JPH06235689A - Fatigue test method - Google Patents

Fatigue test method

Info

Publication number
JPH06235689A
JPH06235689A JP2102093A JP2102093A JPH06235689A JP H06235689 A JPH06235689 A JP H06235689A JP 2102093 A JP2102093 A JP 2102093A JP 2102093 A JP2102093 A JP 2102093A JP H06235689 A JPH06235689 A JP H06235689A
Authority
JP
Japan
Prior art keywords
sample
motor
friction
supporting part
gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2102093A
Other languages
Japanese (ja)
Inventor
Junichi Seki
純一 関
Eiichi Sakida
栄一 崎田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2102093A priority Critical patent/JPH06235689A/en
Publication of JPH06235689A publication Critical patent/JPH06235689A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make possible accurate test of rotary bending fatigue of a sample having a thin diameter by rotating the sample from both directions thereby eliminating torsional effect due to friction from a supporting part. CONSTITUTION:Since a sample supporting part 13 is coupled through a bearing with a sample 11, the sample 11 is secured only by the supporting part 13 and can rotate thereabout. When a motor 12 is rotated, the sample 11 coupled through a grip chuck with the motor also rotates to transmit the rotation of the motor 12 through gears 14, 14', a transmission shaft 16, and a gear 15' to a gear 15. Since the sample 11, coupled through the grip chuck with the gear 15, also rorates at the other end thereof the sample 11 is prevented from being applied with torsional moment. Since torsional effect due to friction can be eliminated from the supporting part 13, rotary bending fatigue test can be conducted accurately for a sample having thin diameter and rotary fatigue characteristics can be compared directly between samples having thin and thick diameters.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は材料の機械的特性の評価
試験のうち、回転曲げ疲れ試験方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotary bending fatigue test method, which is one of the evaluation tests for the mechanical properties of materials.

【0002】[0002]

【従来の技術】材料の疲れ試験にはいくつかの形式があ
るが、そのうち「回転曲げ」は代表的な試験方法であ
り、小野式、中村式、ヘイ・ロバートソン式、シェンク
式などいくつかのタイプが考案され実用に供されてい
る。
2. Description of the Related Art There are several types of fatigue tests for materials, of which "rotational bending" is a typical test method, such as the Ono type, Nakamura type, Hay Robertson type, and Schenck type. Type has been devised and put to practical use.

【0003】図5に回転曲げ疲れ試験機の一例の模式図
を示す。この図で1は試料、2は試料を回転させるため
のモータ、3,6は試料1を支える支持部、4,5は試
料1に曲げを与えるための支持部である。この方式では
支持部4,5を支持部3および6を結ぶ線からずらすこ
とにより支持部4−5間の試料に曲げモーメントを発生
させ、試料1を回転させることにより引張と圧縮の応力
を交互に発生させる。
FIG. 5 shows a schematic view of an example of a rotary bending fatigue tester. In this figure, 1 is a sample, 2 is a motor for rotating the sample, 3 and 6 are supporting parts for supporting the sample 1, and 4 and 5 are supporting parts for giving bending to the sample 1. In this method, a bending moment is generated in the sample between the supporting parts 4-5 by displacing the supporting parts 4, 5 from the line connecting the supporting parts 3 and 6, and by rotating the sample 1, tensile stress and compressive stress alternate. Cause to.

【0004】ここで直径dなる円形断面の試料を試験す
る場合を考える。繰返し応力±σ0を与える曲げモーメ
ントをM1 とすると、曲げモーメントM1 としては次式
で表わされる。
Now, consider the case of testing a sample having a circular cross section having a diameter d. Assuming that the bending moment that gives the repeated stress ± σ 0 is M 1 , the bending moment M 1 is expressed by the following equation.

【0005】M1 =σ0 ×Z1 ここでZ1 は試料の断面係数であって、M 1 = σ 0 × Z 1 where Z 1 is the section modulus of the sample,

【数1】 である。また、線径d/2なる試料に繰返し応力±σ0
を与える曲げモーメントをM2 、試料の断面係数をZ2
とすると、曲げモーメントM2 としては次式で表わされ
る。
[Equation 1] Is. In addition, repeated stress ± σ 0 was applied to the sample with wire diameter d / 2
The bending moment M 2 give the section modulus of the sample Z 2
Then, the bending moment M 2 is expressed by the following equation.

【0006】M2 =σ0 ×Z2 ここで、M 2 = σ 0 × Z 2 where

【数2】 であることから、[Equation 2] Since,

【数3】 となる。[Equation 3] Becomes

【0007】以上の議論は試験機各部の摩擦を無視した
場合であるが、実際には試料支持部にフリクションが発
生している。以下にこの影響について見積もってみる。
Although the above discussion is about the case where the friction of each part of the testing machine is ignored, in reality, friction is generated in the sample support part. Below, we will estimate this effect.

【0008】試料を回転させるとき、支持部にフリクシ
ョンがあるとこれが回転を妨げようとするため試料にね
じりモーメントが生ずる。図5において、支持部4−5
間では支持部5,6の支持部の影響を受ける。線径dの
試料に曲げモーメントM1 を与えて試験する場合、支持
部4−5間に発生するねじりモーメントがTであるとす
ると、応力振幅σ1 は次式で表される。
When the sample is rotated, if there is friction in the supporting portion, this tends to hinder the rotation, so that a torsional moment is generated in the sample. In FIG. 5, the support portion 4-5
In the interval, it is affected by the supporting portions of the supporting portions 5 and 6. When a bending moment M 1 is applied to a sample having a wire diameter d and the test is performed, assuming that the torsion moment generated between the supporting portions 4-5 is T, the stress amplitude σ 1 is expressed by the following equation.

【0009】[0009]

【数4】 ここで、Tの大きさがM1 の1/10(T=0.1
1 )であると仮定すると、応力振幅σ1 としては、
[Equation 4] Here, the size of T is 1/10 of M 1 (T = 0.1
Assuming that M 1 ), the stress amplitude σ 1 is

【数5】 となる。[Equation 5] Becomes

【0010】すなわち、線径dの試料を試験する際、曲
げモーメントの1/10と仮定したねじりモーメントを
考慮して応力振幅を計算しても、これを無視した場合に
比べたかだか1%大きくなる程度である。
That is, when a sample with a wire diameter d is tested, even if the stress amplitude is calculated in consideration of the torsional moment, which is assumed to be 1/10 of the bending moment, it is at most 1% larger than when the stress amplitude is ignored. It is a degree.

【0011】ここで、同じ試験機で線径d/2の試料を
試験する場合もT=0.1M1 の関係が成り立つものと
して、同様に応力振幅σ2 を計算すると、
Here, also when testing a sample having a wire diameter of d / 2 with the same tester, assuming that the relationship of T = 0.1M 1 holds, the stress amplitude σ 2 is calculated in the same manner.

【数6】 となる。[Equation 6] Becomes

【0012】すなわち、線径d/2の試料を試験する際
はねじりモーメントの効果は大きく、これを考慮して応
力振幅を計算すると、無視した場合の1.44倍にもな
る。
That is, when a sample having a wire diameter d / 2 is tested, the effect of the torsional moment is great, and when the stress amplitude is calculated in consideration of this, it is 1.44 times as large as when ignored.

【0013】同様な計算を線径を変えて行った結果を図
6に示す。図6は、回転曲げ疲れ試験においてねじりモ
ーメントを考慮した場合(線径dでねじりモーメント/
曲げモーメント=0.1とした場合)の応力計算値の無
視した場合に対する比率を示した図である。この図で明
らかなように、試料支持部のフリクションに基づくねじ
りモーメントの効果は細径の試料で顕著に現れ、試験結
果に大きな影響を及ぼす。
FIG. 6 shows the result of performing the same calculation while changing the wire diameter. FIG. 6 shows a case in which the torsional moment is taken into consideration in the rotating bending fatigue test (the torsional moment at the wire diameter d / the torsional moment /
It is the figure which showed the ratio with respect to the case where the stress calculation value of (when bending moment = 0.1) was disregarded. As is clear from this figure, the effect of the torsional moment based on the friction of the sample support portion appears remarkably in the thin sample and has a great influence on the test result.

【0014】[0014]

【発明が解決しようとする課題】このように、回転曲げ
疲れ試験機で細径試料を試験すると結果にバラツキが大
きくなって正確なデータが得られず、市販の試験機では
鋼線においてφ2mm程度が試験の限界であった。このた
め、φ2mm未満の細線については例えばカンチレバー式
の疲れ試験機で評価せざるを得ず、太径試料についての
疲れ特性とは直接比較することができなかった。
As described above, when a small-diameter sample is tested by a rotary bending fatigue tester, the results vary widely and accurate data cannot be obtained. With a commercially available tester, a steel wire of about 2 mm in diameter is obtained. Was the limit of the test. For this reason, a thin wire with a diameter of less than 2 mm must be evaluated by, for example, a cantilever type fatigue tester, and the fatigue characteristics of a large diameter sample cannot be directly compared.

【0015】本発明は、上記に鑑みてなされたもので、
その目的としては、細径試料についても正確な測定を可
能にした疲れ試験方法を提供することにある。
The present invention has been made in view of the above,
It is an object of the present invention to provide a fatigue test method that enables accurate measurement even for small diameter samples.

【0016】[0016]

【課題を解決するための手段】上記目的を達成するた
め、試料を曲げながら回転させることにより繰返しの荷
重を負荷する方式の疲れ試験において、本発明は、試料
のうちの繰返しの荷重を与える部分に対し両方向から回
転力を導入することを要旨とする。
In order to achieve the above object, in a fatigue test of a system in which a sample is bent and rotated while a repeated load is applied, the present invention provides a portion of the sample to which a repeated load is applied. However, the main point is to introduce rotational force from both directions.

【0017】[0017]

【作用】疲れ試験のうち、回転曲げ疲れ試験は高速であ
るなどの利点があるため広く利用されているが、この試
験により鋼線の耐疲れ特性を評価した際、φ2.3mmに
比べφ1.8mmの鋼線でデータのバラツキが大きいこと
に着目した。この差異について検討した結果、試料が細
径になると試験機各部の摩擦の影響が強く現れるのでは
ないかと推定され、試算を行ったところ、細線試料では
試料支持部のフリクションに起因するねじりモーメント
が無視し難いことが明らかとなった。
[Function] Among the fatigue tests, the rotary bending fatigue test is widely used because of its advantages such as high speed. When the fatigue resistance of the steel wire is evaluated by this test, it is φ1. We paid attention to the fact that there is a large variation in the data for the 8 mm steel wire. As a result of investigating this difference, it is estimated that the influence of friction of each part of the testing machine may appear strongly when the sample becomes thin, and a trial calculation was performed.Thus, in the thin wire sample, the torsion moment due to the friction of the sample support part was found. It became clear that it was hard to ignore.

【0018】回転曲げ試験では試料に曲げと回転が与え
られるが、従来の試験機では回転は試料の一端から導入
されるのが通例である。この場合、試料は回転導入側と
反対の側でも支持せざるを得ないことから、この部分の
フリクションに起因するねじりモーメントが生じるのは
避けられない。もちろん、この部分のフリクションを軽
減する努力はなされているが、原理上0とすることは不
可能であり、現状ではφ2mmより細い線の試験は困難な
状況である。
In the rotary bending test, the sample is subjected to bending and rotation, but in the conventional tester, the rotation is usually introduced from one end of the sample. In this case, since the sample must be supported on the side opposite to the rotation introducing side, it is unavoidable that a torsional moment is generated due to the friction of this portion. Of course, efforts have been made to reduce the friction in this portion, but it is impossible to set it to 0 in principle, and it is currently difficult to test a line thinner than φ2 mm.

【0019】そこで、本発明では試料を両方向から回転
させることで支持部のフリクションによるねじり影響を
除くようにした。
Therefore, in the present invention, the influence of the torsion due to the friction of the supporting portion is eliminated by rotating the sample from both directions.

【0020】[0020]

【実施例】以下、図面を用いて本発明の実施例を説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0021】図1は本発明の第一の実施例であって、1
1は試料、12は試料把持用のチャックを設けたモー
タ、13は試料支持部、14,14’及び15,15’
はそれぞれ噛み合って回転を伝達する歯車であって、歯
車15には試料把持のためのチャックを取付けてある。
また、16は歯車14’の回転を歯車15’に伝達する
伝導軸である。ここで、試料支持部13は、試料11に
対してベアリングを介して結合されており、この結果、
試料11としては、この試料支持部13によって位置の
み固定され、試料支持部13に対して回転可能となって
いる。
FIG. 1 shows a first embodiment of the present invention.
Reference numeral 1 is a sample, 12 is a motor provided with a chuck for gripping a sample, 13 is a sample support portion, and 14 and 14 'and 15, 15'.
Are gears that mesh with each other to transmit rotation, and a chuck for holding a sample is attached to the gear 15.
Reference numeral 16 is a transmission shaft that transmits the rotation of the gear 14 'to the gear 15'. Here, the sample support 13 is coupled to the sample 11 via a bearing, and as a result,
Only the position of the sample 11 is fixed by the sample support portion 13, and the sample 11 is rotatable with respect to the sample support portion 13.

【0022】この実施例では、モータ12が回転する
と、歯車14,14’,15’を介して歯車15も同一
の回転をするので、試料11にねじりモーメントが発生
することを防止することができる。もし、従来の試験機
のように歯車14,14’,15’,15という伝達機
構がない場合、試料11はモータ12側のみから回転力
を与えられることとなり、支持部13でのフリクション
がこの回転を妨げるように働くため、モータ12と試料
支持部13との間にねじりモーメントが発生する。
In this embodiment, when the motor 12 rotates, the gear 15 also rotates in the same way via the gears 14, 14 ', 15', so that it is possible to prevent a torsion moment from being generated in the sample 11. . If there is no transmission mechanism such as gears 14, 14 ', 15', 15 as in the conventional tester, the sample 11 is given a rotational force only from the motor 12 side, and the friction at the support portion 13 is Since it works so as to prevent rotation, a torsion moment is generated between the motor 12 and the sample support portion 13.

【0023】なお、上述した伝達機構の構成としては、
上記実施例のものに限定されるものではなく、例えば図
2の第二の実施例に示す如く、試料11の両端を試料支
持部13で支持しておき、モータ12の回転を伝導軸2
5および歯車26’,27’を介して歯車26,27に
伝達して歯車26,27を同一回転させるようにしても
よい。
The structure of the above-mentioned transmission mechanism is as follows.
The present invention is not limited to the above-mentioned embodiment, but for example, as shown in the second embodiment of FIG. 2, both ends of the sample 11 are supported by the sample support portions 13, and the rotation of the motor 12 is controlled by the transmission shaft 2.
5 and gears 26 'and 27' may be transmitted to the gears 26 and 27 to rotate the gears 26 and 27 in the same direction.

【0024】図3は本発明の第三の実施例であって、3
1は試料、32及び32’は互いに同期をとって回転す
るモータ、33,34は試料支持部である。ここで、試
料支持部33,34は、試料31に対してベアリングを
介して結合されており、この結果、試料31としては、
この試料支持部33,34によって位置のみ固定され、
試料支持部33,34に対して回転可能となっている。
FIG. 3 shows a third embodiment of the present invention.
Reference numeral 1 is a sample, 32 and 32 'are motors that rotate in synchronization with each other, and 33 and 34 are sample supports. Here, the sample support portions 33 and 34 are coupled to the sample 31 via bearings, and as a result, the sample 31 is
Only the position is fixed by the sample support portions 33 and 34,
It is rotatable with respect to the sample support portions 33 and 34.

【0025】本実施例においては、試料支持部33,3
4間でフリクションに差がなければねじりモーメントも
発生しないことに着目して、両者のフリクションを実効
上揃えることで、ねじりモーメントの影響を防止するこ
とができる。
In the present embodiment, the sample support portions 33, 3
It is possible to prevent the influence of the twisting moment by effectively aligning the two frictions, paying attention that the twisting moment does not occur unless there is a difference in friction between the four.

【0026】図4は、本発明の第四の実施例であって、
試料31の回転をセンサ47及び47’で検出し、パー
ソナルコンピュータ48において両者の回転が一致する
ようにモータ回転コントローラ44を制御するようにし
たものである。
FIG. 4 shows a fourth embodiment of the present invention,
The rotation of the sample 31 is detected by the sensors 47 and 47 ', and the motor rotation controller 44 is controlled in the personal computer 48 so that the rotations of the two coincide with each other.

【0027】したがって、本実施例によれば、センサ4
7及び47’の位置での試料31は同一の回転をするた
め試料31にねじりモーメントが発生することを防止す
ることができる。
Therefore, according to this embodiment, the sensor 4
Since the sample 31 at the positions 7 and 47 ′ rotate in the same manner, it is possible to prevent the sample 31 from generating a torsion moment.

【0028】なお、図4において図3における同一要素
には同一符号を付すものとする。
In FIG. 4, the same elements in FIG. 3 are designated by the same reference numerals.

【0029】[0029]

【発明の効果】以上説明したように、本発明によれば、
試料を両方向から回転させることで支持部のフリクショ
ンによるねじり影響を除くようにしたので、試料に生じ
るねじりモーメントを除去することができ、もって細径
試料の回転曲げ疲れ試験を正確に行うことができる。加
えて、公知のように疲れ特性は試験方法に依存するた
め、太径試料の回転曲げ疲れ特性とこれ以外の試験方法
による細径試料の疲れ特性とは従来直接比較できなかっ
たが、本発明によれば、直接比較が可能となる。
As described above, according to the present invention,
By rotating the sample from both directions, the effect of torsion due to the friction of the supporting part is eliminated, so the torsional moment generated in the sample can be removed, and the rotating bending fatigue test of the small diameter sample can be performed accurately. . In addition, as is well known, since the fatigue properties depend on the test method, the rotary bending fatigue properties of the large diameter sample and the fatigue properties of the small diameter sample by other test methods could not be directly compared, but the present invention According to, it becomes possible to make a direct comparison.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一の実施例の構成を示す図である。FIG. 1 is a diagram showing a configuration of a first exemplary embodiment of the present invention.

【図2】本発明の第二の実施例の構成を示す図である。FIG. 2 is a diagram showing a configuration of a second exemplary embodiment of the present invention.

【図3】本発明の第三の実施例の構成を示す図である。FIG. 3 is a diagram showing a configuration of a third exemplary embodiment of the present invention.

【図4】本発明の第四の実施例の構成を示す図である。FIG. 4 is a diagram showing a configuration of a fourth exemplary embodiment of the present invention.

【図5】従来例を示す図である。FIG. 5 is a diagram showing a conventional example.

【図6】従来例の課題を説明するための図である。FIG. 6 is a diagram for explaining a problem of a conventional example.

【符号の説明】[Explanation of symbols]

1,11,31 試料 2,12,32,32’ モータ 3,4,5,6 支持部 13,33,34 試料支持部 14,14’,15,15’,26,26’,27,2
7’ 歯車 16,25 伝導軸 44 モータ回転コントローラ 47,47’ センサ 48 パーソナルコンピュータ
1, 11, 31 Sample 2, 12, 32, 32 'Motor 3, 4, 5, 6 Support 13, 33, 34 Sample Support 14, 14', 15, 15 ', 26, 26', 27, 2
7'gear 16,25 transmission shaft 44 motor rotation controller 47,47 'sensor 48 personal computer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 試料を曲げながら回転させることにより
繰返しの荷重を負荷する方式の疲れ試験において、試料
のうちの繰返しの荷重を与える部分に対し両方向から回
転力を導入することを特徴とする疲れ試験方法。
1. A fatigue test in which a load is applied repeatedly by bending the sample while bending it, and fatigue is characterized by introducing a rotational force from both directions to a portion of the sample to which the load is applied repeatedly. Test method.
JP2102093A 1993-02-09 1993-02-09 Fatigue test method Pending JPH06235689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2102093A JPH06235689A (en) 1993-02-09 1993-02-09 Fatigue test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2102093A JPH06235689A (en) 1993-02-09 1993-02-09 Fatigue test method

Publications (1)

Publication Number Publication Date
JPH06235689A true JPH06235689A (en) 1994-08-23

Family

ID=12043360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2102093A Pending JPH06235689A (en) 1993-02-09 1993-02-09 Fatigue test method

Country Status (1)

Country Link
JP (1) JPH06235689A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014235039A (en) * 2013-05-31 2014-12-15 大電株式会社 Fatigue testing method for wire
WO2020206829A1 (en) * 2019-04-08 2020-10-15 中国矿业大学 Fretting fatigue test apparatus and method for steel wire under radial impact condition
CN113848139A (en) * 2021-09-22 2021-12-28 天津大学 A cyclic loading fatigue test device for pipeline moment of flexure
CN113848134A (en) * 2021-09-22 2021-12-28 天津大学 Fatigue test method for circularly applying bending moment to pipeline
CN113848134B (en) * 2021-09-22 2024-05-10 天津大学 Fatigue test method for applying bending moment to pipeline circulation

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014235039A (en) * 2013-05-31 2014-12-15 大電株式会社 Fatigue testing method for wire
WO2020206829A1 (en) * 2019-04-08 2020-10-15 中国矿业大学 Fretting fatigue test apparatus and method for steel wire under radial impact condition
CN113848139A (en) * 2021-09-22 2021-12-28 天津大学 A cyclic loading fatigue test device for pipeline moment of flexure
CN113848134A (en) * 2021-09-22 2021-12-28 天津大学 Fatigue test method for circularly applying bending moment to pipeline
CN113848139B (en) * 2021-09-22 2024-05-03 天津大学 Circulating loading fatigue experiment device for pipeline bending moment
CN113848134B (en) * 2021-09-22 2024-05-10 天津大学 Fatigue test method for applying bending moment to pipeline circulation

Similar Documents

Publication Publication Date Title
JP2009250679A (en) Machine for rotation-bending test
KR100377373B1 (en) Fatigue and twist tester for wires
JP2000508055A (en) Measuring device for torsional couple of rotating shaft
JPS62247222A (en) Torque detection method and apparatus therefor
JPH06235689A (en) Fatigue test method
JPH03103746A (en) Diagnostic method for insulation deterioration of electric wire - cable and measuring instrument used for the same
JP2005024379A (en) Torsion spring testing machine
JP2837939B2 (en) Auxiliary device for torsional fatigue test
EP4206638A1 (en) System and method for testing cable bending fatigue
EP0379509B1 (en) Device for non-contact measuring of stresses in a bar-shaped body
JP2012168123A (en) Chuck device for twisting test for wire sample
JP3754180B2 (en) Equipment for measuring bending properties of sheet-like samples
KR100392342B1 (en) Support system with radially rigid wire suspension
JPS5919834A (en) Torsion fatigue testing device
JPH0820349B2 (en) Torsion tester
JP3278772B2 (en) Torque sensor
JPH09243482A (en) Measuring apparatus for friction force
JP3395648B2 (en) Rotary torque measuring device
JP4390126B2 (en) High-sensitivity torque sensor adjustment method applicable to robot finger joints, etc.
JPS5938633A (en) Flexural test machine
JPH09159551A (en) Magnetostrictive torque sensor
JPH05157674A (en) Rigidity detecting method for bending fatigue test
JP2000193574A (en) Torsion tester for rotary body
Dadon et al. Towards a reliable non-linear dynamic model of damaged gear transmission
SU1520388A1 (en) Installation for testing specimen for fatigue in biharmonic loading