JPH0837341A - Semiconductor optical integrated element - Google Patents

Semiconductor optical integrated element

Info

Publication number
JPH0837341A
JPH0837341A JP17070894A JP17070894A JPH0837341A JP H0837341 A JPH0837341 A JP H0837341A JP 17070894 A JP17070894 A JP 17070894A JP 17070894 A JP17070894 A JP 17070894A JP H0837341 A JPH0837341 A JP H0837341A
Authority
JP
Japan
Prior art keywords
waveguide
laser
optical
quantum well
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17070894A
Other languages
Japanese (ja)
Inventor
Makoto Takahashi
誠 高橋
So Otoshi
創 大▲歳▼
Shinji Tsuji
伸二 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17070894A priority Critical patent/JPH0837341A/en
Publication of JPH0837341A publication Critical patent/JPH0837341A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12166Manufacturing methods
    • G02B2006/12195Tapering

Landscapes

  • Optical Integrated Circuits (AREA)
  • Semiconductor Lasers (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

PURPOSE:To enable optical coupling efficiency between elements to improve and a symmetry of propagated light to hold by coupling a shaft of each optical waveguide horizontally. CONSTITUTION:Optical shafts of a multiple quantum well Fabry-Perot type laser 40 which integrate by selective growth and a multiple quantum well spot size conversion taper type waveguide 50 are formed horizontally. Since such structure enables a symmetry of laser light to be reserved in a taper type waveguide part 50, a symmetry of exit light from the edge is not destroyed. Also, inasmuch as a light shaft and a symmetry of beams of waveguide light of the laser part and the taper waveguide part 50 are in agreement, an overlap of the laser beam and reflected light of the taper type waveguide part increases as compared to a case of a light shaft bending. Consequently, there is less reduction of reflectance of the laser edge due to integration and an increase in the threshold current density can be checked. As a result, reduction of the threshold current density and improvement of the symmetry of exit light can be achieved through integrated elements of the Fabry-Perot type laser and the spot conversion taper type waveguide.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体光集積素子およ
びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor optical integrated device and its manufacturing method.

【0002】[0002]

【従来の技術】近年、成長阻止マスクを用いた選択成長
法による半導体光素子の集積化が盛んになっている。選
択成長法を用いれば一回の結晶成長で組成や膜厚の異な
る光導波路を同時に作製できる。このため、選択成長法
を用いて、分布帰還型レーザと電界吸収型変調器の集積
化素子や、ファブリペロー型レーザとスポットサイズ変
換用テーパ型導波路の集積化素子などが作製されてい
る。尚、この種の光集積化素子に関するものとして例え
ば1994年電子情報通信学会春期大会C−243が挙
げられる。
2. Description of the Related Art In recent years, semiconductor optical devices have been increasingly integrated by a selective growth method using a growth blocking mask. If the selective growth method is used, it is possible to simultaneously manufacture optical waveguides having different compositions and film thicknesses by one crystal growth. Therefore, an integrated device of a distributed feedback laser and an electroabsorption modulator, an integrated device of a Fabry-Perot laser and a tapered waveguide for spot size conversion, and the like have been manufactured by using the selective growth method. Incidentally, as for the optical integrated device of this type, for example, the 1994 IEICE Spring Conference C-243 can be cited.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術では、膜
厚の異なる光導波路を集積化する場合には、図7に示す
様に、厚い導波路を形成する領域の周囲には幅の広い成
長阻止マスク90を、薄い導波路を形成する領域の周囲
には幅の狭い成長阻止マスクをパターンニングした基板
10を用いていた。しかし、この方法では、膜厚の異な
る光導波路の集積化は可能であるが、集積された光導波
路間の中心軸は図6に示す様に水平にはならずに折れ曲
がってしまう。光導波路の中心軸が折れ曲がるというこ
とは、光導波路の光軸が折れ曲がるということであり、
光導波路間の光結合効率の低下などを招く。このため、
例えば分布帰還型レーザと電界吸収型変調器の集積化素
子では消光特性の低下が、ファブリペロー型レーザとス
ポットサイズ変換用テーパ型導波路の集積化素子では、
しきい電流密度の上昇や、出射光の対称性の低下などが
生じる。
In the above prior art, when integrating optical waveguides having different film thicknesses, as shown in FIG. 7, a wide growth is formed around a region where a thick waveguide is formed. As the blocking mask 90, the substrate 10 in which the growth blocking mask having a narrow width is patterned around the region where the thin waveguide is formed is used. However, with this method, although the optical waveguides having different film thicknesses can be integrated, the central axis between the integrated optical waveguides is not horizontal but bent as shown in FIG. The fact that the center axis of the optical waveguide bends means that the optical axis of the optical waveguide bends,
This causes a decrease in optical coupling efficiency between the optical waveguides. For this reason,
For example, in the integrated element of the distributed feedback laser and the electroabsorption modulator, the extinction characteristic deteriorates, but in the integrated element of the Fabry-Perot laser and the tapered waveguide for spot size conversion,
An increase in the threshold current density and a decrease in the symmetry of emitted light occur.

【0004】従って、本発明の目的は水平な光軸を有す
る半導体光集積素子およびその製造方法を提供すること
にある。
Therefore, an object of the present invention is to provide a semiconductor optical integrated device having a horizontal optical axis and a method for manufacturing the same.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明の半導体光集積素子は、選択成長時の成長阻
止マスクのパターニングや材料、および成長条件を制御
することにより集積化された光素子における光導波路の
中心軸を水平とする事を特徴とするものである。
In order to achieve the above object, the semiconductor optical integrated device of the present invention is integrated by controlling the patterning and material of the growth blocking mask and the growth conditions during the selective growth. It is characterized in that the central axis of the optical waveguide in the optical element is horizontal.

【0006】[0006]

【作用】半導体光集積素子において、集積化された光素
子における光導波路の中心軸を水平とすれば、光素子間
の光結合効率が高まる。このため、例えば分布帰還型レ
ーザと電界吸収型変調器の集積化素子では消光特性の向
上が、ファブリペロー型レーザとスポットサイズ変換用
テーパ型導波路の集積化素子では、しきい電流密度の低
下や、出射光の対称性の向上が可能となる。
In the semiconductor optical integrated device, if the central axis of the optical waveguide in the integrated optical device is horizontal, the optical coupling efficiency between the optical devices is improved. For this reason, for example, the extinction characteristic is improved in the integrated device of the distributed feedback laser and the electroabsorption modulator, but the threshold current density is decreased in the integrated device of the Fabry-Perot laser and the tapered waveguide for spot size conversion. Also, the symmetry of the emitted light can be improved.

【0007】[0007]

【実施例】図1は、本発明の第一の実施例による多重量
子井戸ファブリペロー型レーザ40と多重量子井戸スポ
ットサイズ変換用テーパ型導波路50の集積化素子の断
面図である。本実施例の特徴は、選択成長により集積化
した多重量子井戸ファブリペロー型レーザ40と多重量
子井戸スポットサイズ変換用テーパ型導波路50の光軸
を水平に形成したところにある。この様な構造にすれ
ば、レーザ光の対称性がテーパ型導波路部50において
も保存されるため、端面からの出射光の対称性も損なわ
れない。また、レーザ部とテーパ型導波路部50の導波
光の光軸および対称性が一致するため、光軸が折れ曲が
る場合に比べてレーザ光とテーパ型導波路部の反射光の
重なりが大きくなる。このため、集積化によるレーザ端
面の反射率の低下も少なくなり、しきい電流密度の上昇
を抑さえることができる。
1 is a cross-sectional view of an integrated device of a multiple quantum well Fabry-Perot type laser 40 and a multiple quantum well spot size converting taper type waveguide 50 according to a first example of the present invention. The feature of this embodiment is that the optical axes of the multiple quantum well Fabry-Perot type laser 40 and the multiple quantum well spot size converting taper type waveguide 50 integrated by selective growth are formed horizontally. With such a structure, the symmetry of the laser light is preserved even in the tapered waveguide section 50, so that the symmetry of the light emitted from the end face is not impaired. Further, since the optical axis and the symmetry of the guided light of the laser section and the tapered waveguide section 50 are the same, the overlapping of the laser beam and the reflected light of the tapered waveguide section becomes larger than that when the optical axis is bent. Therefore, the decrease in the reflectance of the laser facet due to the integration is reduced, and the increase in the threshold current density can be suppressed.

【0008】次に、図3を用いて本発明の製造方法の一
例を示す。先ず、図3(a)に示す様な、多重量子井戸フ
ァブリペロー型レーザ成長部40に幅の狭い成長素子マ
スク90を、テーパ型導波路成長部50に幅の広い成長
素子マスク90を施したn型InP基板10上にn型InPクラ
ッド層20を成長する。この時、n型InPクラッド層10
は図3(b)に示す様に多重量子井戸ファブリペロー型レ
ーザ部40で薄く、テーパ型導波路部50で厚くなる。
次に、図3(c)に示す様に、テーパ型導波路成長部50
に施した成長素子マスク90の一部を除去し、レーザ成
長部に施した成長素子マスクよりも幅を狭くする。その
後、InGaAs/InGaAsP多重量子井戸コア層30およびp型I
nPクラッド層25を成長し、本発明の半導体光集積素子
を完成する。
Next, an example of the manufacturing method of the present invention will be described with reference to FIG. First, as shown in FIG. 3A, a multi-quantum well Fabry-Perot type laser growth section 40 is provided with a narrow growth element mask 90, and a tapered waveguide growth section 50 is provided with a wide growth element mask 90. An n-type InP clad layer 20 is grown on the n-type InP substrate 10. At this time, the n-type InP clad layer 10
Is thin in the multiple quantum well Fabry-Perot type laser section 40 and thick in the tapered type waveguide section 50, as shown in FIG.
Next, as shown in FIG. 3C, the tapered waveguide growth portion 50
Part of the growth element mask 90 applied to the laser growth portion is removed to make the width narrower than that of the growth element mask applied to the laser growth portion. After that, InGaAs / InGaAsP multiple quantum well core layer 30 and p-type I
The nP clad layer 25 is grown to complete the semiconductor optical integrated device of the present invention.

【0009】次に、図2を用いて他の実施例を説明す
る。図2は、本発明の第二の実施例による多重量子井戸
分布帰還型レーザ70と多重量子井戸電界吸収型変調器
80の集積化素子の断面図である。本実施例の特徴も、
選択成長により集積化した多重量子井戸布帰還型レーザ
70と多重量子井戸電界吸収型変調器80の光軸を水平
に形成したところにある。このような構造にすれば、多
重量子井戸布帰還型レーザ70と多重量子井戸電界吸収
型変調器80の光結合効率が高まり、消光特性が向上す
る。
Next, another embodiment will be described with reference to FIG. FIG. 2 is a cross-sectional view of an integrated device of a multiple quantum well distributed feedback laser 70 and a multiple quantum well electroabsorption modulator 80 according to a second embodiment of the present invention. The features of this embodiment are also
The optical axes of the multiple quantum well cloth feedback laser 70 and the multiple quantum well electroabsorption modulator 80 integrated by selective growth are formed horizontally. With such a structure, the optical coupling efficiency between the multi-quantum well cloth feedback laser 70 and the multi-quantum well electroabsorption modulator 80 is improved, and the extinction characteristic is improved.

【0010】次に、図4を用いて本発明の製造方法の一
例を示す。先ず、図4(a)に示す様な、多重量子井戸分
布帰還型レーザ成長部70に幅の狭い成長素子マスク9
0を、多重量子井戸電界吸収型変調器成長部80に幅の
広い成長素子マスク90を施したn型InP基板上10にn
型InPクラッド層20を成長する。この時、n型InPクラ
ッド層20は図4(b)に示す様に多重量子井戸分布帰還
型レーザ部70で薄く、多重量子井戸電界吸収型変調器
部0で厚くなる。次に、図4(c)に示す様に多重量子井
戸電界吸収型変調器成長部80に施した成長素子マスク
90の一部を除去し、レーザ成長部70に施した成長素
子マスク90よりも幅を狭くする。その後、InGaAs/InG
aAsP多重量子井戸コア層30およびp型InPクラッド層2
5を成長し、本発明の半導体光集積素子を完成する。
Next, an example of the manufacturing method of the present invention will be described with reference to FIG. First, as shown in FIG. 4A, the growth element mask 9 having a narrow width is formed in the multiple quantum well distributed feedback laser growth portion 70.
0 on the n-type InP substrate 10 in which the multi-quantum well electro-absorption modulator growth portion 80 is provided with the wide growth element mask 90.
A type InP clad layer 20 is grown. At this time, the n-type InP cladding layer 20 becomes thin in the multiple quantum well distributed feedback laser section 70 and becomes thick in the multiple quantum well electroabsorption modulator section 0 as shown in FIG. 4 (b). Next, as shown in FIG. 4C, a part of the growth element mask 90 applied to the multi-quantum well electro-absorption modulator growth portion 80 is removed, and the growth element mask 90 applied to the laser growth portion 70 is removed. Narrow the width. After that, InGaAs / InG
aAsP multiple quantum well core layer 30 and p-type InP clad layer 2
5 is grown to complete the semiconductor optical integrated device of the present invention.

【0011】図5は、本発明の第三の実施例によるファ
ブリペロー型レーザ110とスポットサイズ変換用テー
パ型導波路120の集積化素子の断面図である。本実施
例は、第一の実施例においてInGaAs/InGaAsP多重量子井
戸コア層30の代わりにInGaAsバルクコア層100を形
成したものである。本実施例の作製法は、第一の実施例
と同様である。
FIG. 5 is a cross-sectional view of an integrated device of a Fabry-Perot type laser 110 and a spot size conversion taper type waveguide 120 according to a third embodiment of the present invention. In this embodiment, an InGaAs bulk core layer 100 is formed instead of the InGaAs / InGaAsP multiple quantum well core layer 30 in the first embodiment. The manufacturing method of this embodiment is the same as that of the first embodiment.

【0012】以上の実施例は、集積化する光半導体素子
として、分布帰還型レーザと電界吸収型変調器、および
ファブリペロー型レーザとスポットサイズ変換用テーパ
型導波路について説明したが、本発明は集積化する素子
の種類に依らない。また、本発明は、半導体の導電型お
よび材料に依らず有効であり、上記実施例で説明した場
合に制限されない。
In the above embodiments, the distributed feedback laser and the electroabsorption modulator, and the Fabry-Perot laser and the tapered waveguide for spot size conversion were described as the optical semiconductor elements to be integrated. It does not depend on the type of device to be integrated. Further, the present invention is effective regardless of the conductivity type and material of the semiconductor, and is not limited to the case described in the above embodiments.

【0013】また、上記実施例の作製法は成長阻止マス
クのパターンニングを制御する場合について説明した
が、本発明は成長阻止マスクの材料や結晶成長条件の制
御によっても実現可能である。例えば、InPの成長を促
進しInGaAsおよびInGaAsPの成長を抑制するマスク材料
を用いれば、図3(a)もしくは図4(a)のマスクパターン
により途中でマスクパターンを変更せずに、第一および
第二、第三の実施例の半導体光集積素子を作製できる。
Further, although the manufacturing method of the above-described embodiment has been described in the case of controlling the patterning of the growth blocking mask, the present invention can be realized by controlling the material of the growth blocking mask and the crystal growth conditions. For example, if a mask material that promotes the growth of InP and suppresses the growth of InGaAs and InGaAsP is used, the mask pattern of FIG. 3A or FIG. The semiconductor optical integrated device of the second and third embodiments can be manufactured.

【0014】[0014]

【発明の効果】本発明によれば半導体光集積素子におい
て、各素子間の光軸を水平に結合することができるた
め、素子間の光結合効率の向上および伝搬光の対称性の
保持が可能となり、布帰還型レーザと電界吸収型変調器
の集積化素子における消光特性の向上や、ファブリペロ
ー型レーザとスポットサイズ変換用テーパ型導波路の集
積化素子における、しきい電流密度の低下や、出射光の
対称性の向上などが実現される。
According to the present invention, in the semiconductor optical integrated device, the optical axes of the respective devices can be horizontally coupled, so that the optical coupling efficiency between the devices can be improved and the symmetry of the propagating light can be maintained. The improvement of the extinction characteristics in the integrated element of the fabric feedback laser and the electroabsorption modulator, and the decrease of the threshold current density in the integrated element of the Fabry-Perot laser and the tapered waveguide for spot size conversion, The symmetry of emitted light is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による第一の実施例を示す図。FIG. 1 is a diagram showing a first embodiment according to the present invention.

【図2】本発明による第二の実施例を示す図。FIG. 2 is a diagram showing a second embodiment according to the present invention.

【図3】第一の実施例の製造方法を説明するための図。FIG. 3 is a view for explaining the manufacturing method according to the first embodiment.

【図4】第二の実施例の製造方法を説明するための図。FIG. 4 is a drawing for explaining the manufacturing method of the second embodiment.

【図5】本発明による第三の実施例を示す図。FIG. 5 is a diagram showing a third embodiment according to the present invention.

【図6】従来の半導体光集積素子の断面を示す図。FIG. 6 is a view showing a cross section of a conventional semiconductor optical integrated device.

【図7】従来の半導体光集積素子の製造方法を説明する
ための図。
FIG. 7 is a diagram for explaining a conventional method for manufacturing a semiconductor optical integrated device.

【符号の説明】[Explanation of symbols]

10…n型InP基板、20…n型InPクラッド層、25…p
型InPクラッド層、30…InGaAs/InGaAsP多重量子井戸
コア層、40…多重量子井戸ファブリペロー型レーザ、
50…多重量子井戸スポットサイズ変換用テーパ型導波
路、60…回折格子、70…多重量子井戸分布帰還型レ
ーザ、80…多重量子井戸電界吸収型変調器、90…成
長阻止マスク、100…InGaAsバルクコア層、110…
ファブリペロー型レーザ、120…スポットサイズ変換
用テーパ型導波路。
10 ... n-type InP substrate, 20 ... n-type InP clad layer, 25 ... p
Type InP clad layer, 30 ... InGaAs / InGaAsP multiple quantum well core layer, 40 ... Multiple quantum well Fabry-Perot type laser,
50 ... Multiple quantum well spot size conversion taper waveguide, 60 ... Diffraction grating, 70 ... Multiple quantum well distributed feedback laser, 80 ... Multiple quantum well electroabsorption modulator, 90 ... Growth blocking mask, 100 ... InGaAs bulk core Layers, 110 ...
Fabry-Perot laser, 120 ... Tapered waveguide for spot size conversion.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】厚さの異なる複数の光導波路を光軸方向に
結合した半導体光素子において、各光導波路の中心軸が
水平に結合している事を特徴とする半導体光集積素子。
1. A semiconductor optical integrated device in which a plurality of optical waveguides having different thicknesses are coupled in an optical axis direction, and a central axis of each optical waveguide is coupled horizontally.
【請求項2】第一の光導波路が多重量子井戸ファブリペ
ロー型レーザであり、第二の光導波路が多重量子井戸ス
ポットサイズ変換用テーパ型導波路であることを特徴と
する請求項1記載の半導体光集積素子。
2. The first optical waveguide is a multi-quantum well Fabry-Perot type laser, and the second optical waveguide is a multi-quantum well spot size converting taper type waveguide. Semiconductor optical integrated device.
【請求項3】第一の光導波路によりファブリペロー型レ
ーザが第二の光導波路によりスポットサイズ変換用テー
パ型導波路が形成されることを特徴とする請求項1記載
の半導体光集積素子。
3. The semiconductor optical integrated device according to claim 1, wherein the Fabry-Perot laser is formed by the first optical waveguide and the taper waveguide for spot size conversion is formed by the second optical waveguide.
【請求項4】第一の光導波路により多重量子井戸分布帰
還型レーザが第二の光導波路により多重量子井戸電界吸
収型変調器が形成されることを特徴とする請求項1記載
の半導体光集積素子。
4. A semiconductor optical integrated circuit according to claim 1, wherein a multi-quantum well distributed feedback laser is formed by the first optical waveguide and a multi-quantum well electroabsorption modulator is formed by the second optical waveguide. element.
【請求項5】複数の光導波路を成長阻止マスクを用いた
選択成長法により作製する半導体光集積素子の製造方法
において、上記マスクは素子製造工程の中途で一部除去
されて使用されることを特徴とする半導体光集積素子の
製造方法。
5. A method for manufacturing a semiconductor optical integrated device, wherein a plurality of optical waveguides are manufactured by a selective growth method using a growth blocking mask, wherein the mask is partially removed during use in the device manufacturing process. A method for manufacturing a semiconductor optical integrated device, which is characterized.
【請求項6】クラッド層成長時とコア層成長時の成長阻
止マスクのパターンニングが異なることを特徴とする請
求項2記載の半導体光集積素子の製造方法。
6. The method of manufacturing a semiconductor optical integrated device according to claim 2, wherein the patterning of the growth blocking mask is different when the cladding layer is grown and when the core layer is grown.
JP17070894A 1994-07-22 1994-07-22 Semiconductor optical integrated element Pending JPH0837341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17070894A JPH0837341A (en) 1994-07-22 1994-07-22 Semiconductor optical integrated element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17070894A JPH0837341A (en) 1994-07-22 1994-07-22 Semiconductor optical integrated element

Publications (1)

Publication Number Publication Date
JPH0837341A true JPH0837341A (en) 1996-02-06

Family

ID=15909933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17070894A Pending JPH0837341A (en) 1994-07-22 1994-07-22 Semiconductor optical integrated element

Country Status (1)

Country Link
JP (1) JPH0837341A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11317563A (en) * 1998-05-06 1999-11-16 Nec Corp Semiconductor laser and manufacture thereof
US6018539A (en) * 1997-01-10 2000-01-25 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser and method of fabricating semiconductor laser
US6253003B1 (en) 1997-08-06 2001-06-26 Nec Corporation Optical coupling method and optical coupling device
JP2002527793A (en) * 1998-10-15 2002-08-27 テレフオンアクチーボラゲツト エル エム エリクソン Field effect light absorption modulator and its manufacturing method
KR100842277B1 (en) * 2006-12-07 2008-06-30 한국전자통신연구원 Reflective semiconductor optical amplifierR-SOA and reflective superluminescent diodeR-SLD
KR20130128651A (en) * 2012-05-17 2013-11-27 한국전자통신연구원 Electro-absorption modulator laser
JP7170876B1 (en) * 2021-01-19 2022-11-14 三菱電機株式会社 Optical waveguide element and optical axis adjustment method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6018539A (en) * 1997-01-10 2000-01-25 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser and method of fabricating semiconductor laser
US6253003B1 (en) 1997-08-06 2001-06-26 Nec Corporation Optical coupling method and optical coupling device
JPH11317563A (en) * 1998-05-06 1999-11-16 Nec Corp Semiconductor laser and manufacture thereof
JP2002527793A (en) * 1998-10-15 2002-08-27 テレフオンアクチーボラゲツト エル エム エリクソン Field effect light absorption modulator and its manufacturing method
KR100842277B1 (en) * 2006-12-07 2008-06-30 한국전자통신연구원 Reflective semiconductor optical amplifierR-SOA and reflective superluminescent diodeR-SLD
US7920322B2 (en) 2006-12-07 2011-04-05 Electronics And Telecommunications Research Institute Reflective semiconductor optical amplifier (R-SOA) with dual buried heterostructure
US8363314B2 (en) 2006-12-07 2013-01-29 Electronics And Telecommunications Research Institute Reflective semiconductor optical amplifier (R-SOA) and superluminescent diode (SLD)
KR20130128651A (en) * 2012-05-17 2013-11-27 한국전자통신연구원 Electro-absorption modulator laser
JP7170876B1 (en) * 2021-01-19 2022-11-14 三菱電機株式会社 Optical waveguide element and optical axis adjustment method

Similar Documents

Publication Publication Date Title
US5539763A (en) Semiconductor lasers and methods for fabricating semiconductor lasers
US7340142B1 (en) Integrated optoelectronic device and method of fabricating the same
JP2008113041A (en) Waveguide
JP2982422B2 (en) Semiconductor laser and method of manufacturing the same
JPH0927658A (en) Semiconductor optical integrated circuit and manufacture thereof
KR20150012525A (en) optical devices and manufacturing method of the same
JPH0837341A (en) Semiconductor optical integrated element
JP2002243964A (en) Semiconductor optical integrated element and method for manufacturing the same
US6204078B1 (en) Method of fabricating photonic semiconductor device using selective MOVPE
JPH1152168A (en) Optical coupling device and optical coupling method
JPH09129971A (en) Semiconductor laser
US6259718B1 (en) Distributed feedback laser device high in coupling efficiency with optical fiber
JPH08274295A (en) Manufacture of optical semiconductor device
JPH1022577A (en) Light emitting semiconductor device
JP4146974B2 (en) Optical semiconductor device and optical transmission system
JP2917950B2 (en) Tunable semiconductor laser and method of manufacturing the same
JPS63213383A (en) Semiconductor laser
JP3235627B2 (en) Distributed feedback semiconductor laser and method of manufacturing the same
EP0390077A2 (en) Laser diode and method for fabricating of the same
KR100584376B1 (en) Method for fabricating laser diode with oxidation barrier layers
JPH04291780A (en) Semiconductor light emitting apparatus
JP2000101186A (en) Semiconductor optical element
JP2914249B2 (en) Optical semiconductor device and method of manufacturing the same
JP3281239B2 (en) Optical semiconductor device
JP2706166B2 (en) Semiconductor laser