JP2014235039A - Fatigue testing method for wire - Google Patents

Fatigue testing method for wire Download PDF

Info

Publication number
JP2014235039A
JP2014235039A JP2013115564A JP2013115564A JP2014235039A JP 2014235039 A JP2014235039 A JP 2014235039A JP 2013115564 A JP2013115564 A JP 2013115564A JP 2013115564 A JP2013115564 A JP 2013115564A JP 2014235039 A JP2014235039 A JP 2014235039A
Authority
JP
Japan
Prior art keywords
wire
fatigue test
test method
bent portion
bent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013115564A
Other languages
Japanese (ja)
Inventor
浩之 因
Hiroyuki In
浩之 因
芙美代 西岡
Fumiyo NISHIOKA
芙美代 西岡
松永 大輔
Daisuke Matsunaga
大輔 松永
弘基 北原
Hiromoto KITAHARA
弘基 北原
雅之 津志田
Masayuki TSUSHIDA
雅之 津志田
樹也 松田
Mikiya Matsuda
樹也 松田
新二 安藤
Shinji Ando
新二 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiden Co Inc
Kumamoto University NUC
Original Assignee
Daiden Co Inc
Kumamoto University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiden Co Inc, Kumamoto University NUC filed Critical Daiden Co Inc
Priority to JP2013115564A priority Critical patent/JP2014235039A/en
Publication of JP2014235039A publication Critical patent/JP2014235039A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fatigue testing method for a wire capable of easily and quickly preparing an S-N diagram of the wire with high accuracy by performing a rotating and bending fatigue testing of the wire within 0.02 to 1 mm in diameter with high accuracy and high efficiency.SOLUTION: The fatigue testing method of a wire makes both sides of a wire 11 in a bent state synchronously rotate with a central axis 15 of the wire 11 as a rotation center while holding the wire 11 having a circular cross-section within a plane in a bent state, repeatedly loads a tensile stress and a compression stress to a bent part 12 of the wire 11, and prepares an S-N diagram by determining a relationship between a stress amplitude value S repeatedly loaded to the wire 11 and a repetition number N up to a destruction. A diameter d of the wire 11 is set within 0.02 to 1 mm, and the stress amplitude value S is determined by adjusting a bent radius R of the bent part 12, and the S-N diagram is prepared.

Description

本発明は、例えば、ロボット用ケーブルに使用される線材の回転曲げ疲労試験を高精度かつ高効率に行って、線材のS−N線図を、簡便、迅速、かつ高精度で作成する線材の疲労試験方法に関する。 The present invention provides, for example, a wire rod used for a robot cable with high accuracy and high efficiency, and an SN diagram of the wire can be created simply, quickly and with high accuracy. The present invention relates to a fatigue test method.

ロボット動作の高速化に伴って、ロボット用ケーブルには高い耐屈曲疲労特性が求められている。そこで、ロボット用ケーブルの耐屈曲疲労特性の評価として、例えば、ロボット用ケーブルを左右に90°屈曲させるケーブル屈曲疲労試験が行われている。しかし、ケーブル屈曲疲労試験からは、ロボット用ケーブルを構成している撚線の耐屈曲疲労特性、撚線を形成している素線の耐屈曲疲労特性を評価することはできない。一方、素線は、ケーブルや撚線の単位構成要素であるため、素線の耐屈曲疲労特性を正確に把握することは、素線を形成している導体材料開発、素線を作製する製造プロセス開発、及び撚線(ケーブル)を作製する製造プロセス開発に大きく資することになる。そこで、素線と同一の導体材料を用いて疲労試験片、例えば、微小な薄片試験片を作製して疲労試験を行って耐屈曲疲労特性を求め、得られる耐屈曲疲労特性を素線の耐屈曲疲労特性の代用としている。 As the robot operation speeds up, the robot cable is required to have high bending fatigue resistance. Therefore, as an evaluation of the bending fatigue resistance characteristics of the robot cable, for example, a cable bending fatigue test is performed in which the robot cable is bent 90 ° to the left and right. However, from the cable bending fatigue test, it is not possible to evaluate the bending fatigue resistance of the stranded wire constituting the robot cable and the bending fatigue resistance of the strand forming the stranded wire. On the other hand, since a strand is a unit component of a cable or a stranded wire, accurately grasping the bending fatigue resistance characteristics of the strand is the development of the conductor material that forms the strand, the manufacture of the strand This greatly contributes to process development and manufacturing process development for producing stranded wires (cables). Therefore, a fatigue test piece, for example, a small thin piece test piece, is manufactured using the same conductor material as the element wire, and the fatigue test is performed to obtain the bending fatigue resistance characteristic. It is used as a substitute for bending fatigue characteristics.

ここで、同一の導体材料を用いて素線と薄片試験片をそれぞれ作製する場合、素線の形成では、伸線方向に大きな加工が加わる三次元的な加工が主体となるため、素線の組織は、伸線方向に組織の微細化が生じるという特徴を有し、薄片試験片の形成では、二次元的な加工が主体となるため、薄片試験片の組織は、厚み方向に組織の微細化が生じるというという特徴を有する。このため、ロボット用ケーブルに使用する素線のように線径が小さくなると、素線の組織状態と薄片試験片の組織状態との差が拡大し、薄片試験片の耐屈曲疲労特性を、素線の耐屈曲疲労特性の代用とすることができなくなる。
また、錫めっき銅線や銅被覆アルミニウム線等のように複合金属導体で素線が形成されている場合、素線に形成されている複合構造と類似の複合構造を有する薄片試験片を作製することは不可能で、複合金属導体の薄片試験片の耐屈曲疲労特性を求めて、複合金属導体の素線の耐屈曲疲労特性の代用とすることはできない。このため、複合金属導体の素線の耐屈曲疲労特性を評価することができないという問題がある。
Here, when producing a strand and a thin piece test piece using the same conductor material, the formation of the strand is mainly a three-dimensional process in which a large process is applied in the wire drawing direction. The structure is characterized in that the structure becomes finer in the wire drawing direction, and the formation of the thin specimen is mainly two-dimensional processing. Therefore, the structure of the thin specimen is fine in the thickness direction. It has the characteristic that crystallization occurs. For this reason, when the wire diameter is reduced as in the case of a wire used for a robot cable, the difference between the structure state of the wire and the structure state of the thin specimen increases, and the bending fatigue resistance of the thin specimen is reduced. It becomes impossible to substitute for the bending fatigue resistance of the wire.
Moreover, when a strand is formed with a composite metal conductor such as a tin-plated copper wire or a copper-coated aluminum wire, a thin piece test piece having a composite structure similar to the composite structure formed on the strand is prepared. It is impossible to obtain the bending fatigue resistance of the thin metal specimen of the composite metal conductor, and cannot substitute for the bending fatigue resistance of the composite metal conductor. For this reason, there exists a problem that the bending fatigue-proof characteristic of the strand of a composite metal conductor cannot be evaluated.

一方、線材の疲労試験として回転曲げ疲労試験が従来から行われているが、従来の回転曲げ疲労試験機を用いた線材の疲労試験では、線材の一端側を把持して回転力を与えながら、他端側は回転可能に自由支持しているだけなので、線材の線径が小さくなると、回転に伴って線材に作用するねじりモーメントの影響が無視できなくなる。このため、疲労試験結果のバラツキが大きくなって正確なデータが得られず、従来の回転曲げ疲労試験機を用いる場合、線径の下限は、例えば、鋼線では2mm程度とされている。そこで、線径が2mm未満の線材(細線)の回転曲げ疲労試験を正確に行うために、線材に繰返しの荷重が加えられる部分(屈曲部)に対し両方向から回転力を導入して、線材にねじりモーメントが作用することを防止した線材の疲労試験方法が提案されている(例えば、特許文献1参照)。 On the other hand, a rotating bending fatigue test has been conventionally performed as a fatigue test of a wire, but in a fatigue test of a wire using a conventional rotating bending fatigue tester, while gripping one end of the wire and applying a rotational force, Since the other end side is only freely supported so as to be rotatable, when the wire diameter of the wire becomes small, the influence of the torsional moment acting on the wire along with the rotation cannot be ignored. For this reason, variation in fatigue test results becomes large and accurate data cannot be obtained. When a conventional rotary bending fatigue tester is used, the lower limit of the wire diameter is, for example, about 2 mm for steel wires. Therefore, in order to accurately perform a rotating bending fatigue test of a wire rod (thin wire) having a wire diameter of less than 2 mm, a rotational force is introduced from both directions to a portion (bending portion) where a repeated load is applied to the wire rod. There has been proposed a wire fatigue test method that prevents the torsional moment from acting (see, for example, Patent Document 1).

特開平6−235689号公報JP-A-6-235589

ここで、従来の回転曲げ疲労試験機を用いて線材の疲労試験を行う場合、線径が0.1〜0.2mm程度の線材では、線材の回転速度を大きくすると、線材の中心軸を回転中心として回転する状態、即ち、屈曲部の位置が移動しない状態から、屈曲部が移動する状態(線材の一端側にある把持部と他端側にある自由支持部をそれぞれ固定部位として、屈曲部を含む線材の中央領域が周回運動する状態)に変化するという問題がある。また、線径が0.1mm以下の線材では、線材の回転速度を大きくすると、線材の剛性が不足しているため、線材が安定して回転できないという問題が生じる。そこで、屈曲状態の線材を、線材の中央部に配置される屈曲部と、屈曲部の両側にそれぞれ連接して配置され、屈曲部の端部に接する接線と同一方向となる中心軸を有する直線部で構成されるように保持して、特許文献1の発明と同様に、線材の両側、即ち、各直線部の端側に回転力を同期して与えるようにすると、線材の線径が0.1mm以下でも、線材の剛性不足を補って、線材の中心軸を回転中心として線材を高速で安定して回転させることができることが判明した。しかし、線材の線径が0.2mm以下になると、線材の疲労試験を行う度に線材の屈曲状態を常に正確に設定すること、即ち、線材の疲労試験を行う度に屈曲部の曲げ半径(曲率半径)と屈曲部に対する直線部の傾斜角度をそれぞれ正確に設定することは困難で、屈曲部に発生する引張応力及び圧縮応力の値を正確に変化させながら線材の疲労試験を行うことは非常に難しいという問題がある。 Here, when conducting a wire fatigue test using a conventional rotating bending fatigue testing machine, when the wire rod has a wire diameter of about 0.1 to 0.2 mm, if the wire rotation speed is increased, the center axis of the wire is rotated. A state in which the bending portion moves from a state in which the bending portion is not moved from a state in which the bending portion is moved (the gripping portion on one end side of the wire rod and the free support portion on the other end side are respectively fixed portions, respectively. There is a problem that the central region of the wire including the wire changes to a state in which the wire moves. Further, in the case of a wire having a wire diameter of 0.1 mm or less, if the wire rotation speed is increased, there is a problem that the wire cannot be stably rotated because the rigidity of the wire is insufficient. Therefore, a straight line having a central axis that is in the same direction as a tangent line that is arranged in a state where a bent wire is arranged at the center of the wire, and is connected to both sides of the bent portion, and is in contact with the end of the bent portion. If the rotational force is synchronously applied to both sides of the wire, that is, the end side of each linear portion, as in the invention of Patent Document 1, the wire diameter of the wire is 0. It has been found that even when the thickness is less than 1 mm, the wire can be stably rotated at a high speed with the center axis of the wire as the center of rotation, making up for insufficient rigidity of the wire. However, when the wire diameter is 0.2 mm or less, the bending state of the wire is always set accurately every time the wire fatigue test is performed, that is, the bending radius ( (Radius of curvature) and the inclination angle of the straight part with respect to the bent part are difficult to set accurately, and it is very difficult to conduct a fatigue test on the wire while accurately changing the tensile stress and compressive stress values generated in the bent part. There is a problem that is difficult.

本発明はかかる事情に鑑みてなされたもので、線径が0.02〜1mmの範囲にある線材の回転曲げ疲労試験を高精度かつ高効率に行って、線材のS−N線図を、簡便、迅速、かつ高精度で作成することが可能な線材の疲労試験方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and a rotating bending fatigue test of a wire having a wire diameter in the range of 0.02 to 1 mm is performed with high accuracy and high efficiency, and an SN diagram of the wire is obtained. An object of the present invention is to provide a fatigue test method for a wire that can be easily, rapidly and highly accurately produced.

前記目的に沿う本発明に係る線材の疲労試験方法は、断面円形の線材を平面内で屈曲状態に保持しながら、該線材の中心軸を回転中心とし屈曲状態の前記線材の両側を同期して回転させて、前記線材の屈曲部に引張応力及び圧縮応力を繰返し負荷し、前記線材に繰返し負荷される応力振幅値Sと破壊までの繰返し数Nとの関係を求めてS−N線図を作成する線材の疲労試験方法であって、
前記線材の線径dは0.02〜1mmの範囲とし、前記屈曲部の曲げ半径Rを調節して前記応力振幅値Sを決定し、前記S−N線図を作成する。
The fatigue test method for a wire according to the present invention that meets the above-described object is to hold a wire having a circular cross section in a bent state in a plane while synchronizing both sides of the wire in a bent state with the central axis of the wire as a rotation center. Rotating, repeatedly applying tensile stress and compressive stress to the bent portion of the wire, and obtaining the relationship between the stress amplitude value S repeatedly applied to the wire and the number of repetitions N until failure, and an SN diagram A fatigue test method for a wire to be created,
The wire diameter d is in the range of 0.02 to 1 mm, the bending radius R of the bent portion is adjusted, the stress amplitude value S is determined, and the SN diagram is created.

本発明に係る線材の疲労試験方法において、該疲労試験方法に使用する前記線材の線径dを少なくとも2種設定し、前記S−N線図は、線径dの異なる前記線材毎に得られる前記応力振幅値Sと前記繰返し数Nで構成される疲労試験データを用いて作成することが好ましい。 In the wire rod fatigue test method according to the present invention, at least two wire diameters d of the wire used in the fatigue test method are set, and the SN diagram is obtained for each of the wire rods having different wire diameters d. It is preferable to create it using fatigue test data composed of the stress amplitude value S and the repetition number N.

本発明に係る線材の疲労試験方法において、屈曲状態の前記線材は、半円形状の前記屈曲部と、該屈曲部の両側にそれぞれ連接し、互いに平行配置される直線部とを有していることが好ましい。 In the fatigue test method for a wire according to the present invention, the bent wire has the semicircular bent portion and linear portions connected to both sides of the bent portion and arranged in parallel to each other. It is preferable.

本発明に係る線材の疲労試験方法において、屈曲状態の前記線材は、円弧角180度未満の前記屈曲部と、該屈曲部の両側にそれぞれ連接する直線部とを有している構成としてもよい。 In the fatigue test method for a wire according to the present invention, the bent wire may include the bent portion having an arc angle of less than 180 degrees and linear portions connected to both sides of the bent portion. .

本発明に係る線材の疲労試験方法において、前記線材は、線径が20〜180μmの素線とすることができる。 In the fatigue test method for a wire according to the present invention, the wire may be a strand having a wire diameter of 20 to 180 μm.

本発明に係る線材の疲労試験方法において、前記線材は、線径が20〜180μmの素線を複数本撚り合せた撚線とすることもできる。
ここで、撚り合わせる素線の本数は、例えば、線径が0.15〜1mmの撚線を形成する際の本数である。特に、素線が極細線(例えば、線径が50μm以下)になると、撚り合わせる際に素線に加えられる曲げ変形に対する各素線間の撚り周差は無視でき、撚り周差が無視できることに伴って回転曲げ疲労試験時の各素線に発生する応力振幅の差も無視できるので、撚線を一つの線材として一体的に評価することができる。
In the fatigue test method for a wire according to the present invention, the wire may be a stranded wire obtained by twisting a plurality of strands having a wire diameter of 20 to 180 μm.
Here, the number of strands to be twisted is, for example, the number when forming a stranded wire having a wire diameter of 0.15 to 1 mm. In particular, when the strand becomes a very thin wire (for example, the wire diameter is 50 μm or less), the twisting difference between the strands with respect to bending deformation applied to the strands when twisting can be ignored, and the twisting difference can be ignored. Along with this, the difference in stress amplitude generated in each strand during the rotating bending fatigue test can be ignored, so that the stranded wire can be integrally evaluated as one wire.

本発明に係る線材の疲労試験方法において、前記素線は、単一金属導体で形成することができる。
ここで、単一金属導体とは、例えば、銅、銅合金、アルミニウム、アルミニウム合金等をさす。
In the fatigue test method for a wire according to the present invention, the element wire can be formed of a single metal conductor.
Here, the single metal conductor refers to, for example, copper, copper alloy, aluminum, aluminum alloy or the like.

本発明に係る線材の疲労試験方法において、前記素線は、2以上の異種金属を同心円状に積層配置された複合金属導体で形成することもできる。
ここで、複合金属導体とは、例えば、錫めっき銅、錫めっき銅合金、銅被覆アルミニウム、銅被覆アルミニウム合金等をさす。
In the fatigue test method for a wire according to the present invention, the strand may be formed of a composite metal conductor in which two or more dissimilar metals are concentrically arranged.
Here, the composite metal conductor refers to, for example, tin-plated copper, tin-plated copper alloy, copper-coated aluminum, copper-coated aluminum alloy, and the like.

本発明に係る線材の疲労試験方法において、前記線材は、線径が20〜180μmであって、単一金属導体又は2以上の異種金属を同心円状に積層配置された複合金属導体からなる芯材と、該芯材の外周側に配置された絶縁被覆層とで形成された素線とすることができる。
ここで、単一金属導体とは、例えば、銅、銅合金、アルミニウム、アルミニウム合金等をさし、複合金属導体とは、例えば、錫めっき銅、錫めっき銅合金、銅被覆アルミニウム、銅被覆アルミニウム合金等をさし、絶縁被覆層は、例えば、フッ素樹脂、ポリエチレン、又は塩化ビニル等からなり、厚さは、例えば、50〜300μmである。
In the fatigue test method for a wire according to the present invention, the wire has a wire diameter of 20 to 180 μm, and a core material comprising a single metal conductor or a composite metal conductor in which two or more dissimilar metals are concentrically stacked. And a wire formed by an insulating coating layer disposed on the outer peripheral side of the core material.
Here, the single metal conductor refers to, for example, copper, copper alloy, aluminum, aluminum alloy, and the like, and the composite metal conductor includes, for example, tin-plated copper, tin-plated copper alloy, copper-coated aluminum, and copper-coated aluminum. The insulating coating layer is made of, for example, a fluororesin, polyethylene, or vinyl chloride, and has a thickness of, for example, 50 to 300 μm.

本発明に係る線材の疲労試験方法においては、線径が0.02〜1mmの範囲にある線材の回転曲げ疲労試験を行うので、例えば、ロボット用ケーブル等に使用する細径の素線や、素線を撚って形成した細径の撚線のS−N線図を作成することができる。これにより、素線を形成する導体材料開発、素線の製造プロセス開発、撚線の製造プロセス開発に資することができる。 In the fatigue test method for a wire according to the present invention, since a rotating bending fatigue test of a wire having a wire diameter in the range of 0.02 to 1 mm is performed, for example, a thin strand used for a robot cable or the like, An SN diagram of a thin twisted wire formed by twisting strands can be created. Thereby, it can contribute to the development of the conductor material which forms a strand, the manufacturing process development of a strand, and the manufacturing process development of a twisted wire.

本発明に係る線材の疲労試験方法において、疲労試験方法に使用する線材の線径dを少なくとも2種設定する場合、線材の曲げ半径Rを調節して、線材の疲労試験機に対する取付け条件を決めてやれば、線材のヤング率をEとすると、疲労試験時に線材に負荷される応力振幅値SはEd/(2R)となるため、線材の線径dを変えるだけで異なる応力振幅値Sを正確に設定することができ、線材の回転曲げ疲労試験を容易かつ正確に行うことができる。
そして、S−N線図を、線径dの異なる線材毎に得られる応力振幅値Sと繰返し数Nで構成される疲労試験データを用いて作成する場合、高精度のS−N線図を効率的に作成することができる。
In the wire fatigue test method according to the present invention, when at least two types of the wire diameter d of the wire used in the fatigue test method are set, the wire bending radius R is adjusted to determine the mounting condition for the wire fatigue tester. If the Young's modulus of the wire is E, the stress amplitude value S applied to the wire during the fatigue test is Ed / (2R). Therefore, a different stress amplitude value S can be obtained simply by changing the wire diameter d of the wire. It can be set accurately, and the rotating bending fatigue test of the wire can be performed easily and accurately.
When the SN diagram is created using the fatigue test data composed of the stress amplitude value S and the repetition number N obtained for each wire having a different wire diameter d, a highly accurate SN diagram is obtained. Can be created efficiently.

本発明に係る線材の疲労試験方法において、屈曲状態の線材が、半円形状の屈曲部と、屈曲部の両側にそれぞれ連接し、互いに平行配置される直線部とを有する場合、屈曲部と直線部の接続領域に不測の応力が加わることを防止でき、疲労試験結果のバラツキを抑えて正確なデータを得ることができる。 In the fatigue test method for a wire according to the present invention, when the wire in a bent state has a semicircular bent portion and straight portions connected to both sides of the bent portion and arranged in parallel to each other, the bent portion and the straight line It is possible to prevent unexpected stress from being applied to the connection region of the part, and it is possible to obtain accurate data while suppressing variations in the fatigue test results.

本発明に係る線材の疲労試験方法において、屈曲状態の線材が、円弧角180度未満(π未満)の屈曲部と、屈曲部の両側にそれぞれ連接する直線部とを有している場合、円弧角を調節することにより屈曲部に加える応力振幅値Sを容易に調整することができると共に、屈曲部と直線部の接続領域に不測の応力が加わることを防止でき、疲労試験結果のバラツキを抑えて正確なデータを得ることができる。 In the wire rod fatigue test method according to the present invention, when the bent wire has a bent portion having an arc angle of less than 180 degrees (less than π) and straight portions connected to both sides of the bent portion, By adjusting the angle, the stress amplitude value S applied to the bent portion can be easily adjusted, and unexpected stress can be prevented from being applied to the connection region between the bent portion and the straight portion, thereby suppressing variations in fatigue test results. Accurate data can be obtained.

本発明に係る線材の疲労試験方法において、線材が、線径が20〜180μmの素線である場合、従来は不可能であった、例えば、ロボット用ケーブルの素線のS−N線図を直接作成することができる。 In the wire fatigue test method according to the present invention, when the wire is a strand having a wire diameter of 20 to 180 μm, for example, an SN diagram of a strand of a robot cable is not possible. Can be created directly.

本発明に係る線材の疲労試験方法において、線材が、線径が20〜180μmの素線を複数本撚り合せた撚線である場合、従来は不可能であった、例えば、ロボット用ケーブルの撚線のS−N線図を直接作成することができる。これにより、撚線がロボット用ケーブルとして実際に使用される際の寿命を予測することができ、実用的なデータを収集することが可能になる。更に、素線の間に生じる摩擦力を低減するための撚り合せ方法の選定や、単一線間に介在させる潤滑剤の種類及び層厚の最適化を図ることができる。 In the wire fatigue test method according to the present invention, when the wire is a stranded wire obtained by twisting a plurality of strands having a wire diameter of 20 to 180 μm, for example, twisting of a robot cable is not possible. An SN diagram of the line can be created directly. This makes it possible to predict the life when the stranded wire is actually used as a robot cable, and it is possible to collect practical data. Furthermore, it is possible to select a twisting method for reducing the frictional force generated between the strands, and to optimize the type and layer thickness of the lubricant interposed between the single wires.

本発明に係る線材の疲労試験方法において、素線が、単一金属導体で形成されている場合、素線が、2以上の異種金属を同心円状に積層配置された複合金属導体で形成されている場合、回転曲げ疲労試験結果(素線のS−N線図)から、素線の導体材料開発や素線の製造プロセス開発をそれぞれ効率的に行うことができる。 In the wire fatigue test method according to the present invention, when the strand is formed of a single metal conductor, the strand is formed of a composite metal conductor in which two or more dissimilar metals are stacked concentrically. In the case of being present, from the result of the rotating bending fatigue test (the SN diagram of the strand), the conductor material development of the strand and the manufacturing process development of the strand can be performed efficiently.

本発明に係る線材の疲労試験方法において、線材が、線径が20〜180μmであって、単一金属導体又は2以上の異種金属を同心円状に積層配置された複合金属導体からなる芯材と、芯材の外周側に配置された絶縁被覆層とで形成された素線である場合、回転曲げ疲労試験結果(素線のS−N線図)から、素線(芯材)の導体材料開発や素線の製造プロセス開発をそれぞれ効率的に行うことができ、更に、素線のたわみやねじれの防止(素線の高剛性化)、把持による素線(芯材)損傷防止に適切な絶縁被覆層をそれぞれ選定することができる。 In the fatigue test method for a wire according to the present invention, the wire has a wire diameter of 20 to 180 μm, and a core material composed of a single metal conductor or a composite metal conductor in which two or more dissimilar metals are stacked concentrically. In the case of a strand formed with an insulating coating layer disposed on the outer peripheral side of the core material, the conductor material of the strand (core material) from the rotating bending fatigue test result (SN diagram of the strand) Development and manufacturing process development of strands can be carried out efficiently. Furthermore, it is suitable for preventing deflection and twisting of strands (higher rigidity of strands) and preventing damage to strands (core material) due to gripping. Each insulating coating layer can be selected.

(A)、(B)は、それぞれ本発明の第1の実施の形態に係る線材の疲労試験方法が適用される線材の疲労試験装置の平面図、側面図である。1A and 1B are a plan view and a side view, respectively, of a wire fatigue test apparatus to which the wire fatigue test method according to the first embodiment of the present invention is applied. 線材の屈曲状態の説明図である。It is explanatory drawing of the bending state of a wire. 変形例に係る線材の疲労試験装置の平面図である。It is a top view of the fatigue test apparatus of the wire which concerns on a modification. 本発明の第1の実施の形態に係る線材の疲労試験方法で求めたS−N線図である。It is a SN diagram calculated | required with the fatigue test method of the wire based on the 1st Embodiment of this invention. 本発明の第2の実施の形態に係る線材の疲労試験方法が適用される線材の疲労試験装置の平面図である。It is a top view of the fatigue test apparatus of the wire to which the fatigue test method of the wire which concerns on the 2nd Embodiment of this invention is applied.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
本発明の第1の実施の形態に係る線材の疲労試験方法が適用される線材の疲労試験装置10(以下、単に疲労試験装置10という)は、図1(A)、(B)に示すように、断面円形で直状の線材11(線径dは0.02〜1mm)を平面内で屈曲状態に保持しながら、線材11の中心軸15を回転中心として回転させて、線材11の屈曲部12に引張応力及び圧縮応力を繰返し負荷し、線材11に繰返し負荷される応力振幅値Sと破壊までの繰返し数Nとの関係を求めてS−N線図を作成する装置である。なお、屈曲状態の線材11は、半円形状の屈曲部12と、屈曲部12の両側にそれぞれ互いに平行に連接される直線部13、14(即ち、屈曲部12の端部に接する接線の方向と同一方向となる中心軸15を有する直線部13、14)とから構成される。そして、疲労試験装置10は、線材11の直線部13、14を保持して、同一高さ位置で距離を設けて水平に平行配置する支持部材16、17と、支持部材16、17にそれぞれ連結して回転駆動力を伝達する回転ロッド18、19と、回転ロッド18、19を同期して回転させる回転駆動手段20と、回転ロッド18、19の積算回転数を測定する計数器21とを有している。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
A wire fatigue test apparatus 10 (hereinafter simply referred to as a fatigue test apparatus 10) to which the wire fatigue test method according to the first embodiment of the present invention is applied is shown in FIGS. 1 (A) and 1 (B). Further, while holding the wire 11 having a circular cross section and a straight shape (the wire diameter d is 0.02 to 1 mm) in a bent state in a plane, the wire 11 is bent by rotating around the central axis 15 of the wire 11. It is an apparatus that creates an SN diagram by repeatedly applying tensile stress and compressive stress to the part 12 and determining the relationship between the stress amplitude value S repeatedly applied to the wire 11 and the number of repetitions N until failure. The bent wire 11 includes a semicircular bent portion 12 and straight portions 13 and 14 connected to both sides of the bent portion 12 in parallel with each other (that is, the direction of a tangent line contacting the end of the bent portion 12). And straight portions 13 and 14) having a central axis 15 in the same direction. The fatigue test apparatus 10 holds the straight portions 13 and 14 of the wire 11 and connects to the support members 16 and 17 arranged in parallel and horizontally at the same height position, and the support members 16 and 17, respectively. Rotation rods 18 and 19 for transmitting the rotation driving force, rotation driving means 20 for rotating the rotation rods 18 and 19 in synchronization, and a counter 21 for measuring the total number of rotations of the rotation rods 18 and 19. doing.

線材11の直線部13、14を支持部材16、17にそれぞれ固定する場合、線材11の直線部13の中心軸15と支持部材16の回転中心軸の軸心位置を一致させ、直線部14の中心軸15と支持部材17の回転中心軸の軸心位置を一致させる。そして、支持部材16と回転ロッド18は、互いに回転中心軸の軸心位置を一致させて連結し、回転ロッド18の両側は、基台22上に距離を設けて立設された取付け部材23、24に図示しないベアリングを介して回転自在に保持されている。また、支持部材17と回転ロッド19は、互いに回転中心軸の軸心位置を一致させて連結し、回転ロッド19の両側は、基台22上に距離を設けて立設された取付け部材25、26に図示しないベアリングを介して回転自在に保持されている。そして、支持部材16、17の回転中心軸に沿った方向において、支持部材16、17の先端が側面視して同一位置となるように、回転ロッド18、19は取付け部材23〜26を介して基台22上に配置されている。なお、支持部材16、17は平行配置されるので、回転ロッド18、19は平行となる。 When the linear portions 13 and 14 of the wire 11 are fixed to the support members 16 and 17, respectively, the axial center positions of the central axis 15 of the linear portion 13 of the wire 11 and the rotation central axis of the support member 16 are made to coincide with each other. The axial center positions of the central shaft 15 and the rotation central shaft of the support member 17 are matched. The support member 16 and the rotating rod 18 are connected to each other with the axial center positions of the rotation center axes coinciding with each other, and both sides of the rotating rod 18 are mounted on the base 22 with a distance from each other. 24 is rotatably held via a bearing (not shown). Further, the support member 17 and the rotating rod 19 are connected to each other so that the axial center positions of the rotation center axes coincide with each other, and both sides of the rotating rod 19 are mounted on the base 22 with a distance from each other. 26 is rotatably held via a bearing (not shown). And in the direction along the rotation center axis of the supporting members 16 and 17, the rotating rods 18 and 19 are disposed via the mounting members 23 to 26 so that the tips of the supporting members 16 and 17 are in the same position as viewed from the side. It is arranged on the base 22. Since the support members 16 and 17 are arranged in parallel, the rotating rods 18 and 19 are parallel.

回転駆動手段20は、回転ロッド18、19のいずれか一方、例えば、回転ロッド19の一端部(取付け部材26から突出する端部)に出力軸が連結されるモータ27と、回転ロッド18、19の長手方向中間位置にそれぞれ取付けられ、外周部が互いに螺合する第1、第2の歯車部材28、28aとを有している。計数器21は、回転ロッド19の中間位置に第2の歯車部材28aと並べて取付けられ、外周側に孔(図示せず)が1つ形成された円板部材29と、円板部材29の半径方向外側に配置され、回転する円板部材29の外周側が通過するスリット29aが中央部に形成され、スリット29aの両側にそれぞれ発光部及び受光部を備えた測定部30と、円板部材29の孔を通過した発光部からの光を受光部が検知した際に出力される検知信号から円板部材29(回転ロッド19)の積算回転数を算出する演算部(図示せず)とを有している。なお、符号31はモータ27を基台22に固定する固定部材、符号32は測定部30を基台22に固定する支柱部材、符号33は測定部30からの検知信号を演算部に伝える信号ケーブルである。 The rotation driving means 20 includes a motor 27 whose output shaft is coupled to one of the rotating rods 18 and 19, for example, one end of the rotating rod 19 (an end protruding from the mounting member 26), and the rotating rods 18 and 19. The first and second gear members 28 and 28a are attached to the respective intermediate positions in the longitudinal direction and the outer peripheral portions thereof are screwed together. The counter 21 is mounted side by side with the second gear member 28 a at an intermediate position of the rotary rod 19, and a disk member 29 having one hole (not shown) formed on the outer peripheral side, and a radius of the disk member 29. A slit 29a that is disposed on the outer side in the direction and through which the outer peripheral side of the rotating disk member 29 passes is formed in the center, and a measuring unit 30 having a light emitting part and a light receiving part on both sides of the slit 29a, and the disk member 29 A calculation unit (not shown) that calculates an integrated rotational speed of the disk member 29 (rotating rod 19) from a detection signal output when the light receiving unit detects light from the light emitting unit that has passed through the hole; ing. Reference numeral 31 denotes a fixing member for fixing the motor 27 to the base 22, reference numeral 32 denotes a support member for fixing the measuring unit 30 to the base 22, and reference numeral 33 denotes a signal cable for transmitting a detection signal from the measuring unit 30 to the arithmetic unit. It is.

図2に示すように、屈曲部12の曲げ半径をRとすると、支持部材16(回転ロッド18)と支持部材17(回転ロッド19)の回転中心軸間の距離は2Rとなる。従って、予め、回転ロッド18と回転ロッド19の回転中心軸間の距離が2Rとなるように回転ロッド18、19をそれぞれ基台22上に取付け部材23、24、25、26を介して固定すると共に、支持部材16、17に固定される直線部13、14の長さをLに設定し、長さをπR+2Lに調整した線材11を疲労試験装置10に取付けると、線材11を曲げ半径Rの半円形状の屈曲部12を有する屈曲状態にすることができる。 As shown in FIG. 2, when the bending radius of the bent portion 12 is R, the distance between the rotation center axes of the support member 16 (rotating rod 18) and the supporting member 17 (rotating rod 19) is 2R. Therefore, the rotary rods 18 and 19 are fixed on the base 22 via the mounting members 23, 24, 25, and 26 in advance so that the distance between the rotation center axes of the rotary rod 18 and the rotary rod 19 is 2R. At the same time, when the length of the straight portions 13 and 14 fixed to the support members 16 and 17 is set to L, and the wire 11 having a length adjusted to πR + 2L is attached to the fatigue test apparatus 10, the wire 11 is bent at a radius R. A bent state having a semicircular bent portion 12 can be obtained.

線材11が図2に示す屈曲状態となった場合、屈曲部12の凸側中央部にはd/(2R)の引張ひずみが、屈曲部12の凹側中央部にはd/(2R)の圧縮ひずみがそれぞれ発生する。このため、線材11のヤング率をEとすると、屈曲部12の凸側中央部にはEd/(2R)の引張応力が、屈曲部12の凹側中央部にはEd/(2R)の圧縮応力が発生する。従って、屈曲状態の線材11の両側を、中心軸15を回転中心として同期して回転させると、屈曲部12に引張応力及び圧縮応力が繰返し負荷され、そのときの応力振幅値SはEd/(2R)となる。 When the wire 11 is in the bent state shown in FIG. 2, a tensile strain of d / (2R) is present at the convex central portion of the bent portion 12 and d / (2R) is present at the concave central portion of the bent portion 12. Each compressive strain occurs. For this reason, when the Young's modulus of the wire 11 is E, the tensile stress of Ed / (2R) is applied to the central portion of the bent portion 12 on the convex side, and the compression of Ed / (2R) is applied to the concave central portion of the bent portion 12. Stress is generated. Accordingly, when both sides of the bent wire 11 are rotated synchronously with the central axis 15 as the center of rotation, tensile stress and compressive stress are repeatedly applied to the bent portion 12, and the stress amplitude value S at that time is Ed / ( 2R).

ここで、応力振幅値Sは、線材11の線径dと屈曲部12の曲げ半径Rをそれぞれパラメータとした変数となるが、図2に示すように屈曲部12の曲げ半径をRに設定し、線材11の線径dを変えることにより、応力振幅値Sを変化させることができる。このため、材料構成が同一で線径dの異なるP(2≦P)種の線材11を用いて回転曲げを行うと、線径dの異なる線材11毎に応力振幅値S(i=1、2、・・・、P)と繰返し数N(i=1、2、・・・、P)で構成される疲労試験データが得られる。従って、得られたP個の疲労試験データを合成すると、即ち、縦軸を応力振幅値、横軸を繰返し数とした座標平面上にP個の疲労試験データをプロットすると、線材11のS−N線図を作成することができる。 Here, the stress amplitude value S is a variable using the wire diameter d of the wire 11 and the bending radius R of the bent portion 12 as parameters, respectively, but the bending radius of the bent portion 12 is set to R as shown in FIG. The stress amplitude value S can be changed by changing the wire diameter d of the wire 11. For this reason, when the rotation bending is performed using the P (2 ≦ P) type wire 11 having the same material configuration and different wire diameter d, the stress amplitude value S i (i = 1) for each wire 11 having a different wire diameter d. , P) and the number of repetitions N i (i = 1, 2,..., P) are obtained. Therefore, when the obtained P pieces of fatigue test data are synthesized, that is, when P pieces of fatigue test data are plotted on a coordinate plane with the vertical axis representing the stress amplitude value and the horizontal axis representing the number of repetitions, the S- An N diagram can be created.

図3に、疲労試験装置10の変形例に係る疲労試験装置34を示す。
疲労試験装置34は疲労試験装置10と比較して、屈曲状態の線材11の直線部13が固定される支持部材35に連結して回転駆動力を伝達する回転ロッド36を回転自在に支持する取付け部材37、38と、屈曲状態の線材11の直線部14が固定される支持部材39に連結して回転駆動力を伝達する回転ロッド40を回転自在に支持する取付け部材41、42がそれぞれ異なる基台43、44に立設されていること、回転ロッド36、40を同期して回転するため、回転ロッド36の一端部(取付け部材38から突出する端部)にモータ45が、回転ロッド40の一端部(取付け部材42から突出する端部)にモータ46がそれぞれ設けられていること、基台43、44が、回転ロッド36、40の回転中心軸に直交する方向に沿って配置されたレール47、48上を移動可能であることが特徴となっている。なお、符号45a、46aはモータ45、46をそれぞれ基台43、44に固定する固定部材である。このような構成とすることにより、基台43、44間の距離を変えて支持部材35(回転ロッド36)と支持部材39(回転ロッド40)の回転中心軸間の距離を調整することができ、線材11を、曲げ半径が任意に設定される半円形状の屈曲部12を有する屈曲状態にすることができる。
FIG. 3 shows a fatigue test apparatus 34 according to a modification of the fatigue test apparatus 10.
Compared with the fatigue test apparatus 10, the fatigue test apparatus 34 is connected to a support member 35 to which the linear portion 13 of the bent wire 11 is fixed and rotatably supports a rotating rod 36 that transmits a rotational driving force. The members 37 and 38 and the attachment members 41 and 42 that rotatably support the rotating rod 40 that transmits the rotational driving force by being connected to the support member 39 to which the linear portion 14 of the bent wire 11 is fixed are different from each other. The motor 45 is attached to one end of the rotating rod 36 (the end protruding from the mounting member 38) so that the rotating rods 36 and 40 are rotated in synchronization with being erected on the bases 43 and 44. The motor 46 is provided at one end (the end protruding from the mounting member 42), and the bases 43 and 44 are arranged along the direction orthogonal to the rotation center axis of the rotating rods 36 and 40. It is the distinctive feature is movable on a rail 47 and 48. Reference numerals 45a and 46a denote fixing members for fixing the motors 45 and 46 to the bases 43 and 44, respectively. With such a configuration, the distance between the rotation center axes of the support member 35 (rotating rod 36) and the support member 39 (rotating rod 40) can be adjusted by changing the distance between the bases 43 and 44. The wire 11 can be in a bent state having a semicircular bent portion 12 in which a bending radius is arbitrarily set.

なお、支持部材35、39の回転中心軸に沿った方向において、支持部材35、39の先端が側面視して同一位置となるように、回転ロッド36は取付け部材37、38を介して基台43上に配置され、回転ロッド40は取付け部材41、42を介して基台44上に配置されている。また、支持部材35と回転ロッド36のそれぞれの回転中心軸の軸心位置は一致し、支持部材39と回転ロッド40のそれぞれの回転中心軸の軸心位置は一致している。更に、直線部13を通過する中心軸15と支持部材35の回転中心軸の軸心位置は一致し、直線部14を通過する中心軸15と支持部材39の回転中心軸の軸心位置は一致している。 The rotating rod 36 is mounted on the base via the mounting members 37 and 38 so that the tips of the supporting members 35 and 39 are in the same position as viewed from the side in the direction along the rotation center axis of the supporting members 35 and 39. The rotating rod 40 is disposed on a base 44 via attachment members 41 and 42. Further, the axis positions of the rotation center axes of the support member 35 and the rotation rod 36 coincide with each other, and the axis positions of the rotation center axes of the support member 39 and the rotation rod 40 coincide with each other. Further, the axial center positions of the central axis 15 passing through the linear portion 13 and the rotational central axis of the support member 35 coincide with each other, and the axial center positions of the central axis 15 passing through the linear portion 14 and the rotational central axis of the supporting member 39 are one. I'm doing it.

支持部材35(回転ロッド36)と支持部材39(回転ロッド40)の回転中心軸間の距離を2R、支持部材35、39に固定される直線部13、14の長さをLにそれぞれ設定した場合、長さをπR+2Lに調整した線材11を疲労試験装置34に取付けると、図3に示すように、線材11を、曲げ半径Rの半円形状の屈曲部12を有する屈曲状態にすることができる。これにより、線材11の屈曲部12の凸側中央部にEd/(2R)の引張応力が、屈曲部12の凹側中央部にEd/(2R)の圧縮応力がそれぞれ発生することになる。従って、線材11の屈曲部12に発生する引張応力(圧縮応力)を変化させたい場合、線材11の線径dを一定にして、支持部材35と支持部材39の回転中心軸間の距離を変化させて屈曲部12の曲げ半径Rを変化させることにより、屈曲部12に発生する応力を容易に調節することができる。なお、線材11の線径d及び屈曲部12の曲げ半径Rの双方を変化させることも可能である。 The distance between the rotation center axes of the support member 35 (rotating rod 36) and the support member 39 (rotating rod 40) was set to 2R, and the lengths of the straight portions 13 and 14 fixed to the support members 35 and 39 were set to L, respectively. In this case, when the wire 11 having a length adjusted to πR + 2L is attached to the fatigue test apparatus 34, the wire 11 is brought into a bent state having a semicircular bent portion 12 having a bending radius R as shown in FIG. it can. As a result, Ed / (2R) tensile stress is generated at the convex central portion of the bent portion 12 of the wire 11, and Ed / (2R) compressive stress is generated at the concave central portion of the bent portion 12. Therefore, when it is desired to change the tensile stress (compressive stress) generated in the bent portion 12 of the wire 11, the wire diameter d of the wire 11 is made constant and the distance between the rotation center axes of the support member 35 and the support member 39 is changed. Thus, by changing the bending radius R of the bent portion 12, the stress generated in the bent portion 12 can be easily adjusted. It is also possible to change both the wire diameter d of the wire 11 and the bending radius R of the bent portion 12.

続いて、本発明の第1の実施の形態に係る線材の疲労試験方法について説明する。
線材の疲労試験方法は、図2、図3に示すように、断面円形で直状の線材11を平面内で屈曲状態に保持しながら、線材11の両側をその中心軸15を回転中心としてそれぞれ回転させて(回転曲げを行って)、線材11の屈曲部12に引張応力及び圧縮応力を繰返し負荷し、線材11に繰返し負荷される応力振幅値Sと破壊までの繰返し数Nとの関係を求めてS−N線図を作成する線材の疲労試験方法である。屈曲状態の線材11の両側を同期して回転する、即ち、線材11の中央部に配置される屈曲部12の両側にそれぞれ連接して配置される直線部13、14の端側に回転力を同期して与えるようにすると、線径dが0.02〜1mmの範囲にある線材11を、線材11の剛性不足を補って、線材11の中心軸15を回転中心として高速で安定して回転させることができる。
Then, the fatigue test method of the wire which concerns on the 1st Embodiment of this invention is demonstrated.
As shown in FIGS. 2 and 3, the wire fatigue test method has a circular cross section and a straight wire 11 held in a bent state in a plane, while both sides of the wire 11 are centered on the central axis 15 respectively. The tensile stress and the compressive stress are repeatedly applied to the bent portion 12 of the wire 11 by rotating (rotating and bending), and the relationship between the stress amplitude value S repeatedly applied to the wire 11 and the number N of repetitions until breakage is obtained. This is a fatigue test method for a wire rod to obtain an SN diagram. The both sides of the bent wire 11 are rotated synchronously, that is, the rotational force is applied to the end sides of the straight portions 13 and 14 that are connected to both sides of the bent portion 12 arranged at the center of the wire 11. When given synchronously, the wire 11 having a wire diameter d in the range of 0.02 to 1 mm is stably rotated at high speed with the center axis 15 of the wire 11 as the center of rotation, making up for insufficient rigidity of the wire 11. Can be made.

ここで、線材11は、線径dが0.02〜0.18mm(20〜180μm)であって、単一金属導体(例えば、銅、銅合金、アルミニウム、又はアルミニウム合金)を用いて形成された素線、線径dが20〜180μmであって、2以上の異種金属を同心円状に積層配置して形成した複合金属導体(例えば、錫めっき銅、錫めっき銅合金、銅被覆アルミニウム、又は銅被覆アルミニウム合金)を用いて形成された素線、あるいは、線径dが20〜180μmであって、単一金属導体又は複合金属導体からなる芯材と、芯材の外周側に配置された絶縁被覆層(例えば、フッ素樹脂被覆層、ポリエチレン被覆層、又は塩化ビニル被覆層)とで形成された素線とすることができる。また、線材11は、単一金属導体又は複合金属導体からなり、線径dが20〜180μmの素線を複数本撚り合せた撚線、あるいは、単一金属導体又は複合金属導体からなる芯材と、芯材の外周側に配置された絶縁被覆層(例えば、フッ素樹脂被覆層、ポリエチレン被覆層、又は塩化ビニル被覆層)とで形成された素線を複数本撚り合せた撚線とすることもできる。 Here, the wire 11 has a wire diameter d of 0.02 to 0.18 mm (20 to 180 μm) and is formed using a single metal conductor (for example, copper, copper alloy, aluminum, or aluminum alloy). A composite metal conductor (for example, tin-plated copper, tin-plated copper alloy, copper-coated aluminum, or the like) formed by concentrically laminating two or more dissimilar metals with a wire diameter d of 20 to 180 μm A wire formed using a copper-coated aluminum alloy) or a wire diameter d of 20 to 180 μm, and a core material made of a single metal conductor or a composite metal conductor, and disposed on the outer peripheral side of the core material It can be a strand formed with an insulating coating layer (for example, a fluororesin coating layer, a polyethylene coating layer, or a vinyl chloride coating layer). The wire 11 is made of a single metal conductor or a composite metal conductor, and a stranded wire obtained by twisting a plurality of strands having a wire diameter d of 20 to 180 μm, or a core material made of a single metal conductor or a composite metal conductor. And a stranded wire formed by twisting a plurality of strands formed of an insulating coating layer (for example, a fluororesin coating layer, a polyethylene coating layer, or a vinyl chloride coating layer) disposed on the outer peripheral side of the core material You can also.

線材11の屈曲部12に発生させる応力振幅値Sの調節には、(1)線材11の線径dを一定として、屈曲部12の曲げ半径Rを変化させる方法、(2)線材11の屈曲部12の曲げ半径Rを一定として、線径dを変化させる方法、(3)線材11の線径d及び屈曲部12の曲げ半径Rをそれぞれ変化させる方法がある。 For adjusting the stress amplitude value S generated in the bent portion 12 of the wire 11, (1) a method of changing the bending radius R of the bent portion 12 while keeping the wire diameter d of the wire 11 constant, and (2) bending of the wire 11. There are a method of changing the wire diameter d while keeping the bending radius R of the portion 12 constant, and (3) a method of changing the wire diameter d of the wire 11 and the bending radius R of the bent portion 12 respectively.

(1)の方法は、線径dが一定であるため、線材11の組織状態を一定として回転曲げ疲労試験を行うことができる。ここで、硬銅及び軟銅を用いてそれぞれ形成された線径dが80μmの素線である線材11の回転曲げ疲労試験を行って求めたS−N線図を、図4に示す。なお、硬銅の素線である線材11の平均結晶粒径は300nm、軟銅の素線である線材11の平均結晶粒径は810nmである。図4には、純銅材からなる線材及びECAP(Equal Channel Angular Pressing)を4回繰り返した純銅材(以下、ECAP材という)からなる線材に対してそれぞれ実施した従来の回転曲げ疲労試験から得られたS−N線図も併記している。ここで、従来の回転曲げ疲労試験は、小野式回転曲げ疲労試験機(曲げモーメントが14.7Nm、繰返し数が60Hz)を用いて得られたものである。また、純銅材の線材、ECAP材の線材の平均結晶粒径は、それぞれ50μm、300nmである。 In the method (1), since the wire diameter d is constant, the rotating bending fatigue test can be performed with the structure state of the wire 11 being constant. Here, FIG. 4 shows an SN diagram obtained by performing a rotating bending fatigue test on the wire 11 having a wire diameter d of 80 μm formed using hard copper and annealed copper, respectively. In addition, the average crystal grain size of the wire 11 which is a strand of hard copper is 300 nm, and the average crystal grain size of the wire 11 which is a strand of annealed copper is 810 nm. FIG. 4 is obtained from a conventional rotating bending fatigue test performed for a wire made of a pure copper material and a wire made of a pure copper material (hereinafter referred to as an ECAP material) obtained by repeating ECAP (Equal Channel Angular Pressing) four times. The SN diagram is also shown. Here, the conventional rotating bending fatigue test was obtained using an Ono type rotating bending fatigue tester (bending moment of 14.7 Nm, repetition rate of 60 Hz). The average crystal grain sizes of the pure copper wire and the ECAP wire are 50 μm and 300 nm, respectively.

図4より、軟銅の素線である線材11は、硬銅の素線である線材11と比較して疲労寿命が長いと考えられる。また、軟銅の素線である線材11の結果と、従来の回転曲げ疲労試験によって得られた純銅材の線材の結果を比較すると、応力振幅値Sが100MPaでは、破壊までの繰返し数Nが近い値になっている。また、硬銅の素線である線材11のプロット(S−N線図)は、純銅材の線材とECAP材の線材のプロット(S−N線図)の間に存在していることから、硬銅の素線である線材11及び軟銅の素線である線材11では、適切な回転曲げ疲労試験が実施できたと解される。 From FIG. 4, it is considered that the wire 11 that is a strand of soft copper has a longer fatigue life than the wire 11 that is a strand of hard copper. Moreover, when the result of the wire 11 which is an elemental wire of soft copper and the result of the wire of the pure copper obtained by the conventional rotating bending fatigue test are compared, when the stress amplitude value S is 100 MPa, the number N of repetitions until failure is close. It is a value. Moreover, since the plot (SN diagram) of the wire 11 which is a strand of hard copper exists between the plot of the pure copper wire and the wire of the ECAP material (SN diagram), It is understood that an appropriate rotational bending fatigue test has been performed on the wire 11 that is a hard copper wire and the wire 11 that is a soft copper wire.

(2)の方法は、線材11の屈曲部12に小さな応力振幅値を加えたい場合、屈曲部12の曲げ半径Rを大きくする代わりに線径dの小さな線材11を用いて回転曲げを行うことができ、線材11の屈曲部12の曲げ半径Rを正確に制御可能な範囲に設定して目的とする応力振幅値Sを屈曲部12に加えることが可能となる。
また、(3)の方法は、線材11の屈曲部12に発生する応力を広範囲に調節することが可能になる。これにより、線材11の回転曲げによる疲労試験を高精度かつ高効率に行うことができ、線材11のS−N線図を、簡便、迅速、かつ高精度で作成することができる。
In the method (2), when it is desired to add a small stress amplitude value to the bent portion 12 of the wire 11, instead of increasing the bend radius R of the bent portion 12, rotational bending is performed using the wire 11 having a small wire diameter d. It is possible to set the bending radius R of the bent portion 12 of the wire 11 to a range that can be accurately controlled, and to add the intended stress amplitude value S to the bent portion 12.
Further, the method (3) makes it possible to adjust the stress generated in the bent portion 12 of the wire 11 over a wide range. Thereby, the fatigue test by the rotation bending of the wire 11 can be performed with high accuracy and high efficiency, and the SN diagram of the wire 11 can be created simply, quickly, and with high accuracy.

本発明の第2の実施の形態に係る線材の疲労試験方法が適用される線材の疲労試験装置49は、図5に示すように、断面円形で直状の線材50(線径dは0.02〜1mm)を、平面内で屈曲状態に保持しながら、線材50の中心軸54を回転中心とし屈曲状態の線材50の両側を同期して回転させて、線材50の屈曲部51の表面に引張応力及び圧縮応力を繰返し負荷し、線材50に繰返し負荷される応力振幅値Sと破壊までの繰返し数Nとの関係を求めてS−N線図を作成する装置である。なお、屈曲状態の線材50は、曲げ半径Rの屈曲部51と、屈曲部51の両側にそれぞれ連接して配置される直線部52、53とから構成される。 As shown in FIG. 5, a wire fatigue test apparatus 49 to which the wire fatigue test method according to the second embodiment of the present invention is applied has a straight wire 50 with a circular cross section (the wire diameter d is 0. 0). 2 to 1 mm), while maintaining the bent state in the plane, the both sides of the bent wire 50 are rotated synchronously with the central axis 54 of the wire 50 as the rotation center, and the surface of the bent portion 51 of the wire 50 is It is an apparatus that creates an SN diagram by repeatedly applying tensile stress and compressive stress and determining the relationship between the stress amplitude value S repeatedly applied to the wire 50 and the number of repetitions N until failure. The bent wire 50 is composed of a bent portion 51 having a bending radius R and straight portions 52 and 53 that are connected to both sides of the bent portion 51, respectively.

ここで、直線部52、53を通過する中心軸54は屈曲部51の凸側で交差し、しかも、直線部52の中心軸54の方向は直線部52が連接する屈曲部51の端部に接する接線の方向と同一であり、直線部53の中心軸54の方向は直線部53が連接する屈曲部51の端部に接する接線の方向と同一となっている。このため、疲労試験装置49は、線材50の直線部52、53を保持して、同一高さで、かつ、屈曲部51を中央にして対称位置に配置される支持部材55、56と、支持部材55、56にそれぞれ連結して支持部材55、56を同期して回転させるモータ57、58を備えた回転駆動手段59と、支持部材55、56の積算回転数を測定する計数器60とを有している。 Here, the central axis 54 passing through the straight portions 52, 53 intersects on the convex side of the bent portion 51, and the direction of the central axis 54 of the straight portion 52 is at the end of the bent portion 51 to which the straight portion 52 is connected. The direction of the tangent line is the same as the direction of the tangent, and the direction of the central axis 54 of the straight line portion 53 is the same as the direction of the tangent line that touches the end of the bent portion 51 to which the straight line portion 53 is connected. For this reason, the fatigue test apparatus 49 holds the straight portions 52 and 53 of the wire 50, has the same height, and is disposed at symmetrical positions with the bent portion 51 at the center, Rotation drive means 59 including motors 57 and 58 that are connected to the members 55 and 56 and rotate the support members 55 and 56 in synchronization with each other, and a counter 60 that measures the integrated rotational speed of the support members 55 and 56. Have.

線材50の直線部52、53を支持部材55、56にそれぞれ固定する場合、線材50の直線部52の中心軸54と支持部材55の回転中心軸の軸心位置を一致させ、直線部53の中心軸54と支持部材56の回転中心軸の軸心位置を一致させる。また、回転駆動手段59のモータ57は、出力軸の中心位置が支持部材55の回転中心位置と一致するように、第1の基台61に立設された取付け部材62に固定され、回転駆動手段59のモータ58は、出力軸の中心位置が支持部材56の回転中心位置と一致するように、第2の基台63に立設された取付け部材64に固定されている。更に、回転駆動手段59には、モータ57、58を同期して回転させる制御器65が設けられている。 When the linear portions 52 and 53 of the wire 50 are fixed to the support members 55 and 56, respectively, the axial center positions of the central axis 54 of the linear portion 52 of the wire 50 and the rotation central axis of the support member 55 are made to coincide with each other. The axial center positions of the central shaft 54 and the rotation central shaft of the support member 56 are matched. The motor 57 of the rotation driving means 59 is fixed to the mounting member 62 erected on the first base 61 so that the center position of the output shaft coincides with the rotation center position of the support member 55, and is driven to rotate. The motor 58 of the means 59 is fixed to a mounting member 64 erected on the second base 63 so that the center position of the output shaft coincides with the rotation center position of the support member 56. Further, the rotation driving means 59 is provided with a controller 65 that rotates the motors 57 and 58 in synchronization.

計数器60は、例えば、支持部材55の側部に突出して設けられた板部材66と、支持部材55の側部の外側に位置するように第1の基台61に立設され、支持部材55と共に回転する板部材66の先側が通過するスリット67が中央部に形成され、スリット67の両側にそれぞれ発光部及び受光部を備えた測定部68と、板部材66の通過により発光部から受光部に入射する光が遮られたことを検知して出力される検知信号から板部材66(支持部材55)の積算回転数を算出する演算部69とを有している。 For example, the counter 60 is erected on the first base 61 so as to be positioned outside the side portion of the support member 55 and the plate member 66 provided to protrude from the side portion of the support member 55. A slit 67 through which the front side of the plate member 66 that rotates together with 55 passes is formed in the center, and a measuring unit 68 having a light emitting unit and a light receiving unit on both sides of the slit 67, and a light receiving unit that receives light from the light emitting unit through the plate member 66. A calculation unit 69 that calculates an integrated rotation speed of the plate member 66 (support member 55) from a detection signal that is output by detecting that the light incident on the unit is blocked.

更に、疲労試験装置49は、距離を設けて平行に配置されたレール部材70、71と、レール部材70、71上を走行する第1、第2の台車72、73とを有している。ここで、第1、第2の基台61、63は、それぞれ第1、第2の台車72、73上に、第1、第2の台車72、73の表面上にピン部材74を介して回転自在に取付けられている。ここで、第1、第2の台車72、73には、それぞれ第1、第2の基台61、63の回転を防止する回転ロック手段(図示せず)と、第1、第2の基台61、63の回転角度(例えば、支持部材55、56の回転中心軸とレール部材70、71の長手方向に沿った中心軸とのなす角度を回転角度とする)の図示しない表示手段が設けられており、第1、第2の台車72、73には、それぞれ第1、第2の台車72、73の移動を防止する移動ロック手段(図示せず)が設けられ、第1、第2の台車72、73間には、第1、第2の台車72、73を同期して移動させる(例えば、第1の台車72を第2の台車73に近づく(遠ざかる)方向に移動させると、連動して第2の台車73が第1の台車72に近づく(遠ざかる)方向に移動する)連動移動手段(図示せず)が設けられている。 Furthermore, the fatigue test apparatus 49 includes rail members 70 and 71 arranged in parallel at a distance, and first and second carriages 72 and 73 that run on the rail members 70 and 71. Here, the first and second bases 61 and 63 are respectively disposed on the first and second carriages 72 and 73 and on the surfaces of the first and second carriages 72 and 73 via pin members 74. It is rotatably mounted. Here, the first and second carriages 72 and 73 include rotation lock means (not shown) for preventing the rotation of the first and second bases 61 and 63, respectively, and the first and second bases. A display means (not shown) is provided for the rotation angle of the bases 61 and 63 (for example, the angle formed between the rotation center axis of the support members 55 and 56 and the center axis along the longitudinal direction of the rail members 70 and 71). The first and second carriages 72 and 73 are provided with movement locking means (not shown) for preventing the movement of the first and second carriages 72 and 73, respectively. The first and second carriages 72 and 73 are moved synchronously between the two carriages 72 and 73 (for example, when the first carriage 72 is moved in a direction approaching (moving away from) the second carriage 73, In conjunction with this, the second carriage 73 moves in a direction approaching (moving away from) the first carriage 72). Moving means (not shown) is provided.

本発明の第2の実施の形態に係る線材の疲労試験方法は、本発明の第1の実施の形態に係る線材の疲労試験方法と比較して、線材50の屈曲状態が異なることを除いて疲労試験方法を同様に行うことができる。このため、線材50を疲労試験装置49に取付ける、即ち、線材50を屈曲状態にする方法について説明し、線材50のS−N線図を作成する方法に関しては説明を省略する。 The wire fatigue test method according to the second embodiment of the present invention is different from the wire fatigue test method according to the first embodiment of the present invention except that the bending state of the wire 50 is different. A fatigue test method can be performed in the same manner. For this reason, a method of attaching the wire 50 to the fatigue test apparatus 49, that is, a method of bringing the wire 50 into a bent state will be described, and description of a method of creating an SN diagram of the wire 50 will be omitted.

図5に示すように、線材50の屈曲部51の曲げ半径をR、屈曲部51の中心角(円弧角)を2θ(2θ<π)とすると、第1、第2の基台61、63の回転角度はそれぞれθ、支持部材55の先端の回転中心と支持部材56の先端の回転中心との距離は2Rsinθ、屈曲部51の長さは2Rθとなる。従って、予め、第1、第2の基台61、63の回転角度がそれぞれθ、支持部材55の先端の回転中心と支持部材56の先端の回転中心との距離が2Rsinθとなるようにレール部材70、71上での第1、第2の台車72、73の位置と第1、第2の基台61、63の回転角度を固定すると共に、支持部材55、56に固定される直線部52、53の長さをHに設定し、長さを2Rθ+2Hに調整した線材50を疲労試験装置49に取付けると、線材50を曲げ半径R、中心角2θの屈曲部51を有する屈曲状態にすることができる。 As shown in FIG. 5, when the bending radius of the bent portion 51 of the wire 50 is R and the center angle (arc angle) of the bent portion 51 is 2θ (2θ <π), the first and second bases 61 and 63 are provided. , The distance between the rotation center of the tip of the support member 55 and the rotation center of the tip of the support member 56 is 2Rsinθ, and the length of the bent portion 51 is 2Rθ. Therefore, in advance, the rail member is set so that the rotation angle of the first and second bases 61 and 63 is θ, and the distance between the rotation center of the tip of the support member 55 and the rotation center of the tip of the support member 56 is 2Rsinθ. The linear portions 52 fixed to the support members 55 and 56 are fixed while fixing the positions of the first and second carriages 72 and 73 on the 70 and 71 and the rotation angles of the first and second bases 61 and 63. , 53 is set to H, and the wire 50 having a length adjusted to 2Rθ + 2H is attached to the fatigue testing apparatus 49, the wire 50 is brought into a bent state having a bent portion 51 having a bending radius R and a central angle 2θ. Can do.

線材50の直線部52、53は、直線部52、53の中心軸54を支持部材55、56の回転中心軸の軸心位置にそれぞれ一致させて固定したが、直線部52、53の直線形状の維持を補助する保持部材、例えば、直線部52、53が挿通する内周面側が塩化ビニール、ナイロン、又はフッ素樹脂等の低摩擦材料で構成されているパイプや軸受けを介して直線部52、53を支持部材55、56上に支持し、直線部52、53の両端部をそれぞれ支持部材55、56に固定するようにしてもよい。更に、保持部材としてパイプを使用する場合、パイプ内に一側から他側に向けて内周面に沿って旋回する気流を導入して、あるいは、支持部材55、56上に配置したパイプを高速で回転させてパイプ内に内周面に沿った旋回流を形成させることにより、直線部52、53を非接触状態でパイプ内に保持するようにすることもできる。 The straight portions 52 and 53 of the wire 50 are fixed with the central axes 54 of the straight portions 52 and 53 aligned with the axial center positions of the rotation central axes of the support members 55 and 56, respectively. Holding member for assisting maintenance, for example, the linear portion 52, via a pipe or bearing in which the inner peripheral surface side through which the linear portions 52, 53 are inserted is made of a low friction material such as vinyl chloride, nylon, or fluororesin 53 may be supported on the support members 55 and 56, and both ends of the linear portions 52 and 53 may be fixed to the support members 55 and 56, respectively. Further, when a pipe is used as the holding member, an air current swirling along the inner peripheral surface from one side to the other side is introduced into the pipe, or the pipe disposed on the support members 55 and 56 is operated at a high speed. It is also possible to hold the straight portions 52 and 53 in the pipe in a non-contact state by forming a swirl flow along the inner peripheral surface in the pipe.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載した構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。
更に、本実施の形態とその他の実施の形態や変形例にそれぞれ含まれる構成要素を組合わせたものも、本発明に含まれる。
As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above-described embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included.
Further, the present invention also includes a combination of components included in the present embodiment and other embodiments and modifications.

10:疲労試験装置、11:線材、12:屈曲部、13、14:直線部、15:中心軸、16、17:支持部材、18、19:回転ロッド、20:回転駆動手段、21:計数器、22:基台、23、24、25、26:取付け部材、27:モータ、28:第1の歯車部材、28a:第2の歯車部材、29:円板部材、29a:スリット、30:測定部、31:固定部材、32:支柱部材、33:信号ケーブル、34:疲労試験装置、35:支持部材、36:回転ロッド、37、38:取付け部材、39:支持部材、40:回転ロッド、41、42:取付け部材、43、44:基台、45:モータ、45a:固定部材、46:モータ、46a:固定部材、47、48:レール、49:疲労試験装置、50:線材、51:屈曲部、52、53:直線部、54:中心軸、55、56:支持部材、57、58:モータ、59:回転駆動手段、60:計数器、61:第1の基台、62:取付け部材、63:第2の基台、64:取付け部材、65:制御器、66:板部材、67:スリット、68:測定部、69:演算部、70、71:レール部材、72:第1の台車、73:第2の台車、74:ピン部材 DESCRIPTION OF SYMBOLS 10: Fatigue test apparatus, 11: Wire rod, 12: Bending part, 13, 14: Linear part, 15: Center axis, 16, 17: Support member, 18, 19: Rotating rod, 20: Rotation drive means, 21: Counting , 22: base, 23, 24, 25, 26: mounting member, 27: motor, 28: first gear member, 28a: second gear member, 29: disk member, 29a: slit, 30: Measuring unit, 31: fixing member, 32: support member, 33: signal cable, 34: fatigue testing device, 35: support member, 36: rotating rod, 37, 38: mounting member, 39: supporting member, 40: rotating rod , 41, 42: mounting member, 43, 44: base, 45: motor, 45a: fixing member, 46: motor, 46a: fixing member, 47, 48: rail, 49: fatigue test device, 50: wire rod, 51 : Bent part, 52, 53: Direct Part, 54: central shaft, 55, 56: support member, 57, 58: motor, 59: rotational drive means, 60: counter, 61: first base, 62: mounting member, 63: second base 64, mounting member, 65: controller, 66: plate member, 67: slit, 68: measurement unit, 69: calculation unit, 70, 71: rail member, 72: first carriage, 73: second Dolly, 74: Pin member

Claims (9)

断面円形の線材を平面内で屈曲状態に保持しながら、該線材の中心軸を回転中心とし屈曲状態の前記線材の両側を同期して回転させて、前記線材の屈曲部に引張応力及び圧縮応力を繰返し負荷し、前記線材に繰返し負荷される応力振幅値Sと破壊までの繰返し数Nとの関係を求めてS−N線図を作成する線材の疲労試験方法であって、
前記線材の線径dは0.02〜1mmの範囲とし、前記屈曲部の曲げ半径Rを調節して前記応力振幅値Sを決定し、前記S−N線図を作成することを特徴とする線材の疲労試験方法。
While holding the wire having a circular cross section in a bent state in a plane, the both sides of the bent wire are rotated synchronously with the central axis of the wire as the center of rotation, and tensile and compressive stress are applied to the bent portion of the wire. Is a fatigue test method for a wire, in which a relationship between the stress amplitude value S repeatedly applied to the wire and the number N of repetitions until failure is obtained to create a SN diagram,
The wire diameter d of the wire is in the range of 0.02 to 1 mm, the bending radius R of the bent portion is adjusted, the stress amplitude value S is determined, and the SN diagram is created. Fatigue test method for wire.
請求項1記載の線材の疲労試験方法において、該疲労試験方法に使用する前記線材の線径dを少なくとも2種設定し、前記S−N線図は、線径dの異なる前記線材毎に得られる前記応力振幅値Sと前記繰返し数Nで構成される疲労試験データを用いて作成することを特徴とする線材の疲労試験方法。 The wire rod fatigue test method according to claim 1, wherein at least two wire diameters d of the wire used in the fatigue test method are set, and the SN diagram is obtained for each of the wire rods having different wire diameters d. A fatigue test method for a wire, which is created using fatigue test data composed of the stress amplitude value S and the repetition number N. 請求項1又は2記載の線材の疲労試験方法において、屈曲状態の前記線材は、半円形状の前記屈曲部と、該屈曲部の両側にそれぞれ連接し、互いに平行配置される直線部とを有していることを特徴とする線材の疲労試験方法。 3. The wire fatigue test method according to claim 1, wherein the bent wire has a semicircular bent portion and straight portions that are connected to both sides of the bent portion and arranged in parallel to each other. A fatigue test method for a wire, characterized by 請求項1又は2記載の線材の疲労試験方法において、屈曲状態の前記線材は、円弧角180度未満の前記屈曲部と、該屈曲部の両側にそれぞれ連接する直線部とを有していることを特徴とする線材の疲労試験方法。 3. The wire fatigue test method according to claim 1, wherein the wire in a bent state has the bent portion having an arc angle of less than 180 degrees and linear portions connected to both sides of the bent portion. A method for fatigue testing of wires characterized by 請求項1〜4のいずれか1項に記載の線材の疲労試験方法において、前記線材は、線径が20〜180μmの素線であることを特徴とする線材の疲労試験方法。 5. The wire fatigue test method according to claim 1, wherein the wire is a strand having a wire diameter of 20 to 180 μm. 請求項1〜4のいずれか1項に記載の線材の疲労試験方法において、前記線材は、線径が20〜180μmの素線を複数本撚り合せた撚線であることを特徴とする線材の疲労試験方法。 5. The wire rod fatigue test method according to claim 1, wherein the wire is a stranded wire in which a plurality of strands having a wire diameter of 20 to 180 μm are twisted together. Fatigue test method. 請求項5又は6記載の線材の疲労試験方法において、前記素線は、単一金属導体で形成されていることを特徴とする線材の疲労試験方法。 7. The wire fatigue test method according to claim 5, wherein the wire is formed of a single metal conductor. 請求項5又は6記載の線材の疲労試験方法において、前記素線は、2以上の異種金属を同心円状に積層配置された複合金属導体で形成されていることを特徴とする線材の疲労試験方法。 The wire fatigue test method according to claim 5 or 6, wherein the wire is formed of a composite metal conductor in which two or more dissimilar metals are laminated in a concentric manner. . 請求項1〜4のいずれか1項に記載の線材の疲労試験方法において、前記線材は、線径が20〜180μmであって、単一金属導体又は2以上の異種金属を同心円状に積層配置された複合金属導体からなる芯材と、該芯材の外周側に配置された絶縁被覆層とで形成された素線であることを特徴とする線材の疲労試験方法。 The wire rod fatigue test method according to any one of claims 1 to 4, wherein the wire rod has a wire diameter of 20 to 180 µm, and a single metal conductor or two or more dissimilar metals are stacked in a concentric manner. A wire fatigue test method, characterized in that the wire is formed of a core material made of a composite metal conductor and an insulating coating layer disposed on the outer peripheral side of the core material.
JP2013115564A 2013-05-31 2013-05-31 Fatigue testing method for wire Pending JP2014235039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013115564A JP2014235039A (en) 2013-05-31 2013-05-31 Fatigue testing method for wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013115564A JP2014235039A (en) 2013-05-31 2013-05-31 Fatigue testing method for wire

Publications (1)

Publication Number Publication Date
JP2014235039A true JP2014235039A (en) 2014-12-15

Family

ID=52137867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013115564A Pending JP2014235039A (en) 2013-05-31 2013-05-31 Fatigue testing method for wire

Country Status (1)

Country Link
JP (1) JP2014235039A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104777048A (en) * 2014-12-30 2015-07-15 有研亿金新材料有限公司 Metal wire fatigue performance testing apparatus
CN105115894A (en) * 2015-09-28 2015-12-02 保定天威线材制造有限公司 Pressure test method and tool for flat copper wire samples
CN105372138A (en) * 2015-10-27 2016-03-02 苏州泰斯特测控科技有限公司 Method and device for long-service life fatigue testing of guitar chords and keys
WO2016119331A1 (en) * 2015-01-30 2016-08-04 中国矿业大学 Bending fatigue damage monitoring system for steel wire rope under action of corrosion-alternating load coupling
CN107796703A (en) * 2017-11-17 2018-03-13 济南晶恒电子有限责任公司 Intensity detecting device and method at the exit of axial lead device and sealing
CN110000810A (en) * 2018-12-18 2019-07-12 浙江大学台州研究院 Zero-g manipulator fatigue test device
CN110132769A (en) * 2019-05-30 2019-08-16 北京安达维尔民用航空技术有限公司 A kind of multi-functional endurance test equipment and test method of flexible material sample
WO2020073580A1 (en) * 2018-10-10 2020-04-16 中国矿业大学 Device and method for testing load-carrying properties of wire rope for friction hoist
CN111855163A (en) * 2019-04-19 2020-10-30 中国石油天然气股份有限公司 Well testing steel wire fatigue simulation device and method
CN113405920A (en) * 2021-05-11 2021-09-17 杭州电子科技大学 Multi-wire-bundle space torsion/bending friction wear testing method and device
CN113624599A (en) * 2021-07-07 2021-11-09 神宇通信科技股份公司 Coaxial cable tension test device
CN117907092A (en) * 2024-03-20 2024-04-19 山东大业股份有限公司 Pulse fatigue detection device for steel cord

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0313844A (en) * 1989-06-12 1991-01-22 Oki Electric Ind Co Ltd Wire rotating-bending fatigue testing machine and fatigue testing method using the tester
JPH06235689A (en) * 1993-02-09 1994-08-23 Nippon Telegr & Teleph Corp <Ntt> Fatigue test method
JPH1164203A (en) * 1997-08-20 1999-03-05 Meidensha Corp Method for estimating fatigue life of copper material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0313844A (en) * 1989-06-12 1991-01-22 Oki Electric Ind Co Ltd Wire rotating-bending fatigue testing machine and fatigue testing method using the tester
JPH06235689A (en) * 1993-02-09 1994-08-23 Nippon Telegr & Teleph Corp <Ntt> Fatigue test method
JPH1164203A (en) * 1997-08-20 1999-03-05 Meidensha Corp Method for estimating fatigue life of copper material

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104777048A (en) * 2014-12-30 2015-07-15 有研亿金新材料有限公司 Metal wire fatigue performance testing apparatus
WO2016119331A1 (en) * 2015-01-30 2016-08-04 中国矿业大学 Bending fatigue damage monitoring system for steel wire rope under action of corrosion-alternating load coupling
CN105115894A (en) * 2015-09-28 2015-12-02 保定天威线材制造有限公司 Pressure test method and tool for flat copper wire samples
CN105372138A (en) * 2015-10-27 2016-03-02 苏州泰斯特测控科技有限公司 Method and device for long-service life fatigue testing of guitar chords and keys
CN107796703A (en) * 2017-11-17 2018-03-13 济南晶恒电子有限责任公司 Intensity detecting device and method at the exit of axial lead device and sealing
CN107796703B (en) * 2017-11-17 2024-03-26 济南晶恒电子有限责任公司 Device and method for detecting strength of leading-out end and sealing part of axial lead device
WO2020073580A1 (en) * 2018-10-10 2020-04-16 中国矿业大学 Device and method for testing load-carrying properties of wire rope for friction hoist
CN110000810B (en) * 2018-12-18 2023-12-22 浙江大学台州研究院 Application method of zero gravity manipulator fatigue testing device
CN110000810A (en) * 2018-12-18 2019-07-12 浙江大学台州研究院 Zero-g manipulator fatigue test device
CN111855163A (en) * 2019-04-19 2020-10-30 中国石油天然气股份有限公司 Well testing steel wire fatigue simulation device and method
CN110132769A (en) * 2019-05-30 2019-08-16 北京安达维尔民用航空技术有限公司 A kind of multi-functional endurance test equipment and test method of flexible material sample
CN113405920A (en) * 2021-05-11 2021-09-17 杭州电子科技大学 Multi-wire-bundle space torsion/bending friction wear testing method and device
CN113624599A (en) * 2021-07-07 2021-11-09 神宇通信科技股份公司 Coaxial cable tension test device
CN117907092A (en) * 2024-03-20 2024-04-19 山东大业股份有限公司 Pulse fatigue detection device for steel cord
CN117907092B (en) * 2024-03-20 2024-06-04 山东大业股份有限公司 Pulse fatigue detection device for steel cord

Similar Documents

Publication Publication Date Title
JP2014235039A (en) Fatigue testing method for wire
JP2012149991A (en) Simultaneous bending and twisting testing machine
US10809169B2 (en) System and method for in-situ testing of mechanical properties of materials in static and dynamic load spectra
JP4507898B2 (en) Torsion test equipment
JP5848093B2 (en) Metal wire connecting method and connecting device
TW200800431A (en) Wire drawing machine and wire drawing method
JP2014206447A (en) Bending test apparatus
CN107091783A (en) A kind of combined type electric wire torsional bending testing machine
CN208125061U (en) A kind of diameter of wire automatic laser measuring device
CN106841895A (en) A kind of RTA reliability test assembly of flexible display screen
CN111175223B (en) System and method for calibrating friction coefficient between rope of rope-driven mechanical arm and via hole
JP4339902B2 (en) Wire support position measuring method and wire support position measuring member of wire cut electric discharge machine
JP4979475B2 (en) Twisted wire residual torsion measuring device, stranded wire machine and stranded wire winder equipped therewith
JP4436071B2 (en) Extra fine wire drawing method and drawing device
US20170073889A1 (en) Wire
JP6085139B2 (en) Wire rope for operation
JP2010284673A (en) Method for manufacturing copper wire
CN106537109B (en) Test device for elongated test target flexible
JP6616811B2 (en) Medical device operation rope
JP2014137876A (en) Stranded wire conductor, cable and method of producing stranded wire conductor
CN110608836A (en) Tension sensor for hard metal wire and tension detection method
CN109338772B (en) Twisting forming production method for multilayer-structure ultrahigh-strength galvanized steel strand
JP2020134320A (en) Twist pitch measuring device and twist pitch measuring method
KR101026576B1 (en) Shielding diecing apparatus of shielding machine for MCXmicro coaxial cable and shielding machine utilizing it
JP5702446B2 (en) Optical fiber cable twist inspection method, manufacturing method, and twist inspection apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170801