JPH06232496A - Semiconductor laser and its manufacture - Google Patents

Semiconductor laser and its manufacture

Info

Publication number
JPH06232496A
JPH06232496A JP1523293A JP1523293A JPH06232496A JP H06232496 A JPH06232496 A JP H06232496A JP 1523293 A JP1523293 A JP 1523293A JP 1523293 A JP1523293 A JP 1523293A JP H06232496 A JPH06232496 A JP H06232496A
Authority
JP
Japan
Prior art keywords
semiconductor
semiconductor laser
layer
laser device
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1523293A
Other languages
Japanese (ja)
Inventor
Shinichi Nakatsuka
慎一 中塚
Masahito Uda
雅人 右田
Kenji Uchida
憲治 内田
Shinichiro Yano
振一郎 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1523293A priority Critical patent/JPH06232496A/en
Publication of JPH06232496A publication Critical patent/JPH06232496A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • H01S5/0281Coatings made of semiconductor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • H01S5/0282Passivation layers or treatments

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To prevent crystal defects by covering the edge plane of a semiconductor laser with a semiconductor layer which is formed of group II elements and group VI elements separately from the semiconductor crystal which forms the semiconductor laser element and permitting the thickness of the semiconductor film to be a quarter of the wavelength of the laser beams which the semiconductor laser element projects or less. CONSTITUTION:A semiconductor wafer is split in bar-shape at approximately 600mum intervals to be fixed with the split plane facing top and a ZnSe layer 12 is crystal-grown for approximately 10nm by introducing the wafer into a molecular-beam crystal growing device. Approximately 0-3% lattice unconformity is found between a ZnSe layer 12 and an AlGaAs, however, crystal defects are not generated since the film is thin. Then, the front edge plane of the element is coated with Al2O3 reflection preventing coating 13 and the rear edge plane is coated with highly reflecting coating 14 constituted of a-Si/Al2O3. The ZnSe layer allows less heat transmission compared with the AlGaAs layer and temperature increase at the edge plane is concerned, however, since the AnSe layer is very thin, heat is efficiently removed by Al2O3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はレーザビームプリンタや
光ディスク及びレーザ計測装置の光源として用いられる
高出力半導体レーザ素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high power semiconductor laser device used as a light source for a laser beam printer, an optical disk and a laser measuring device.

【0002】[0002]

【従来の技術】従来の高出力半導体レーザは図5に示す
ようにAlGaAs系材料により形成された半導体レー
ザ素子の端面にMOCVD法によりAlGaAs38を
追加成長し、光損傷を受け易い半導体レーザの活性層が
直接結晶表面に出ることを防止することにより光損傷を
防ぎ高出力を得るものであった。
2. Description of the Related Art In a conventional high-power semiconductor laser, as shown in FIG. 5, an AlGaAs 38 is additionally grown on the end face of a semiconductor laser element made of an AlGaAs-based material by the MOCVD method, and the active layer of the semiconductor laser is easily damaged by light. It was possible to obtain high output by preventing light damage by preventing the particles from directly appearing on the crystal surface.

【0003】[0003]

【発明が解決しようとする課題】上記従来の高出力半導
体レーザでは半導体レーザの劈開面上に結晶性の良好な
結晶を再現性よく成長することは難しく素子特性の劣化
を招いていた。また、従来の構造では端面に結晶成長を
行う温度がレーザ素子に電極を形成する温度に比べて高
いので端面の結晶を成長したのちに電極を形成する必要
があり作製工程の合理化の面でも不利であった。
In the conventional high-power semiconductor laser described above, it is difficult to grow a crystal having good crystallinity on the cleaved surface of the semiconductor laser with good reproducibility, which causes deterioration of device characteristics. Further, in the conventional structure, the temperature at which the crystal is grown on the end face is higher than the temperature at which the electrode is formed on the laser element, so it is necessary to form the electrode after growing the crystal on the end face, which is also disadvantageous in terms of streamlining the manufacturing process. Met.

【0004】[0004]

【課題を解決するための手段】上記従来技術の問題点を
解決するため本発明では半導体レーザの端面をII族元素
とVI族元素により構成される半導体層により覆うことを
考案した。具体的にはII族元素は亜鉛または亜鉛とカド
ミウムの混合物でありVI族元素はセレンまたはセレンと
硫黄の混合物である。また、できるだけ良好な結晶性と
均一な膜厚を得るため端面を覆う半導体層の厚さは上記
半導体層と半導体レーザを構成する半導体層の格子定数
の差による応力による結晶欠陥の発生を防止するに十分
な薄い層とした。更に、端面を覆う半導体層の形成温度
を半導体レーザ素子に電極を形成する工程において到達
する最高温度よりも低温にすることもあわせて考案し
た。さらに、本発明では上記のII族元素とVI族元素によ
り構成される半導体層の厚さが薄いことを利用してこの
層の上に半導体レーザを構成する半導体よりも熱伝導性
が大きくレーザ光に対し吸収を持たない絶縁物質により
構成される保護膜を設ける。
In order to solve the above problems of the prior art, the present invention has devised to cover the end face of a semiconductor laser with a semiconductor layer composed of a group II element and a group VI element. Specifically, the Group II element is zinc or a mixture of zinc and cadmium, and the Group VI element is selenium or a mixture of selenium and sulfur. Further, in order to obtain the best possible crystallinity and uniform film thickness, the thickness of the semiconductor layer covering the end face prevents generation of crystal defects due to stress due to a difference in lattice constant between the semiconductor layer and the semiconductor layer constituting the semiconductor laser. Thin enough. Further, the inventors have also devised that the formation temperature of the semiconductor layer covering the end face is set to be lower than the maximum temperature reached in the step of forming the electrode on the semiconductor laser element. Further, in the present invention, the fact that the thickness of the semiconductor layer composed of the group II element and the group VI element described above is thin is utilized, and the thermal conductivity is higher than that of the semiconductor constituting the semiconductor laser on this layer and the laser On the other hand, a protective film made of an insulating material having no absorption is provided.

【0005】[0005]

【作用】半導体レーザの端面を覆う層として従来のAl
GaAsよりも禁制帯幅の広いII−VI族元素を用いるこ
とにより表面再結合に対する障壁効果が大きくより薄い
層により所望の効果を得ることができる。膜の厚さが薄
くて良いため半導体レーザの端面に結晶成長を行うと言
う通常大きな困難を伴う工程が容易に実施できる。しか
も、結晶成長が300℃程度の低温で可能なII−VI族半
導体を用いるため、電極を形成した後に端面への結晶成
長を行うことが可能となり、通常ウエハ状態で行われる
すべての工程が完了したのちに端面を覆う半導体層を形
成することが可能となった。
[Function] Conventional Al is used as a layer for covering the end face of the semiconductor laser.
By using a II-VI group element having a wider band gap than GaAs, a barrier effect against surface recombination is large and a desired effect can be obtained by a thinner layer. Since the thickness of the film may be thin, the process of crystal growth on the end face of the semiconductor laser, which usually involves great difficulty, can be easily performed. Moreover, since the II-VI group semiconductor capable of crystal growth at a low temperature of about 300 ° C. is used, it becomes possible to perform crystal growth on the end face after forming the electrodes, and all the steps normally performed in a wafer state are completed. After that, it became possible to form a semiconductor layer covering the end face.

【0006】[0006]

【実施例】(実施例1)本発明の一実施例を図1に示
す。本構造ではまずn−GaAs基板1上にn−Al0.5
Ga0.5Asクラッド層2,多重量子井戸活性層3,p−
Al0.5Ga0.5Asクラッド層4,p−GaAsコンタク
ト層5を順次結晶成長した後、気相化学成長法を用いて
SiO2 膜を形成し、その上にホトリソグラフ技術を用
いて約6μmのストライプ状のホトレジストパタンを形
成する。多重量子井戸活性層3はAl0.1Ga0.9Asウ
エル層6とAl0.3Ga0.7Asバリア層7からなってい
る。次にこの構造にSiO2 膜を熱CDV法により設
け、ホトレジストパタンをマスクとしてSiO2 膜,p
−GaAsコンタクト層5及びp−Al0.5Ga0.5Asク
ラッド層4の一部をエッチングした後、さらに、フッ酸
系エッチング液によりSiO2 膜のみサイドエッチング
を行い幅約3μmに加工する。ホトレジストマスクを取
り除いた後、有機金属気相成長法によりn−GaAsブ
ロック層8をSiO2膜のない領域に選択的に成長し
た。素子の直列抵抗低減のため、SiO2膜を除去した
後p−Al0.5Ga0.5As埋込層9及びp−GaAsキ
ャップ層10を形成した。次に、ウエハの表面にAuを
主成分とする電極11を形成したのち、機械的研磨及び
化学エッチングによりGaAs基板を約100μmにエ
ッチングし、GaAs基板側にもAuを主成分とする電
極11を形成した。図1(a)にこの段階での半導体レ
ーザの断面形状を示す。
EXAMPLE 1 An example of the present invention is shown in FIG. In this structure, first, n-Al 0.5 is formed on the n-GaAs substrate 1.
Ga 0.5 As clad layer 2, multiple quantum well active layer 3, p-
After the Al 0.5 Ga 0.5 As clad layer 4 and the p-GaAs contact layer 5 are successively grown, a SiO 2 film is formed by the vapor phase chemical growth method, and a stripe of about 6 μm is formed on the SiO 2 film by the photolithographic technique. Forming a photoresist pattern. The multiple quantum well active layer 3 is composed of an Al 0.1 Ga 0.9 As well layer 6 and an Al 0.3 Ga 0.7 As barrier layer 7. Next, a SiO 2 film is formed on this structure by a thermal CDV method, and the SiO 2 film, p is formed using the photoresist pattern as a mask.
After etching a part of -GaAs contact layer 5 and the p-Al 0.5 Ga 0.5 As cladding layer 4, further processed into a width of about 3μm to place a side etching only the SiO 2 film by hydrofluoric acid etching solution. After removing the photoresist mask, the n-GaAs block layer 8 was selectively grown in the region without the SiO 2 film by the metal organic chemical vapor deposition method. In order to reduce the series resistance of the device, after removing the SiO 2 film, the p-Al 0.5 Ga 0.5 As embedded layer 9 and the p-GaAs cap layer 10 were formed. Next, after forming the electrode 11 containing Au as the main component on the surface of the wafer, the GaAs substrate is etched to about 100 μm by mechanical polishing and chemical etching, and the electrode 11 containing Au as the main component is also formed on the GaAs substrate side. Formed. FIG. 1A shows the sectional shape of the semiconductor laser at this stage.

【0007】このような半導体ウエハを約600μm間
隔でバー状に劈開し図2に示すように劈開面が上方を向
くように固定して分子線結晶成長装置に導入しZnSe
層12を約10nm結晶成長した。ZnSe層12とA
lGaAsの間には約0.3% の格子不整合があるが膜
厚が薄いために結晶欠陥が発生しない。結晶成長温度は
約300度であった。同様の操作を半導体レーザの今一
方の端面にも施した後、素子の前方端面にはAl23
反射防止コーティング13(反射率5%)を、素子の後方
端面にはa−Si/Al23により構成される高反射コ
ーティング14(反射率90%)を施し、図1(b)に
示すような構造のレーザチップを得た。ZnSe層はA
lGaAs層に比較して熱伝導性が悪く端面部の温度上
昇が危惧されるが、ZnSe層が非常に薄いため熱がA
23によって効率良く除去され、より高出力の動作が
可能となる。
Such a semiconductor wafer is cleaved in a bar shape at intervals of about 600 μm, fixed so that the cleaved surface faces upward as shown in FIG. 2, and introduced into a molecular beam crystal growth apparatus, ZnSe.
Layer 12 was crystal grown to about 10 nm. ZnSe layer 12 and A
There is a lattice mismatch of about 0.3% between 1 GaAs, but crystal defects do not occur because the film thickness is thin. The crystal growth temperature was about 300 degrees. After the same operation was performed on the other end face of the semiconductor laser, an Al 2 O 3 antireflection coating 13 (reflectance 5%) was formed on the front end face of the device, and a-Si / A high reflection coating 14 (reflectance 90%) composed of Al 2 O 3 was applied to obtain a laser chip having a structure as shown in FIG. ZnSe layer is A
The thermal conductivity is poorer than that of the 1GaAs layer, and the temperature rise of the end face may occur, but the ZnSe layer is very thin, so
It is efficiently removed by l 2 O 3 and a higher output operation becomes possible.

【0008】(実施例2)本発明の第2の実施例を図3
に示す。本構造では、まず、n−GaAs基板1上にn
−(Al0.7Ga0.3)0.5In0.5Pクラッド層18,多重
量子井戸活性層19,p−(Al0.7Ga0.3)0.5In0.5
Pクラッド層20,p−GaAsコンタクト層21を順
次結晶成長した後、気相化学成長法を用いてSiO2
を形成し、その上にホトリソグラフ技術を用いて約6μ
mのストライプ状のホトレジストパタンを形成する。多
重量子井戸活性層3はGa0.5In0.5Pウエル層22と
(Al0.7Ga0.3)0.5In0.5Pバリア層23からなって
いる。次に、この構造にSiO2膜を熱CDV法により
設け、ホトレジストパタンをマスクとしてSiO2膜,
p−GaAsコンタクト層5及びp−(Al0.7Ga0.3)
0.5In0.5Pクラッド層20の一部をエッチングした
後、有機金属気相成長法によりn−GaAsブロック層
8をSiO2 膜のない領域に選択的に成長した。素子の
直列抵抗低減のため、SiO2 膜を除去した後p−Al
0.5Ga0.5As埋込層9及びp−GaAsキャップ層10
を形成した。次に、ウエハの表面にAuを主成分とする
電極11を形成したのち、機械的研磨及び化学エッチン
グによりGaAs基板を約100μmにエッチングし、
GaAs基板側にもAuを主成分とする電極11を形成
した。図3(a)にこの段階での半導体レーザの断面形
状を示す。
(Embodiment 2) A second embodiment of the present invention is shown in FIG.
Shown in. In this structure, first, n on the n-GaAs substrate 1
-(Al 0.7 Ga 0.3 ) 0.5 In 0.5 P cladding layer 18, multiple quantum well active layer 19, p- (Al 0.7 Ga 0.3 ) 0.5 In 0.5
After the P clad layer 20 and the p-GaAs contact layer 21 are sequentially crystal-grown, a SiO 2 film is formed by the vapor phase chemical growth method, and about 6 μm is formed on the SiO 2 film by the photolithography technique.
A photoresist pattern of m stripes is formed. The multiple quantum well active layer 3 is composed of a Ga 0.5 In 0.5 P well layer 22.
It is composed of (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P barrier layer 23. Next, the SiO 2 film in this structure is provided by a thermal CDV method, SiO 2 film photoresist pattern as a mask,
p-GaAs contact layer 5 and p- (Al 0.7 Ga 0.3 ).
After etching a part of the 0.5 In 0.5 P clad layer 20, the n-GaAs block layer 8 was selectively grown in the region without the SiO 2 film by the metal organic chemical vapor deposition method. In order to reduce the series resistance of the device, after removing the SiO 2 film, p-Al
0.5 Ga 0.5 As buried layer 9 and p-GaAs cap layer 10
Was formed. Next, after forming the electrode 11 containing Au as a main component on the surface of the wafer, the GaAs substrate is etched to about 100 μm by mechanical polishing and chemical etching,
The electrode 11 containing Au as a main component was also formed on the GaAs substrate side. FIG. 3A shows the sectional shape of the semiconductor laser at this stage.

【0009】このような半導体ウエハを約600μm間
隔でバー状に劈開し、図2に示すように、劈開面が上方
を向くように固定して分子線結晶成長装置に導入しZnCd
SSe層24を約100nm結晶成長した。通常このよう
な端面上の結晶成長により完全な鏡面を得ることは難し
いが、本実施例の場合、ZnCdSSe層24の厚さが
ZnCdSSe中の光の波長の1/4以下となっている
のでZnCdSSe膜の厚さの揺らぎはレーザ光に影響
を与えず、容易に良好な端面を得ることができた。結晶
成長温度は約300度であった。同様の操作を半導体レ
ーザの他方の端面にも施した後、素子の前方端面にはA
23の反射防止コーティング13(反射率5%)を、
素子の後方端面にはa−Si/Al23により構成され
る高反射コーティング14(反射率90%)を施し図3
(b)に示すような構造のレーザチップを得た。
Such a semiconductor wafer is cleaved in a bar shape at intervals of about 600 μm, and is fixed so that the cleaved surface faces upward as shown in FIG.
The SSe layer 24 was crystal-grown to about 100 nm. Normally, it is difficult to obtain a perfect mirror surface by such crystal growth on the end face, but in the case of the present embodiment, the thickness of the ZnCdSSe layer 24 is 1/4 or less of the wavelength of light in ZnCdSSe. The fluctuation of the film thickness did not affect the laser light, and a good end face could be easily obtained. The crystal growth temperature was about 300 degrees. After performing the same operation on the other end face of the semiconductor laser, A is attached to the front end face of the device.
l 2 O 3 anti-reflection coating 13 (reflectance 5%),
The rear end face of the device is provided with a high reflection coating 14 (reflectance 90%) composed of a-Si / Al 2 O 3 .
A laser chip having a structure as shown in (b) was obtained.

【0010】(実施例3)本発明の第3の実施例を図4
により説明する。本構造はn−GaAs基板1上にMB
E法により、n−Zn0.43Cd0.57S層25(n=1×1
18,1.5μm)、ZnSSe/ZnCdSSe超格子
活性層26,p−Zn0.8Mg0..20.3Se0.7層27(p
=5×1017,1.5μm),p−ZnTe層28(p
=5×1019,10nm)を順次積層した。ZnSSe
/ZnCdSSe超格子活性層26はZnS0.22Se
0.78層29(10nm)とZn0.81Cd0.190.22Se
0.78層30(10nm)を交互に4層積層して形成し
た。次に、熱CVD法及びホトリソグラフ技術を用いて
ストライプ状の孔をあけたSiO2 膜31を形成した
後、ウエハの両面にAu電極11を設けて600μm間
隔で劈開しバー状の試料を得た。このバー状の試料を、
図2に示すように、劈開面が上方を向くように固定して
分子線結晶成長装置に導入しレーザ端面にZn0.43Cd
0.57S層24を約5nm結晶成長した。結晶成長温度は
約250度であった。同様の操作を半導体レーザの他方
の端面にも施した後、素子の前方端面にはAl23の反
射防止コーティング13(反射率5%)を、素子の後方
端面にはa−Si/Al23により構成される高反射コ
ーティング14(反射率90%)を施し、図4(b)に
示すような構造のレーザチップを得た。
(Embodiment 3) A third embodiment of the present invention is shown in FIG.
Will be described. This structure has MB on n-GaAs substrate 1.
According to the E method, n-Zn 0.43 Cd 0.57 S layer 25 (n = 1 × 1
0 18 , 1.5 μm), ZnSSe / ZnCdSSe superlattice active layer 26, p-Zn 0.8 Mg 0.2 .3 S 0.3 Se 0.7 layer 27 (p
= 5 × 10 17 , 1.5 μm), p-ZnTe layer 28 (p
= 5 × 10 19 , 10 nm) were sequentially laminated. ZnSSe
/ ZnCdSSe superlattice active layer 26 is ZnS 0.22 Se
0.78 layer 29 (10 nm) and Zn 0.81 Cd 0.19 S 0.22 Se
Four 0.78 layers 30 (10 nm) were alternately laminated. Next, a SiO 2 film 31 having a stripe-shaped hole is formed by using a thermal CVD method and a photolithography technique, and then Au electrodes 11 are provided on both surfaces of the wafer and cleaved at 600 μm intervals to obtain a bar-shaped sample. It was This bar-shaped sample
As shown in FIG. 2, the cleaved surface was fixed so that it was directed upward and introduced into a molecular beam crystal growth apparatus, and Zn 0.43 Cd was formed on the laser end surface.
The 0.57 S layer 24 was crystal-grown at about 5 nm. The crystal growth temperature was about 250 degrees. After performing the same operation on the other end face of the semiconductor laser, an Al 2 O 3 antireflection coating 13 (reflectance 5%) is provided on the front end face of the device, and a-Si / Al is provided on the rear end face of the device. A high reflection coating 14 (reflectance 90%) made of 2 O 3 was applied to obtain a laser chip having a structure as shown in FIG.

【0011】[0011]

【発明の効果】本発明によれば従来の高出力半導体レー
ザで困難であった端面への良好な結晶成長が実現できる
うえ、通常ウエハ状態で行われるすべての工程が完了し
たのちに端面を覆う半導体層を形成することが可能とな
るので、作製工程の合理化が図れる。
According to the present invention, it is possible to realize good crystal growth on the end face, which was difficult with the conventional high-power semiconductor laser, and to cover the end face after all the steps normally performed in a wafer state are completed. Since the semiconductor layer can be formed, the manufacturing process can be rationalized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の半導体レーザ素子の説明
図。
FIG. 1 is an explanatory diagram of a semiconductor laser device according to an embodiment of the present invention.

【図2】端面結晶成長時の試料固定方法を説明する斜視
図。
FIG. 2 is a perspective view illustrating a method of fixing a sample during end face crystal growth.

【図3】本発明の第2の実施例の半導体レーザ素子の説
明図。
FIG. 3 is an explanatory diagram of a semiconductor laser device according to a second embodiment of the present invention.

【図4】本発明の第3の実施例の半導体レーザ素子の説
明図。
FIG. 4 is an explanatory diagram of a semiconductor laser device according to a third embodiment of the present invention.

【図5】従来例の半導体レーザ素子の斜視図。FIG. 5 is a perspective view of a conventional semiconductor laser device.

【符号の説明】[Explanation of symbols]

1…n−GaAs基板、2…n−Al0.5Ga0.5Asク
ラッド層、3…多重量子井戸活性層、4…p−Al0.5
Ga0.5Asクラッド層、5…p−GaAsコンタクト
層、6…Al0.1Ga0.9Asウエル層、7…Al0.3
0.7Asバリア層、8…n−GaAsブロック層、9
…p−Al0.5Ga0.5As埋込層、10…p−GaAs
キャップ層、11…電極、12…ZnSe層、13…A
23の反射防止コーティング、14…a−Si/Al
23高反射コーティング。
1 ... n-GaAs substrate, 2 ... n-Al 0.5 Ga 0.5 As clad layer, 3 ... Multiple quantum well active layer, 4 ... p-Al 0.5
Ga 0.5 As clad layer, 5 ... p-GaAs contact layer, 6 ... Al 0.1 Ga 0.9 As well layer, 7 ... Al 0.3 G
a 0.7 As barrier layer, 8 ... n-GaAs block layer, 9
... p-Al 0.5 Ga 0.5 As buried layer, 10 ... p-GaAs
Cap layer, 11 ... Electrode, 12 ... ZnSe layer, 13 ... A
Antireflection coating of l 2 O 3 , 14 ... a-Si / Al
2 O 3 highly reflective coating.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 矢野 振一郎 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shinichiro Yano 1-280, Higashikoigokubo, Kokubunji, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】異なる導電型と異なる禁制帯幅を有する半
導体結晶により形成され、通電によりレーザ光を放射す
る半導体レーザ素子において、 放射端面が上記半導体レーザ素子を形成する上記半導体
結晶とは別途形成されたII族元素とVI族元素により構成
された半導体膜により覆われ、上記半導体膜は上記半導
体レ−ザ素子が放射するレ−ザ光の上記半導体膜中での
波長の4分の1以下の厚さであることを特徴とする半導
体レーザ素子。
1. A semiconductor laser device which is made of semiconductor crystals having different conductivity types and different forbidden band widths and which emits a laser beam when energized, wherein a radiation end face is formed separately from the semiconductor crystal forming the semiconductor laser device. Is covered with a semiconductor film composed of the group II element and the group VI element, and the semiconductor film is not more than a quarter of the wavelength of the laser light emitted by the semiconductor laser device in the semiconductor film. A semiconductor laser device having a thickness of
【請求項2】請求項1において、上記II族元素は亜鉛ま
たは亜鉛とカドミウムの混合物であり上記VI族元素はセ
レンまたはセレンと硫黄の混合物である半導体レーザ素
子。
2. The semiconductor laser device according to claim 1, wherein the group II element is zinc or a mixture of zinc and cadmium, and the group VI element is selenium or a mixture of selenium and sulfur.
【請求項3】請求項1または2において、上記放射端面
を覆う半導体層の厚さは、上記半導体層と上記半導体レ
ーザを構成する格子定数の差に起因して発生する応力に
よる結晶欠陥の発生を防止するに十分な薄さである半導
体レーザ素子。
3. The crystal layer according to claim 1 or 2, wherein the thickness of the semiconductor layer covering the radiation end face is a crystal defect due to a stress generated due to a difference in lattice constant between the semiconductor layer and the semiconductor laser. A semiconductor laser device that is thin enough to prevent
【請求項4】請求項1,2または3において、上記放射
端面を覆う半導体層は上記半導体レーザ素子に電極を形
成する工程において到達する最高温度よりも低温で形成
される半導体レーザ素子の作製方法。
4. The method for manufacturing a semiconductor laser device according to claim 1, wherein the semiconductor layer covering the radiation end face is formed at a temperature lower than the maximum temperature reached in the step of forming an electrode on the semiconductor laser device. .
【請求項5】請求項1,2,3または4において、上記
放射端面を覆う半導体層の上に上記半導体レーザ素子を
構成する半導体よりも熱伝導性が大きくレーザ光の吸収
性がない絶縁物質により構成される保護膜を設けた半導
体レーザ素子。
5. The insulating material according to claim 1, 2, 3 or 4, which has a thermal conductivity higher than that of a semiconductor constituting the semiconductor laser element and is not absorptive of laser light on the semiconductor layer covering the radiation end face. A semiconductor laser device provided with a protective film composed of.
JP1523293A 1993-02-02 1993-02-02 Semiconductor laser and its manufacture Pending JPH06232496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1523293A JPH06232496A (en) 1993-02-02 1993-02-02 Semiconductor laser and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1523293A JPH06232496A (en) 1993-02-02 1993-02-02 Semiconductor laser and its manufacture

Publications (1)

Publication Number Publication Date
JPH06232496A true JPH06232496A (en) 1994-08-19

Family

ID=11883125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1523293A Pending JPH06232496A (en) 1993-02-02 1993-02-02 Semiconductor laser and its manufacture

Country Status (1)

Country Link
JP (1) JPH06232496A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0897506A (en) * 1994-09-28 1996-04-12 Sharp Corp Manufacture of end face growth window type semiconductor laser element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0897506A (en) * 1994-09-28 1996-04-12 Sharp Corp Manufacture of end face growth window type semiconductor laser element

Similar Documents

Publication Publication Date Title
JPH09167880A (en) Device including semiconductor laser, and manufacture of laser
JPH08330628A (en) Light-emitting semiconductor element and its manufacture
JPH0750448A (en) Semiconductor laser and manufacture thereof
EP1198042B1 (en) Semiconductor laser device with a current non-injection region near a resonator end face, and fabrication method thereof
JPH03285380A (en) Manufacture of semiconductor laser element
EP0918384B1 (en) Semiconductor light emitting device and method for fabricating the same
US5587335A (en) Method of making surface emission type semiconductor laser
US5310697A (en) Method for fabricating an AlGaInP semiconductor light emitting device including the step of removing an oxide film by irradiation with plasma beams and an As or P molecular beam
US6080598A (en) Method of producing semiconductor laser element with mirror degradation suppressed
JPH04363081A (en) Surface emitting type semiconductor laser and manufacture thereof
JPH05251824A (en) Manufacture of semiconductor laser
JPS61190994A (en) Semiconductor laser element
JPH06232496A (en) Semiconductor laser and its manufacture
JPH0846291A (en) Semiconductor laser and manufacture thereof
JPH05327121A (en) Surface emitting type semiconductor laser
JPH0690061A (en) Fabrication of semiconductor light emitting element
JP2806409B2 (en) Semiconductor laser and method of manufacturing the same
JP3196831B2 (en) Method for manufacturing semiconductor laser device
JPH067629B2 (en) Semiconductor laser
JPH0715081A (en) Semiconductor laser and fabrication thereof
JP2736173B2 (en) Method for manufacturing semiconductor laser device
JP3211459B2 (en) Surface emitting semiconductor laser and method of manufacturing the same
JPH071817B2 (en) Semiconductor laser
JP3147399B2 (en) Semiconductor laser
JPH09321382A (en) Laser beam source and application thereof