JPH06232499A - Distribution feedback type semiconductor laser and its manufacture - Google Patents

Distribution feedback type semiconductor laser and its manufacture

Info

Publication number
JPH06232499A
JPH06232499A JP1748993A JP1748993A JPH06232499A JP H06232499 A JPH06232499 A JP H06232499A JP 1748993 A JP1748993 A JP 1748993A JP 1748993 A JP1748993 A JP 1748993A JP H06232499 A JPH06232499 A JP H06232499A
Authority
JP
Japan
Prior art keywords
layer
periodic structure
diffraction grating
semiconductor laser
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1748993A
Other languages
Japanese (ja)
Other versions
JP3235627B2 (en
Inventor
Takashi Nakabayashi
隆志 中林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP01748993A priority Critical patent/JP3235627B2/en
Publication of JPH06232499A publication Critical patent/JPH06232499A/en
Application granted granted Critical
Publication of JP3235627B2 publication Critical patent/JP3235627B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To provide the structure of a distribution feedback type semiconductor laser which improves coupling efficiency to optical fiber and its manufacture. CONSTITUTION:A diffraction lattice layer 4 which has a periodic structure which allows periodic refraction index variation or gain variation is provided between a guide layer 2a formed on the one of the surfaces of an activating layer 1 and a clad layer 3a. A flat area 5 which does not have such periodic structure is provided in the vicinity of the output edge of the diffraction lattice layer 4, and symmetrical refraction index distribution in the vertical direction to the activating layer 1 is allowed in the vicinity of the edge.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、光通信、光情報処理
(光集積回路)等の分野で光源として用いられる半導体
レーザに関し、特に分布帰還型半導体レーザの構造に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser used as a light source in the fields of optical communication, optical information processing (optical integrated circuit) and the like, and more particularly to the structure of a distributed feedback semiconductor laser.

【0002】[0002]

【従来の技術】従来、分布帰還型半導体レーザは、単一
モード性が優れ、高速動作に適するため、光通信、光情
報処理(光集積回路)等の情報伝達に光を用いる分野に
おいて、その光源として用いられている。
2. Description of the Related Art Conventionally, distributed feedback semiconductor lasers have excellent single mode characteristics and are suitable for high speed operation. Therefore, in the field of using light for information transmission such as optical communication and optical information processing (optical integrated circuit), It is used as a light source.

【0003】この分布帰還型半導体レーザは、例えばKA
ZUO SAKAI etc."1.5μm Range InGaAsP/InP Distribute
d Feedback Lasers",IEEE J. of Quantum Electronics
vol.QE-18 No.8,pp.1272-1278,1982に示されているよう
に、光導波層となる活性層の上側ないし下側のいずれか
一方に周期的な屈折率変動を持つ回折格子層を作り込む
ことで光を分布的に帰還させ発振を得ており、この回折
格子層の周期構造を作製する技術が必須である。
This distributed feedback semiconductor laser is, for example, KA
ZUO SAKAI etc. "1.5μm Range InGaAsP / InP Distribute
d Feedback Lasers ", IEEE J. of Quantum Electronics
As shown in vol.QE-18 No.8, pp.1272-1278, 1982, diffraction with a periodic refractive index variation on either the upper side or the lower side of the active layer that becomes the optical waveguide layer. Light is distributed in a distributed manner to obtain oscillation by forming a grating layer, and a technique for forming a periodic structure of this diffraction grating layer is essential.

【0004】なお、この周期構造の周期は通常極めて短
く、例えば1.3μm帯のレーザ発振を得る場合、0.
2μm程度になる。また、このような微細な周期構造を
得るために、通常、干渉露光法を用いるのが一般的であ
り、この干渉露光法では、光導波層が作り込まれた半導
体基板表面にレジストを塗布した後、2方向からレーザ
光を照射することでできる干渉パターンで露光し、この
格子状のレジストを用いて現像、エッチングすることで
表面全体に回折格子の周期構造を作り込んでいる。
The period of this periodic structure is usually extremely short. For example, in order to obtain laser oscillation in the 1.3 μm band,
It becomes about 2 μm. In order to obtain such a fine periodic structure, it is common to use an interference exposure method. In this interference exposure method, a resist is applied to the surface of a semiconductor substrate having an optical waveguide layer. After that, the periodic structure of the diffraction grating is formed on the entire surface by exposing with an interference pattern formed by irradiating a laser beam from two directions, and developing and etching using this grating resist.

【0005】一方、一般的な半導体レーザは、活性層か
ら出力される光を伝送路となる光ファイバに結合させて
用いるため、出力端の光強度分布が、上下、左右に対称
で、かつ光ファイバと同じ円形に近いほどより効率よく
結合できる。
On the other hand, in a general semiconductor laser, since the light output from the active layer is used by being coupled to an optical fiber serving as a transmission line, the light intensity distribution at the output end is vertically and horizontally symmetrical, and The closer it is to the same circle as the fiber, the more efficient the coupling.

【0006】したがって、その構造は例えば図4(a)
に示すように、活性層1に対し垂直方向に第1及び第2
のガイド層2a、2bを設け、さらに第1及び第2のク
ラッド層3a、3bを設けることで、同図(b)に示す
ような活性層1を中心として垂直方向に対称な屈折率分
布にし、出力端面における光強度分布を同図(c)に示
しように対称にしている。
Therefore, its structure is, for example, as shown in FIG.
As shown in FIG.
By providing the guide layers 2a and 2b, and the first and second cladding layers 3a and 3b, a refractive index distribution symmetrical in the vertical direction with respect to the active layer 1 as shown in FIG. , The light intensity distribution on the output end face is symmetrical as shown in FIG.

【0007】これに対し、従来の分布帰還型半導体レー
ザの構造は、図5(a)に示すように、活性層1の上側
(下側であってもよい)に設けられた第1のガイド層2
aと第1のクラッド層3aとの間に回折格子層4を設
け、光をこの回折格子層4で分布的に帰還させることで
発振を得ている。
On the other hand, in the structure of the conventional distributed feedback semiconductor laser, as shown in FIG. 5A, the first guide provided on the upper side of the active layer 1 (may be on the lower side). Layer 2
Oscillation is obtained by providing a diffraction grating layer 4 between a and the first cladding layer 3a and returning light in a distributed manner at the diffraction grating layer 4.

【0008】[0008]

【発明が解決しようとする課題】従来の分布帰還型半導
体レーザは、以上のように活性層の上側あるいは下側の
いずれか一方に回折格子層を設けた構造になっているの
で、このレーザ出力端面における屈折率分布は図5
(b)に示すように活性層を中心として垂直方向に対称
にならず、したがって同図(c)に示すように光強度分
布も活性層を中心にして垂直方向に非対称な分布とな
り、光ファイバへ効率よく結合することができないとい
う課題があった。
Since the conventional distributed feedback semiconductor laser has a structure in which the diffraction grating layer is provided on either the upper side or the lower side of the active layer as described above, this laser output The refractive index distribution on the end face is shown in Fig. 5.
As shown in (b), it is not symmetrical in the vertical direction about the active layer. Therefore, as shown in (c) in the figure, the light intensity distribution is also asymmetric in the vertical direction about the active layer. There was a problem that could not be efficiently combined with.

【0009】この発明は上記のような課題を解決するた
めになされたもので、光ファイバへの結合効率を向上さ
せる分布帰還型半導体レーザの構造及びその製造方法を
提供することを目的としてする。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a structure of a distributed feedback semiconductor laser which improves the coupling efficiency with an optical fiber, and a manufacturing method thereof.

【0010】[0010]

【課題を解決するための手段】この発明に係る分布帰還
型半導体レーザは、活性層の一方の表面側に形成された
ガイド層とクラッド層との間に作り込まれた周期的な屈
折率変動あるいは利得変動を得る周期構造を有する回折
格子層の出力端近傍に、この周期構造のないフラット領
域を設けることで、この出力端近傍において、活性層に
対して垂直方向の屈折率分布を対称にする構造としたこ
とを特徴としている。なお、この回折格子層は活性層に
対して上側に構成しても下側に構成してもよい。
A distributed feedback semiconductor laser according to the present invention has a periodical refractive index variation formed between a guide layer and a cladding layer formed on one surface side of an active layer. Alternatively, by providing a flat region without this periodic structure in the vicinity of the output end of the diffraction grating layer having a periodic structure that obtains gain variation, the refractive index distribution in the vertical direction with respect to the active layer becomes symmetrical near this output end. It is characterized by the structure. The diffraction grating layer may be arranged above or below the active layer.

【0011】特に、上記回折格子層の出力端近傍に設け
られたフラット領域は、導波方向の長さが当該分布帰還
型半導体レーザの導波方向の長さと比較して十分に短
く、かつ当該分布帰還型半導体レーザ自身の特性に影響
しない長さであり、具体的には、通常300〜1000
μmのレーザ長(導波方向の長さ)に対し10〜20μ
m程度作り込まれる。
In particular, the flat region provided in the vicinity of the output end of the diffraction grating layer has a length in the waveguide direction that is sufficiently shorter than the length in the waveguide direction of the distributed feedback semiconductor laser, and It is a length that does not affect the characteristics of the distributed feedback semiconductor laser itself.
10 to 20μ for a laser length (length in the waveguide direction) of μm
Built in about m.

【0012】また、その製造方法は、干渉露光法に先立
ち予め上記フラット領域にする所定の領域を一定幅にわ
たり露光することで周期構造をなくすか、あるいは予め
光導波層が作り込まれた基板全面に干渉露光法により周
期構造を作製した後、所定の領域を一定幅にわたりエッ
チングすることで周期構造をなくすことを特徴としてい
る。
Further, the manufacturing method is to eliminate the periodic structure by exposing a predetermined area to be the flat area over a predetermined width in advance of the interference exposure method, or the entire surface of the substrate on which the optical waveguide layer is preliminarily formed. After the periodic structure is formed by the interference exposure method, the periodic structure is eliminated by etching a predetermined region over a certain width.

【0013】[0013]

【作用】この発明における分布帰還型半導体レーザは、
回折格子層の出力端近傍に、周期的な屈折率変動あるい
は利得変動を得る周期構造のないフラット領域を設ける
ことで、この周期構造を有する部分における活性層を中
心とした垂直方向の屈折率分布は非対称であるが、出力
端近傍において、活性層に対して垂直方向の屈折率分布
が対称になるので、レーザ出力端面における光強度分布
は活性層に対して垂直方向の対称性が保証される。
The distributed feedback semiconductor laser according to the present invention is
By providing a flat region without a periodic structure near the output end of the diffraction grating layer to obtain periodical refractive index fluctuations or gain fluctuations, the refractive index distribution in the vertical direction centered on the active layer in the part with this periodic structure Is asymmetric, but since the refractive index distribution in the vertical direction with respect to the active layer is symmetrical near the output end, the light intensity distribution at the laser output end face is guaranteed to be symmetric with respect to the active layer. .

【0014】特に、上記回折格子層の出力端近傍に設け
られたフラット領域は、導波方向の長さが10〜20μ
m程度であり、当該分布帰還型半導体レーザの導波方向
の長さ300〜1000μmと比較して十分に短いの
で、当該分布帰還型半導体レーザ自身の特性を損なうこ
とがない。
In particular, the flat region provided in the vicinity of the output end of the diffraction grating layer has a length in the waveguide direction of 10 to 20 μm.
Since it is about m, which is sufficiently shorter than the length of the distributed feedback semiconductor laser in the waveguide direction of 300 to 1000 μm, the characteristics of the distributed feedback semiconductor laser itself are not impaired.

【0015】また、その製造方法は、干渉露光法に先立
ち予め上記フラット領域にする所定の領域を一定幅にわ
たり露光するか、あるいは予め光導波層が作り込まれた
基板全面に干渉露光法により周期構造を作製した後、所
定部分を一定幅にわたりエッチングすることにより、回
折格子層における所望の位置の屈折率変動あるいは利得
変動の周期構造をなくす。
Further, the manufacturing method is such that a predetermined area to be the flat area is exposed over a predetermined width in advance of the interference exposure method, or the whole surface of the substrate in which the optical waveguide layer is previously formed is subjected to the cycle by the interference exposure method. After forming the structure, a predetermined portion is etched over a certain width to eliminate the periodic structure of the refractive index fluctuation or the gain fluctuation at a desired position in the diffraction grating layer.

【0016】[0016]

【実施例】以下、この発明の一実施例を図1乃至図3を
用いて説明する。なお、図中同一部分には同一符号を付
して説明を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. In the figure, the same parts are designated by the same reference numerals and the description thereof will be omitted.

【0017】図1は、この発明に係る分布帰還型半導体
レーザの構造を示す斜視断面図であり、この分布帰還型
半導体レーザは光導波層となる活性層1の両表面にガイ
ド層2a、2bを形成し、この活性層1の上側あるいは
下側のいずれか一方であって、例えばガイド層2aとク
ラッド層3aとの間に周期的な屈折率変動あるいは利得
変動を有する回折格子層4が作り込まれている(なお、
ここでは回折格子層4はガイド層2aとクラッド層3a
との界面に作り込まれた回折格子を含む部分をいう)。
FIG. 1 is a perspective sectional view showing the structure of a distributed feedback semiconductor laser according to the present invention. This distributed feedback semiconductor laser has guide layers 2a and 2b on both surfaces of an active layer 1 serving as an optical waveguide layer. And a diffraction grating layer 4 having a periodic refractive index variation or gain variation is formed between the guide layer 2a and the cladding layer 3a on either the upper side or the lower side of the active layer 1. It is embedded (in addition,
Here, the diffraction grating layer 4 includes the guide layer 2a and the cladding layer 3a.
It refers to the part that contains the diffraction grating built into the interface with).

【0018】そして、この回折格子層4は活性層1に対
して導波方向に全面に作り込まれるのではなく、上記周
期構造を有さないフラット領域5が出力端近傍に設けら
れている。
The diffraction grating layer 4 is not formed on the entire surface of the active layer 1 in the waveguide direction, but the flat region 5 having no periodic structure is provided near the output end.

【0019】以上のような構造により、当該分布帰還型
半導体レーザの活性層1に対する垂直方向の屈折率分布
は、この周期構造を有する部分(図1中、A−A´で示
す部分)において図2(a)に示すように活性層1に対
して非対称となる。一方、周期構造を有さない部分(図
1中、B−B´で示す部分)では図2(b)に示すよう
に活性層1に対して対称となるため、出力端面にいける
光強度分布は活性層1に対して垂直方向の対称性が保証
される。
With the structure as described above, the refractive index distribution in the direction perpendicular to the active layer 1 of the distributed feedback semiconductor laser is shown in the portion having this periodic structure (the portion indicated by AA 'in FIG. 1). As shown in FIG. 2A, it is asymmetric with respect to the active layer 1. On the other hand, since the portion having no periodic structure (the portion indicated by BB ′ in FIG. 1) is symmetrical with respect to the active layer 1 as shown in FIG. 2B, the light intensity distribution on the output end face is Is assured of vertical symmetry with respect to the active layer 1.

【0020】次に、上記構造の分布帰還型半導体レーザ
の製造方法について図3を用いて説明する。
Next, a method of manufacturing the distributed feedback semiconductor laser having the above structure will be described with reference to FIG.

【0021】まず、第1の工程において、予め光導波層
が作り込まれている半導体基板6表面(この半導体基板
6にはすでにガイド層2a、2b及びクラッド層3bが
作り込まれている)にレジスト7を塗布し、マスク8を
用いて所定部分を一定幅にわたって露光する(図3
(a))。
First, in the first step, on the surface of the semiconductor substrate 6 in which the optical waveguide layer is previously formed (the guide layers 2a, 2b and the cladding layer 3b are already formed in this semiconductor substrate 6). A resist 7 is applied, and a predetermined portion is exposed using a mask 8 over a certain width (see FIG. 3).
(A)).

【0022】そして、続けて干渉露光法によって半導体
基板6表面の全体を干渉パターンで露光する(図3
(b))。
Then, the entire surface of the semiconductor substrate 6 is exposed with an interference pattern by the interference exposure method (FIG. 3).
(B)).

【0023】次に、上記半導体基板6表面を露光された
格子状のレジスト7を用いて現像、エッチングし、回折
格子の周期構造を有する回折格子層4と周期構造のない
フラット領域5を形成する(図3(c))。
Next, the surface of the semiconductor substrate 6 is developed and etched using the exposed grating-shaped resist 7 to form the diffraction grating layer 4 having the periodic structure of the diffraction grating and the flat region 5 having no periodic structure. (FIG.3 (c)).

【0024】そして、以上のように部分的に回折格子の
周期構造が形成された半導体基板6表面にクラッド層3
aとなる層を形成し、回折格子の周期構造のないフラッ
ト領域5を出力端面として、活性層1に対し垂直方向に
切断することでこの発明に係る分布帰還型半導体レーザ
を作製する(図3(d))。
Then, the cladding layer 3 is formed on the surface of the semiconductor substrate 6 on which the periodic structure of the diffraction grating is partially formed as described above.
A distributed feedback semiconductor laser according to the present invention is manufactured by forming a layer to be a and cutting it in the direction perpendicular to the active layer 1 using the flat region 5 having no periodic structure of the diffraction grating as an output end face (FIG. 3). (D)).

【0025】なお、上記実施例では半導体基板6表面を
一定幅にわたり周期構造を取り除く別の手段として、マ
スク8を用いて露光した後に干渉露光法による干渉パタ
ーンでさらに露光するようにしたが、上記干渉露光法に
よる干渉パターンで半導体基板6表面の全体に周期構造
を作製した後、所定の部分のみ再度エッチングし、周期
構造をなくすようにしても同様の効果を奏する。
In the above embodiment, as another means for removing the periodic structure on the surface of the semiconductor substrate 6 over a certain width, the mask 8 is used for exposure, and then the interference pattern is further exposed by the interference exposure method. Even if a periodic structure is formed on the entire surface of the semiconductor substrate 6 by an interference pattern by the interference exposure method and only a predetermined portion is etched again to eliminate the periodic structure, the same effect can be obtained.

【0026】[0026]

【発明の効果】以上のようにこの発明によれば、活性層
の一方の表面側に形成されたガイド層とクラッド層との
間に作り込まれた周期的な屈折率変動あるいは利得変動
を得る周期構造を有する回折格子層の出力端近傍に、こ
の周期構造のないフラット領域を設け、この出力端近傍
において、活性層に対して垂直方向の屈折率分布を対称
にする構造とすることにより、上記活性層を中心とした
光強度分布の対称性が保証され、これにより光ファイバ
への結合効率が向上するので、同等の性能を有する従来
の分布帰還型半導体レーザ(例えば図5)に比べ、光フ
ァイバに結合した光は多くなり、実質的に光出力の増加
と同等の効果がある。
As described above, according to the present invention, a periodic refractive index variation or gain variation formed between the guide layer formed on one surface side of the active layer and the cladding layer is obtained. By providing a flat region without this periodic structure in the vicinity of the output end of the diffraction grating layer having a periodic structure, and in the vicinity of this output end, by making the refractive index distribution in the direction perpendicular to the active layer symmetrical, Since the symmetry of the light intensity distribution centering on the active layer is guaranteed and the coupling efficiency with the optical fiber is improved by this, compared with the conventional distributed feedback semiconductor laser (for example, FIG. 5) having the same performance, A large amount of light is coupled to the optical fiber, which has substantially the same effect as increasing the light output.

【0027】さらに、各種光通信システムにおいては、
光出力が実質的に増加することにより、S/N比の向上
させ、伝送距離を飛躍的に増大させるという効果があ
る。
Furthermore, in various optical communication systems,
The substantial increase in the optical output has the effects of improving the S / N ratio and dramatically increasing the transmission distance.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明に係る分布帰還型半導体レーザの一実
施例による構成を示す斜視断面図である。
FIG. 1 is a perspective sectional view showing a configuration of an embodiment of a distributed feedback semiconductor laser according to the present invention.

【図2】この発明に係る分布帰還型半導体レーザ各部に
おける活性層に対して垂直方向の屈折率分布を示す図で
ある。
FIG. 2 is a diagram showing the refractive index distribution in the direction perpendicular to the active layer in each part of the distributed feedback semiconductor laser according to the present invention.

【図3】この発明に係る分布帰還型半導体レーザの製造
方法における各工程を説明するための図である。
FIG. 3 is a diagram for explaining each step in the method of manufacturing the distributed feedback semiconductor laser according to the present invention.

【図4】一般的な半導体レーザの構成を示す断面図であ
る。
FIG. 4 is a cross-sectional view showing the structure of a general semiconductor laser.

【図5】従来の分布帰還型半導体レーザの構成を示す断
面図である。
FIG. 5 is a cross-sectional view showing the structure of a conventional distributed feedback semiconductor laser.

【符号の説明】[Explanation of symbols]

1…活性層、2a…第1のガイド層、2b…第2のガイ
ド層、3a…第1のクラッド層、3b…第2のクラッド
層、4…回折格子層、5…フラット領域、6…半導体基
板、7…レジスト、7…マスク。
DESCRIPTION OF SYMBOLS 1 ... Active layer, 2a ... 1st guide layer, 2b ... 2nd guide layer, 3a ... 1st clad layer, 3b ... 2nd clad layer, 4 ... Diffraction grating layer, 5 ... Flat area, 6 ... Semiconductor substrate, 7 ... Resist, 7 ... Mask.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 活性層の一方の表面側に形成されたガイ
ド層とクラッド層との間に、周期的な屈折率変動あるい
は利得変動を得る周期構造を有し、光を分布的に帰還さ
せて発振を得るための回折格子層が作り込まれた分布帰
還型半導体レーザにおいて、 前記回折格子層の出力端近傍に、上記周期構造のないフ
ラット領域を設けたことを特徴とする分布帰還型半導体
レーザ。
1. A periodic structure for obtaining a periodic refractive index variation or gain variation is provided between a guide layer and a cladding layer formed on one surface side of an active layer to return light in a distributed manner. In a distributed feedback semiconductor laser in which a diffraction grating layer for obtaining oscillation is formed, a flat region without the periodic structure is provided near the output end of the diffraction grating layer. laser.
【請求項2】 前記フラット領域が設けられた出力端近
傍において、活性層に対して垂直方向の屈折率分布が、
該活性層を中心として対称であることを特徴とする請求
項1記載の分布帰還型半導体レーザ。
2. The refractive index distribution in the direction perpendicular to the active layer near the output end where the flat region is provided is:
The distributed feedback semiconductor laser according to claim 1, wherein the distributed feedback semiconductor laser is symmetrical with respect to the active layer.
【請求項3】 予め光導波層が作り込まれている半導体
基板表面にレジストを塗布し、所定部分を一定幅にわた
って露光した後、干渉露光法によって表面全体を干渉パ
ターンで露光する第1の工程と、 前記半導体基板表面を露光されたレジストを用いて現
像、エッチングし、回折格子の周期構造を有する領域と
該周期構造のない領域を形成する第2の工程と、 前記部分的に回折格子の周期構造が形成された半導体基
板表面にクラッド層を形成し、該回折格子の周期構造の
ない領域を出力端面として、活性層に対し垂直方向に切
断する第3の工程を備えた分布帰還型半導体レーザの製
造方法。
3. A first step in which a resist is applied to the surface of a semiconductor substrate on which an optical waveguide layer is previously formed, a predetermined portion is exposed over a certain width, and then the entire surface is exposed by an interference pattern by an interference exposure method. And a second step of developing and etching the surface of the semiconductor substrate with an exposed resist to form a region having a periodic structure of the diffraction grating and a region having no periodic structure, and the partially forming the diffraction grating. A distributed feedback semiconductor including a third step in which a clad layer is formed on the surface of a semiconductor substrate on which a periodic structure is formed, and a region without the periodic structure of the diffraction grating is used as an output end face and cut in a direction perpendicular to the active layer. Laser manufacturing method.
【請求項4】 予め光導波層が作り込まれている半導体
基板表面にレジストを塗布し、干渉露光法によって表面
全体を干渉パターンで露光し、該露光された格子状のレ
ジストを用いて現像、エッチングして回折格子の周期構
造を形成する第1の工程と、 前記回折格子の周期構造が形成された半導体基板表面の
うち、所定部分を一定幅にわたってエッチングし、該周
期構造をなくす第2の工程と、 前記部分的に回折格子の周期構造が形成された半導体基
板表面にクラッド層を形成し、該回折格子の周期構造の
ない領域を出力端面として、活性層に対し垂直方向に切
断する第3の工程を備えた分布帰還型半導体レーザの製
造方法。
4. A semiconductor substrate surface on which an optical waveguide layer is previously formed is coated with a resist, the entire surface is exposed with an interference pattern by an interference exposure method, and development is performed using the exposed grid-shaped resist. A first step of forming a periodic structure of the diffraction grating by etching; and a second step of eliminating the periodic structure by etching a predetermined portion of a surface of the semiconductor substrate on which the periodic structure of the diffraction grating is formed. A step of forming a cladding layer on the surface of the semiconductor substrate on which the periodic structure of the diffraction grating is partially formed, and cutting in a direction perpendicular to the active layer, with the region without the periodic structure of the diffraction grating as an output end face; A method of manufacturing a distributed feedback semiconductor laser, which comprises the step of 3.
JP01748993A 1993-02-04 1993-02-04 Distributed feedback semiconductor laser and method of manufacturing the same Expired - Lifetime JP3235627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01748993A JP3235627B2 (en) 1993-02-04 1993-02-04 Distributed feedback semiconductor laser and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01748993A JP3235627B2 (en) 1993-02-04 1993-02-04 Distributed feedback semiconductor laser and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH06232499A true JPH06232499A (en) 1994-08-19
JP3235627B2 JP3235627B2 (en) 2001-12-04

Family

ID=11945423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01748993A Expired - Lifetime JP3235627B2 (en) 1993-02-04 1993-02-04 Distributed feedback semiconductor laser and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3235627B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08160257A (en) * 1994-10-07 1996-06-21 Ricoh Co Ltd Mounting structure for optical transmission module
JP2017135158A (en) * 2016-01-25 2017-08-03 三菱電機株式会社 Optical semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08160257A (en) * 1994-10-07 1996-06-21 Ricoh Co Ltd Mounting structure for optical transmission module
JP2017135158A (en) * 2016-01-25 2017-08-03 三菱電機株式会社 Optical semiconductor device

Also Published As

Publication number Publication date
JP3235627B2 (en) 2001-12-04

Similar Documents

Publication Publication Date Title
JP2768988B2 (en) End face coating method
JPS60145685A (en) Distributed feedback type semiconductor device
JP3244115B2 (en) Semiconductor laser
JPH05323139A (en) Optical coupling device
JP2008113041A (en) Waveguide
US4589117A (en) Butt-jointed built-in semiconductor laser
JP3104650B2 (en) Optical coupling device and optical coupling method
JP3264369B2 (en) Optical modulator integrated semiconductor laser and method of manufacturing the same
JP3235627B2 (en) Distributed feedback semiconductor laser and method of manufacturing the same
KR100369329B1 (en) Fabrication method of defectless and anti-reflection spot size converted optical devices
JPH05142435A (en) Waveguide type beam conversion element and production thereof
JPH0667043A (en) Spot conversion element and its production
JPH0837341A (en) Semiconductor optical integrated element
JP2006323136A (en) Optical waveguide and manufacturing method therefor
JP2700312B2 (en) Distributed feedback semiconductor laser device
JPH041703A (en) Production of phase shift type diffraction grating
JP3786648B2 (en) Mode size conversion optical waveguide
JP3368607B2 (en) Distributed feedback semiconductor laser
JPH04186829A (en) Manufacture of semiconductor device
KR100399577B1 (en) Spot size converter and Manufacturing Method of Spot size converter
JPH09184909A (en) Manufacture of diffraction grating limited in region
JPH0485503A (en) Manufacture of semiconductor optical input and output circuit
JP2002116335A (en) Structure for semiconductor optical waveguide and its manufacturing method
JPH0430198B2 (en)
JPS63150984A (en) Forming method for diffraction grating

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070928

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080928

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090928

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090928

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20110928

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20120928