (en) Laser reflecting mirror
JP2004287273A (en) Reflective film
JPH09166703A (en) Rear mirror for uv. region to visible light region
JP2008096271A (en) Multilayered film mirror and its manufacturing method
JPH02145999A (en) Multi-layered reflecting mirror for x-ray
JPH11103106A (en) Reflector mirror for laser