JP2004287273A - Reflective film - Google Patents

Reflective film Download PDF

Info

Publication number
JP2004287273A
JP2004287273A JP2003081382A JP2003081382A JP2004287273A JP 2004287273 A JP2004287273 A JP 2004287273A JP 2003081382 A JP2003081382 A JP 2003081382A JP 2003081382 A JP2003081382 A JP 2003081382A JP 2004287273 A JP2004287273 A JP 2004287273A
Authority
JP
Japan
Prior art keywords
yag
film
refractive index
laser
reflective film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003081382A
Other languages
Japanese (ja)
Other versions
JP4136744B2 (en
JP2004287273A5 (en
Inventor
Kunio Yoshida
國雄 吉田
Hideharu Ogami
秀晴 大上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2003081382A priority Critical patent/JP4136744B2/en
Publication of JP2004287273A publication Critical patent/JP2004287273A/en
Publication of JP2004287273A5 publication Critical patent/JP2004287273A5/ja
Application granted granted Critical
Publication of JP4136744B2 publication Critical patent/JP4136744B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Optical Filters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reflective film for which the flexibility of film design is widened and which is improved in laser damage resistance. <P>SOLUTION: The reflective film has one or more layers of optical thin films essentially composed of YAG (Y<SB>3</SB>Al<SB>5</SB>O<SB>12</SB>: yttrium aluminum garnet) deposited by using a crystalline body or sintered compact of, for example, YAG as a material for vapor deposition or a sputtering target. The fresh design by utilizing the refractive index of the YAG is possible with the reflective film. In addition, the design of the optical thin film is performed by using the optical thin film on the extreme surface side or on a substrate side by taking advantage of its characteristics, such as weatherability, hardness and laser damage resistance. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、光学薄膜により構成され、例えば、レーザ共振器、レーザ反射鏡、レーザ素子等の部品に適用される反射膜に係り、特に、膜設計の自由度を広げると共に耐レーザ損傷性に優れた反射膜の改良に関するものである。
【0002】
【従来の技術】
光学薄膜により構成されるこの種の反射膜は、従来、以下の表1に示す代表的な膜材料を用いて構成されている。
【0003】
【表1】

Figure 2004287273
例えば、レーザ共振器、レーザ反射鏡、レーザ素子等を対象とした単一波長に対する反射膜について光学薄膜を用いて設計するには、屈折率の異なる膜材料を少なくとも2種類以上用いて、光学的膜厚nd(n:屈折率、d:物理的膜厚)を4/λ(λ:設計中心波長)として、例えば、高屈折率層と低屈折率層を交互に積層すればよい。
【0004】
そして、反射膜の設計中心波長λにおける反射率は、低屈折率層と高屈折率層の屈折率差と膜総数によって決定される。すなわち、この屈折率差が大きく、膜総数が多い反射膜ほど設計中心波長λにおける反射率は高くなる。
【0005】
以下、低屈折率層としてSiO、高屈折率層としてTaを用い、表2に示すように高屈折率層と低屈折率層を交互に23層積層して成る従来例に係る反射膜の分光反射特性を図1に示す。
【0006】
そして、図1のグラフ図から確認されるように、設計中心波長(λ=1064nm)における反射率は、99.96%に達する。
【0007】
【表2】
Figure 2004287273
【0008】
【発明が解決しようとする課題】
ところで、高屈折率層と低屈折率層を交互に積層して構成される反射膜の設計中心波長λにおける反射率は、上述したように低屈折率層と高屈折率層の屈折率差と膜総数によって決定され、この屈折率差が大きく、膜総数が多い反射膜ほど設計中心波長λにおける反射率は高くなる。従って、屈折率差が大きい少なくとも2種類以上の膜材料を適用することで膜総数を減らすことも可能である。
【0009】
しかしながら、高出力レーザに適用する反射膜については、膜総数を減らすために屈折率差の大きい膜材料を選択することは望ましくない。
【0010】
例えば、可視域から近赤外域のレーザ反射鏡の低屈折率層にはレーザ損傷閾値が高いSiOを用いることが一般的であり、高屈折率層には、屈折率が高い順にTiO、Ta、ZrOを用いる場合が多い。しかし、この屈折率が高い順にレーザ損傷閾値が低い欠点があった。
【0011】
従って、レーザ損傷閾値が低い膜材料を用いて反射膜を構成した場合、高出力レーザにより反射膜がダメージを受けて、反射膜のみならず、反射膜が施されている素子そのものまでがダメージを受けて、その機器の本来の性能が発揮されなくなる問題点があった。
【0012】
本発明はこのような問題点に着目してなされたもので、その課題とするところは、反射膜に適用できる新規な膜材料を提供して膜設計の自由度を広げると共に耐レーザ損傷性に優れた反射膜を提供することにある。
【0013】
【課題を解決するための手段】
すなわち、請求項1に係る発明は、
反射膜を前提とし、
YAG(YAl12:イットリウムアルミニウムガーネット)を主成分とする光学薄膜を1層以上有することを特徴とし、
請求項2に係る発明は、
請求項1記載の発明に係る反射膜を前提とし、
レーザ共振器、レーザ反射鏡またはレーザ素子のいずれかに施されることを特徴とするものである。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態について詳細に説明する。
【0015】
本発明は、反射膜を構成する光学薄膜として、YAG(YAl12:イットリウムアルミニウムガーネット)を主成分とする光学薄膜を新たに追加することで膜設計の自由度を広げると共に耐レーザ損傷性の向上を可能としている。
【0016】
すなわち、YAG(YAl12:イットリウムアルミニウムガーネット)はレーザ結晶として知られているように非常に硬度が高く、熱伝導率もよく、化学的にも安定で、透過波長域も約250〜5000nmと広く、さらに、光吸収も非常に少なく、耐レーザ損傷性も高いことから、本発明者等はYAGのこれ等特性に着目して反射膜への応用を試み、上記課題を解決している。
【0017】
そして、上述したTiO、Ta、ZrOに代えてYAGを適用し、低屈折率層としてのSiOと組み合わせることにより耐レーザ損傷性に優れた反射膜の提供を可能にしている。
【0018】
但し、YAGの屈折率は1.80で、高出力レーザ用反射鏡の高屈折率層に用いられるTaの屈折率2.10より小さいため、SiOとTaで構成した上記23層の反射鏡と同じ反射率99.96%とするにはSiOとYAGを交互に39層以上積層する必要があるが、現在の成膜技術において39層程度の蒸着は困難なことではない。
【0019】
尚、YAG(YAl12:イットリウムアルミニウムガーネット)を主成分とする光学薄膜については、YAG(YAl12:イットリウムアルミニウムガーネット)の結晶体若しくは焼結体、または酸素欠損を有するYAG(YAl12−X)の結晶体若しくは焼結体を蒸着材料若しくはスパッタターゲットとして成膜してもよいし、あるいは、Y(イットリア)とAl(アルミナ)の結晶体若しくは焼結体、または酸素欠損を有するイットリア(Y3−X)と酸素欠損を有するアルミナ(Al3−X)の結晶体若しくは焼結体を蒸着材料若しくはスパッタターゲットとして成膜してもよい。
【0020】
以下、YAG(YAl12:イットリウムアルミニウムガーネット)を主成分とする光学薄膜が適用された本発明に係る反射膜について具体的に説明する。
【0021】
すなわち、高屈折率層にYAGを用い、低屈折率層にSiOを用いた39層の本発明に係る反射膜の構成を表3〜表4に示し、かつ、この反射膜における分光反射特性を図2に示す。
【0022】
【表3】
Figure 2004287273
【0023】
【表4】
Figure 2004287273
【0024】
【実施例】
以下、本発明の実施例について比較例を挙げて具体的に説明する。
【0025】
まず、高屈折率層にTaを用いた表2に示す比較例に係るNd:YAGレーザ反射鏡(設計中心波長λ=1064nm)と、高屈折率層にYAGを用いた表3〜4に示す実施例に係るNd:YAGレーザ反射鏡(設計中心波長λ=1064nm)を実際に作製し、各Nd:YAGレーザ反射鏡の耐レーザ損傷性を比較した。
【0026】
尚、実施例および比較例に係るNd:YAGレーザ反射鏡の作製には、イオンアシスト電子ビーム蒸着法を用い、かつ、基板ガラスBK7を200℃に加熱し、成膜中には酸素を導入した。
【0027】
そして、各Nd:YAGレーザ反射鏡の耐レーザ損傷性を比較するため、発振波長1064nm、パルス幅10nsのNd:YAGレーザをレンズを用いて集光させ、そのパワー密度(J/cm)により損傷を受けるか受けないかを調べるレーザ損傷テストを各Nd:YAGレーザ反射鏡に対し実施した。
【0028】
その結果、実施例に係るNd:YAGレーザ反射鏡のレーザ損傷閾値は20(J/cm)、比較例に係るNd:YAGレーザ反射鏡のレーザ損傷閾値は14(J/cm)であった。
【0029】
そして、SiOのレーザ損傷閾値は非常に高いので、実施例に係るNd:YAGレーザ反射鏡のレーザ損傷閾値が、比較例に係るNd:YAGレーザ反射鏡のレーザ損傷閾値より高い原因は、高屈折率層に用いているTaとYAGにおけるレーザ損傷閾値の差が反映しているものと考えられる。
【0030】
【発明の効果】
本発明に係る反射膜によれば、
YAG(YAl12:イットリウムアルミニウムガーネット)を主成分とする光学薄膜を1層以上有するため以下のような顕著な効果を有する。
【0031】
まず、YAGの屈折率を利用して新たな反射膜の設計が可能となり、かつ、YAGの光学薄膜が具備する耐候性、硬度、付着力等の特性を生かして今までにない特性を有した反射膜を得ることが可能となる効果を有する。
【0032】
さらに、YAGの光学薄膜は耐レーザ損傷性にも優れているので、SiO等と組み合わせることにより、耐レーザ損傷性に優れた反射膜を得ることができる効果を有する。
【図面の簡単な説明】
【図1】従来例に係る反射膜の分光反射特性を示すグラフ図。
【図2】本発明に係る反射膜の分光反射特性を示すグラフ図。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a reflection film formed of an optical thin film and applied to components such as a laser resonator, a laser reflector, and a laser element. In particular, the present invention expands the degree of freedom in film design and is excellent in laser damage resistance. The improvement of the reflective film.
[0002]
[Prior art]
This type of reflective film composed of an optical thin film has conventionally been constructed using typical film materials shown in Table 1 below.
[0003]
[Table 1]
Figure 2004287273
For example, in order to design a reflective film for a single wavelength for a laser resonator, a laser reflecting mirror, a laser element, and the like using an optical thin film, at least two types of film materials having different refractive indexes are used. Assuming that the film thickness nd (n: refractive index, d: physical film thickness) is 4 / λ (λ: design center wavelength), for example, high refractive index layers and low refractive index layers may be alternately laminated.
[0004]
The reflectance at the design center wavelength λ of the reflective film is determined by the difference in refractive index between the low refractive index layer and the high refractive index layer and the total number of films. That is, the larger the total number of films, the larger the refractive index difference, and the higher the reflectance at the design center wavelength λ.
[0005]
Hereinafter, a conventional example in which SiO 2 is used as the low refractive index layer, Ta 2 O 5 is used as the high refractive index layer, and 23 high refractive index layers and low refractive index layers are alternately stacked as shown in Table 2. FIG. 1 shows the spectral reflection characteristics of the reflection film.
[0006]
Then, as can be seen from the graph of FIG. 1, the reflectance at the design center wavelength (λ = 1064 nm) reaches 99.96%.
[0007]
[Table 2]
Figure 2004287273
[0008]
[Problems to be solved by the invention]
By the way, the reflectance at the design center wavelength λ of the reflective film formed by alternately laminating the high refractive index layer and the low refractive index layer is, as described above, the difference between the refractive index difference between the low refractive index layer and the high refractive index layer. The refractive index is determined by the total number of films, and the refractive index difference is large, and the reflection film at the design center wavelength λ increases as the number of films increases. Therefore, it is possible to reduce the total number of films by applying at least two types of film materials having a large difference in refractive index.
[0009]
However, for a reflective film applied to a high-power laser, it is not desirable to select a film material having a large refractive index difference in order to reduce the total number of films.
[0010]
For example, it is common to use SiO 2 having a high laser damage threshold for the low refractive index layer of the laser reflector in the visible to near-infrared region, and for the high refractive index layer, TiO 2 , Ta 2 O 5 and ZrO 2 are often used. However, there was a drawback that the laser damage threshold was lower in the order of higher refractive index.
[0011]
Therefore, when a reflective film is formed using a film material having a low laser damage threshold, the reflective film is damaged by the high-power laser, and not only the reflective film but also the element itself to which the reflective film is applied is damaged. As a result, there is a problem that the original performance of the device is not exhibited.
[0012]
The present invention has been made in view of such a problem, and an object of the present invention is to provide a novel film material applicable to a reflective film to increase the degree of freedom in film design and improve laser damage resistance. It is to provide an excellent reflection film.
[0013]
[Means for Solving the Problems]
That is, the invention according to claim 1 is
Assuming a reflective film,
It has one or more optical thin films containing YAG (Y 3 Al 5 O 12 : yttrium aluminum garnet) as a main component,
The invention according to claim 2 is
Assuming the reflective film according to the invention of claim 1,
The present invention is characterized in that it is applied to any one of a laser resonator, a laser reflecting mirror, and a laser element.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
[0015]
According to the present invention, the degree of freedom in film design is increased and laser resistance is increased by newly adding an optical thin film mainly composed of YAG (Y 3 Al 5 O 12 : yttrium aluminum garnet) as an optical thin film constituting a reflective film. The damageability can be improved.
[0016]
That is, YAG (Y 3 Al 5 O 12 : yttrium aluminum garnet) has a very high hardness, a good thermal conductivity, is chemically stable, and has a transmission wavelength range of about 250 as known as a laser crystal. The present inventors have attempted to apply YAG to a reflective film by focusing on these characteristics of YAG, and have solved the above-mentioned problems. ing.
[0017]
Then, YAG is applied instead of TiO 2 , Ta 2 O 5 , and ZrO 2 described above, and it is possible to provide a reflective film having excellent laser damage resistance by combining with SiO 2 as a low refractive index layer. .
[0018]
However, since the refractive index of YAG is 1.80, which is smaller than the refractive index 2.10 of Ta 2 O 5 used for the high refractive index layer of the high power laser reflecting mirror, it is composed of SiO 2 and Ta 2 O 5 . It is necessary to alternately laminate 39 or more layers of SiO 2 and YAG to achieve the same reflectance of 99.96% as that of the above-mentioned 23-layer reflector, but it is difficult to deposit about 39 layers with the current film forming technology. is not.
[0019]
The optical thin film containing YAG (Y 3 Al 5 O 12 : yttrium aluminum garnet) as a main component may be a crystal or sintered body of YAG (Y 3 Al 5 O 12 : yttrium aluminum garnet) or an oxygen deficiency. A crystal or sintered body of YAG (Y 3 Al 5 O 12-X ) may be formed as a deposition material or a sputtering target, or Y 2 O 3 (yttria) and Al 2 O 3 (alumina) ), Or a crystal or sintered body of yttria (Y 2 O 3-X ) having oxygen deficiency and alumina (Al 2 O 3-X ) having oxygen deficiency as a deposition material or a sputter target. It may be formed as a film.
[0020]
Hereinafter, a reflective film according to the present invention to which an optical thin film containing YAG (Y 3 Al 5 O 12 : yttrium aluminum garnet) as a main component is applied will be specifically described.
[0021]
That is, Tables 3 and 4 show the structures of the 39 reflective films according to the present invention in which YAG is used for the high refractive index layer and SiO 2 is used for the low refractive index layer, and the spectral reflection characteristics of this reflective film are shown in Tables 3 and 4. Is shown in FIG.
[0022]
[Table 3]
Figure 2004287273
[0023]
[Table 4]
Figure 2004287273
[0024]
【Example】
Hereinafter, examples of the present invention will be specifically described with reference to comparative examples.
[0025]
First, a Nd: YAG laser reflecting mirror (design center wavelength λ = 1064 nm) according to a comparative example shown in Table 2 using Ta 2 O 5 for the high refractive index layer, and Tables 3 to 5 using YAG for the high refractive index layer. Nd: YAG laser reflectors (design center wavelength λ = 1064 nm) according to the example shown in FIG. 4 were actually manufactured, and the laser damage resistance of each Nd: YAG laser reflector was compared.
[0026]
The Nd: YAG laser reflecting mirrors according to the examples and comparative examples were manufactured by using an ion-assisted electron beam evaporation method, heating the substrate glass BK7 to 200 ° C., and introducing oxygen during the film formation. .
[0027]
Then, in order to compare the laser damage resistance of each Nd: YAG laser reflector, an Nd: YAG laser having an oscillation wavelength of 1064 nm and a pulse width of 10 ns is condensed using a lens, and the power density (J / cm 2 ) is used. A laser damage test was performed on each Nd: YAG laser reflector to determine if it was damaged or not.
[0028]
As a result, the laser damage threshold of the Nd: YAG laser reflector according to the example was 20 (J / cm 2 ), and the laser damage threshold of the Nd: YAG laser reflector according to the comparative example was 14 (J / cm 2 ). Was.
[0029]
Since the laser damage threshold of SiO 2 is very high, the reason why the laser damage threshold of the Nd: YAG laser reflector according to the example is higher than the laser damage threshold of the Nd: YAG laser reflector according to the comparative example is high. It is considered that the difference in the laser damage threshold between Ta 2 O 5 and YAG used for the refractive index layer is reflected.
[0030]
【The invention's effect】
According to the reflective film of the present invention,
Since it has one or more optical thin films mainly composed of YAG (Y 3 Al 5 O 12 : yttrium aluminum garnet), the following remarkable effects are obtained.
[0031]
First, it became possible to design a new reflective film using the refractive index of YAG, and it had unprecedented characteristics by making use of the characteristics of the optical thin film of YAG such as weather resistance, hardness, and adhesion. This has the effect that a reflective film can be obtained.
[0032]
Furthermore, since the optical thin film of YAG is also excellent in laser damage resistance, by combining it with SiO 2 or the like, there is an effect that a reflective film having excellent laser damage resistance can be obtained.
[Brief description of the drawings]
FIG. 1 is a graph showing a spectral reflection characteristic of a reflection film according to a conventional example.
FIG. 2 is a graph showing a spectral reflection characteristic of a reflection film according to the present invention.

Claims (2)

YAG(YAl12:イットリウムアルミニウムガーネット)を主成分とする光学薄膜を1層以上有することを特徴とする反射膜。A reflection film comprising one or more optical thin films mainly composed of YAG (Y 3 Al 5 O 12 : yttrium aluminum garnet). レーザ共振器、レーザ反射鏡またはレーザ素子のいずれかに施されることを特徴とする請求項1記載の反射膜。2. The reflection film according to claim 1, wherein the reflection film is applied to any one of a laser resonator, a laser reflector, and a laser element.
JP2003081382A 2003-03-24 2003-03-24 Reflective film Expired - Fee Related JP4136744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003081382A JP4136744B2 (en) 2003-03-24 2003-03-24 Reflective film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003081382A JP4136744B2 (en) 2003-03-24 2003-03-24 Reflective film

Publications (3)

Publication Number Publication Date
JP2004287273A true JP2004287273A (en) 2004-10-14
JP2004287273A5 JP2004287273A5 (en) 2005-10-06
JP4136744B2 JP4136744B2 (en) 2008-08-20

Family

ID=33294967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003081382A Expired - Fee Related JP4136744B2 (en) 2003-03-24 2003-03-24 Reflective film

Country Status (1)

Country Link
JP (1) JP4136744B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1308715C (en) * 2004-11-26 2007-04-04 中国科学院上海光学精密机械研究所 Preparation of Yb-Gd-Ga doped garnet planar optical waveguide
JP2013161609A (en) * 2012-02-03 2013-08-19 High Energy Accelerator Research Organization Laser compton scattering device
CN112266571A (en) * 2020-10-26 2021-01-26 东莞市鑫聚光电科技股份有限公司 PDLC light modulation film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1308715C (en) * 2004-11-26 2007-04-04 中国科学院上海光学精密机械研究所 Preparation of Yb-Gd-Ga doped garnet planar optical waveguide
JP2013161609A (en) * 2012-02-03 2013-08-19 High Energy Accelerator Research Organization Laser compton scattering device
CN112266571A (en) * 2020-10-26 2021-01-26 东莞市鑫聚光电科技股份有限公司 PDLC light modulation film

Also Published As

Publication number Publication date
JP4136744B2 (en) 2008-08-20

Similar Documents

Publication Publication Date Title
JP2629693B2 (en) Excimer laser mirror
JP2691651B2 (en) Reflector
JP2838525B2 (en) Reflector
JP2004287273A (en) Reflective film
JP2010224350A (en) Absorption-type multilayer film nd filter and manufacturing method therefor
JP2566634B2 (en) Multi-layer antireflection film
JP2748066B2 (en) Reflector
JPH052101A (en) Optical component
JP4063062B2 (en) Reflector
JP2006030288A (en) Dielectric multilayer film mirror
JPH077225A (en) Reflector
JP2003101126A (en) Semiconductor laser device and method of manufacturing the same
JP2001074903A (en) Antireflection film and optical device
JPH11101903A (en) High reflection mirror for excimer laser
JP2004287274A (en) Antireflection film
JP3276182B2 (en) Surface reflector
JPH06235806A (en) Reflection mirror for laser
JP2928784B2 (en) Multilayer reflector
TWI357698B (en) Semiconductor laser device
JP4672101B2 (en) Infrared filter
JP4177146B2 (en) Two-layer antireflection film
JP3084784B2 (en) Argon gas laser mirror
JP2018016859A (en) Reflector
JP3679500B2 (en) Light splitting film, ND filter, and light splitting element
JPS60187082A (en) Semiconductor laser element and manufacture thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050524

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080521

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080603

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140613

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees