JPH04363081A - Surface emitting type semiconductor laser and manufacture thereof - Google Patents

Surface emitting type semiconductor laser and manufacture thereof

Info

Publication number
JPH04363081A
JPH04363081A JP3224153A JP22415391A JPH04363081A JP H04363081 A JPH04363081 A JP H04363081A JP 3224153 A JP3224153 A JP 3224153A JP 22415391 A JP22415391 A JP 22415391A JP H04363081 A JPH04363081 A JP H04363081A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
semiconductor laser
emitting
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3224153A
Other languages
Japanese (ja)
Other versions
JP3395194B2 (en
Inventor
Katsumi Mori
克己 森
Tatsuya Asaga
浅賀 達也
Hideaki Iwano
岩野 英明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP22415391A priority Critical patent/JP3395194B2/en
Publication of JPH04363081A publication Critical patent/JPH04363081A/en
Application granted granted Critical
Publication of JP3395194B2 publication Critical patent/JP3395194B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/18Semiconductor lasers with special structural design for influencing the near- or far-field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • H01S5/18338Non-circular shape of the structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • H01S5/18369Structure of the reflectors, e.g. hybrid mirrors based on dielectric materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18386Details of the emission surface for influencing the near- or far-field, e.g. a grating on the surface
    • H01S5/18394Apertures, e.g. defined by the shape of the upper electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2211Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on II-VI materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2222Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties
    • H01S5/2224Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties semi-insulating semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • H01S5/4068Edge-emitting structures with lateral coupling by axially offset or by merging waveguides, e.g. Y-couplers

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To prevent leakage of an injecting current to a buried layer and to improve a current constriction by burying a periphery of a columnar semiconductor layer for constituting a resonator with II-VI compound semiconductor epitaxial layer having a high resistance. CONSTITUTION:An n-type GaAs buffer 103 is formed on an n-type GaAs substrate 102, and a distributed reflection type multilayer film mirror 104 made of an n-type Al0.7Ga0.3As layer and an n-type Al0.1Ga0.9As layer is formed. An n-type Al0.4Gs0.6As clad layer 105, a p-type GaAs active layer 106, a p-type Al0.4Ga0.6As clad layer 107, and a p-type Al0.1Ga0.9As contact layer 108 are sequentially epitaxially grown. After an SiO2 layer 112 is formed, the layer 107 is etched to the midway except a columnar light emitting unit covered with a hard baking resist 113. After the resist 113 is removed, it is lattice- matched to GaAs, and a ZnS0.06Se0.94 layer 109 having a resistance of 1GOMEGA or more is buried and grown. Further, an SiO2/alpha-Si dielectric multilayer film 111 is formed on the surface.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、基板の垂直方向にレー
ザ光を発振する面発光型導体レーザおよびその製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface-emitting conductor laser that emits laser light in a direction perpendicular to a substrate, and a method for manufacturing the same.

【0002】0002

【従来の技術】基板の垂直方向に共振器を持つ面発光レ
ーザは、第50回応用物理学会学術講演会の講演予稿集
  第3分冊p.909  29a−ZG−7(198
9年9月27日発行)に開示されている。この従来技術
によれば、図12に示すように、先ず、(602)n型
GaAs基板に(603)n型AlGaAs/AlAs
多層膜、(604)n型AlGaAsクラッド層、(6
05)p型GaAs活性層、(606)p型AlGaA
sクラッド層を順次成長させて形成している。その後、
円柱状の領域を残してエッチングし、(607)p型、
(608)n型、(609)p型、(610)p型の順
にAlGaAsを液相成長させて形成し、円柱状領域の
周囲を埋め込む。しかる後、(610)p型AlGaA
sキャップ層の上部に(611)誘電体多層膜を蒸着し
、(612)p型オーミック電極、(601)n型オー
ミック電極を形成することで、面発光型半導体レーザを
構成している。  このように、従来技術では活性層以
外の部分に電流が流れるのを防ぐ手段として、埋込み層
に(607−608)から成るp−n接合を設けている
2. Description of the Related Art A surface emitting laser having a resonator in the vertical direction of a substrate is described in the Proceedings of the 50th Academic Conference of the Japan Society of Applied Physics, Vol. 3, p. 909 29a-ZG-7 (198
Published on September 27, 2009). According to this conventional technology, as shown in FIG.
Multilayer film, (604) n-type AlGaAs cladding layer, (6
05) p-type GaAs active layer, (606) p-type AlGaA
It is formed by sequentially growing the s cladding layers. after that,
Etching leaving a cylindrical region, (607) p type,
AlGaAs is formed by liquid phase growth in the order of (608) n type, (609) p type, and (610) p type, and the periphery of the columnar region is filled. After that, (610) p-type AlGaA
A surface-emitting semiconductor laser is constructed by depositing a (611) dielectric multilayer film on top of the s cap layer and forming a (612) p-type ohmic electrode and a (601) n-type ohmic electrode. As described above, in the prior art, a pn junction consisting of (607-608) is provided in the buried layer as a means to prevent current from flowing to portions other than the active layer.

【0003】0003

【発明が解決しようとする課題】しかし、このp−n接
合では十分な電流狭窄を得ることは難しく、完全には無
効電流を抑制できない。このため、従来技術では素子の
発熱に起因して、室温での連続発振駆動することが困難
であり、実用性に欠けている。従って、無効電流の抑制
は、面発光型半導体レーザにおいて重要な課題である。
However, in this p-n junction, it is difficult to obtain sufficient current confinement, and the reactive current cannot be completely suppressed. For this reason, in the conventional technology, it is difficult to perform continuous wave driving at room temperature due to heat generation of the element, and it lacks practicality. Therefore, suppression of reactive current is an important issue in surface-emitting semiconductor lasers.

【0004】また埋込み層を、従来のようにp−n接合
を形成するための多層構造にした場合、埋込み層のp−
n界面の位置は、円柱状に残した各成長層の界面位置を
考慮する必要がある。従って、多層構造の各埋込み成長
層の膜厚制御が難しく、再現性良く面発光型半導体レー
ザを製造することは極めて困難である。
Furthermore, when the buried layer has a multilayer structure for forming a p-n junction as in the past, the p-
Regarding the position of the n-interface, it is necessary to consider the position of the interface of each growth layer left in a columnar shape. Therefore, it is difficult to control the thickness of each buried growth layer in a multilayer structure, and it is extremely difficult to manufacture a surface-emitting semiconductor laser with good reproducibility.

【0005】また、従来技術のように液相成長により円
柱の周囲に埋込み層を形成すると円柱部分が折れてしま
う危険性が高く、歩留まりが悪く、特性の改善が構造上
の原因から制約されてしまう。
In addition, when a buried layer is formed around a cylinder by liquid phase growth as in the conventional technique, there is a high risk that the cylinder part will break, resulting in poor yield, and improvement of properties is restricted due to structural reasons. Put it away.

【0006】さらに従来技術では、レーザプリンタなど
のディバイスに応用する場合にも種々の課題を有する。
Furthermore, the prior art has various problems when applied to devices such as laser printers.

【0007】レーザープリンタなどでは、光源に使用す
る発光源(半導体レーザなど)の発光スポットサイズが
数10μmと大きく、かつ発光強度が強い発光素子を使
用すると、光学系の簡素化や光路長を短くできることな
ど設計に自由度が増える。
[0007] In laser printers and the like, the light source (such as a semiconductor laser) used as a light source has a large light emitting spot size of several tens of micrometers, and the use of a light emitting element with strong emission intensity makes it possible to simplify the optical system and shorten the optical path length. You have more freedom in designing what you can do.

【0008】従来技術を用いた面発光型半導体レーザ1
素子の場合には、光共振器全体を共振器よりも低屈折率
の材料で回りを埋め込んでいるため、光はおもに垂直方
向に導波され、基本発振モードでの発光スポットは水平
方向の共振器形状を変化させても直径2μm程度の点発
光となってしまう。
Surface-emitting semiconductor laser 1 using conventional technology
In the case of a device, the entire optical resonator is surrounded by a material with a lower refractive index than the resonator, so the light is mainly guided in the vertical direction, and the light emitting spot in the fundamental oscillation mode resonates in the horizontal direction. Even if the shape of the vessel is changed, a point light emission with a diameter of about 2 μm will result.

【0009】そこで、これらの各発光点を2μm程度ま
で接近させ、複数の光源でスポットサイズを大きくしよ
うと試みるが、従来技術では数μm間隔の共振器をLP
E成長で埋め込むことは、再現性、歩留まりなどの点か
ら非常に難しく、作製は困難である。また、数μm程度
まで接近させ共振器を埋め込んだとしても光の横方向の
漏れが少ないため、スポットを1つにすることはできな
い。
[0009] Therefore, attempts have been made to increase the spot size by using multiple light sources by bringing these light emitting points close to each other by about 2 μm, but in the conventional technology, resonators spaced several μm apart are connected to the LP.
Embedding by E growth is extremely difficult in terms of reproducibility, yield, etc., and manufacturing is difficult. Further, even if the resonator is buried within a distance of several μm, it is not possible to form a single spot because there is little lateral leakage of light.

【0010】また、複数の発光スポットにより1つの光
束を持ったビームにし、発光強度を強くするには複数ス
ポットの各々のレーザ光の位相を同期させなければなら
ない。従来技術では複数のレーザ光の位相を同期させる
ためにレーザ光を互いに影響させる距離まで接近させて
作製するのは困難である。
[0010] Furthermore, in order to make a beam with one luminous flux from a plurality of light emitting spots and to increase the light emission intensity, it is necessary to synchronize the phases of the laser beams of each of the plurality of spots. In the prior art, it is difficult to synchronize the phases of a plurality of laser beams by bringing the laser beams close enough to each other to influence each other.

【0011】本発明はこのような課題を解決するもので
、その目的とするところは、埋込み層の材質を改善する
ことで、完全な電流狭窄が可能な構造を有し、極めて簡
単に製造できる高効率の面発光半導体レーザ及びその製
造方法を提供するところにある。
The present invention is intended to solve these problems, and its purpose is to improve the material of the buried layer so that it has a structure that allows complete current confinement and is extremely easy to manufacture. An object of the present invention is to provide a highly efficient surface emitting semiconductor laser and a method for manufacturing the same.

【0012】本発明の他の目的は、複数の発光部を近接
させることができ、各発光部からのレーザ光の位相を同
期させることができる面発光型半導体レーザ及びその製
造方法を提供することにある。
Another object of the present invention is to provide a surface emitting type semiconductor laser and a method for manufacturing the same, in which a plurality of light emitting parts can be placed close to each other and the phases of laser beams from each light emitting part can be synchronized. It is in.

【0013】本発明の更に他の目的は、複数の発光部か
らの位相同期したレーザ光を一つの光束を持った光とし
、その発光スポットが大きく、レーザ光の放射角が狭い
面発光型半導体レーザ及びその製造方法を提供するとこ
ろにある。
Still another object of the present invention is to convert phase-synchronized laser beams from a plurality of light emitting parts into a single beam of light, to produce a surface-emitting type semiconductor with a large emission spot and a narrow radiation angle of the laser beam. The present invention provides a laser and a method for manufacturing the same.

【0014】[0014]

【課題を解決するための手段】半導体基板に垂直な方向
に光を出射する本発明に係る面発光型半導体レーザは、
反射率の異なる一対の反射鏡とそれらの間の多層の半導
体層とを有し、前記半導体層のうちの少なくともクラッ
ド層が1本又は複数本の柱状に形成されている光共振器
と、柱状の前記半導体層の周囲に埋め込まれているII
−VI族化合物半導体エピタキシャル層と、を有するこ
とを特徴とする。
[Means for Solving the Problems] A surface-emitting semiconductor laser according to the present invention that emits light in a direction perpendicular to a semiconductor substrate has the following features:
An optical resonator comprising a pair of reflecting mirrors having different reflectances and a multilayer semiconductor layer between them, and in which at least a cladding layer of the semiconductor layers is formed in the shape of one or more columns; II embedded around the semiconductor layer of
- a Group VI compound semiconductor epitaxial layer.

【0015】II−VI族化合物半導体エピタキシャル
層は、II族元素であるZn,Cd,Hgと、VI族元
素であるO,S,Se,Teとを、2元素,3元素又は
4元素組み合わせた半導体エピタキシャル層を用いるこ
とができる。また、II−VI族化合物半導体エピタキ
シャル層の格子定数が、柱状の半導体層の格子定数と一
致していることが望ましい。なお、共振器を構成する半
導体層としてはIII −V 族化合物半導体エピタキ
シャル層が好ましく、GaAs系、GaAlAs系、G
aAsP系、InGaP系、InGaAsP系、InG
aAs系、AlGaAsSb系等を好適に採用できる。
[0015] The II-VI group compound semiconductor epitaxial layer is a combination of two, three, or four elements of group II elements Zn, Cd, and Hg and group VI elements O, S, Se, and Te. A semiconductor epitaxial layer can be used. Further, it is desirable that the lattice constant of the II-VI group compound semiconductor epitaxial layer matches the lattice constant of the columnar semiconductor layer. It should be noted that the semiconductor layer constituting the resonator is preferably a III-V group compound semiconductor epitaxial layer, and includes GaAs-based, GaAlAs-based, G
aAsP system, InGaP system, InGaAsP system, InG
AAs-based, AlGaAsSb-based, etc. can be suitably employed.

【0016】II−VI族化合物半導体エピタキシャル
層は高抵抗であるため、この高抵抗層で形成された埋込
み層への注入電流のもれは生じず、極めて有効な電流狭
窄が達成される。そして、無効電流を低減できるので、
しきい値電流を下げることが可能となる。結果として、
発熱の少ない面発光型半導体レーザを実現でき、常温に
て連続発振が可能となる実用性の高い面発光型半導体レ
ーザを提供できる。また、この埋込み層は多層構造でな
いので容易に形成でき、再現性も良好となる。さらに、
II−VI族化合物半導体エピタキシャル層は液相成長
以外の方法例えば気相成長にて形成でき、柱状半導体層
を歩留まり良く形成できる。しかも、気相成長等を用い
れば、埋込み幅が狭くても確実に埋込み層を形成できる
ため、複数本の柱状半導体層を近接配置できる効果があ
る。
Since the II-VI group compound semiconductor epitaxial layer has a high resistance, there is no leakage of current injected into the buried layer formed of this high resistance layer, and extremely effective current confinement is achieved. And since the reactive current can be reduced,
It becomes possible to lower the threshold current. as a result,
It is possible to realize a surface-emitting semiconductor laser that generates little heat, and to provide a highly practical surface-emitting semiconductor laser that can perform continuous oscillation at room temperature. Further, since this buried layer does not have a multilayer structure, it can be easily formed and the reproducibility is also good. moreover,
The II-VI group compound semiconductor epitaxial layer can be formed by a method other than liquid phase growth, such as vapor phase growth, and the columnar semiconductor layer can be formed with a high yield. In addition, if vapor phase growth or the like is used, a buried layer can be reliably formed even if the buried width is narrow, which has the effect of allowing a plurality of columnar semiconductor layers to be arranged close to each other.

【0017】光共振器の光出射側の半導体コンタクト層
の膜厚が、3.0μm以下であると、コンタクト層での
光吸収を低減できる。
When the thickness of the semiconductor contact layer on the light output side of the optical resonator is 3.0 μm or less, light absorption in the contact layer can be reduced.

【0018】この柱状の半導体層の半導体基板と平行な
断面を、円、正多角形のいずれかとすると、きれいな円
形のスポットビームが得られる。また、柱状の半導体層
の半導体基板と平行な断面の直径、対角線の長さのいず
れかが10μm以下であると、NFPのモードは0次基
本モードとなる。
If the cross section of this columnar semiconductor layer parallel to the semiconductor substrate is either circular or regular polygonal, a clean circular spot beam can be obtained. Further, if either the diameter of the cross section of the columnar semiconductor layer parallel to the semiconductor substrate or the length of the diagonal line is 10 μm or less, the NFP mode becomes the zero-order fundamental mode.

【0019】光共振器が1本の柱状の半導体層を有する
場合には、光出射側の反射鏡は、柱状の端面と対向して
前記端面の範囲内に形成される。この場合の屈折率導波
路構造としては、リブ導波路型、埋込み型のいずれであ
っても良い。
When the optical resonator has one columnar semiconductor layer, the reflecting mirror on the light output side is formed within the range of the columnar end face, facing the end face. The refractive index waveguide structure in this case may be either a rib waveguide type or a buried type.

【0020】位相同期した面発光型半導体レーザは、光
共振器が、複数本の柱状の半導体層に分離するための分
離溝を有する。この分離溝にII−VI族化合物半導体
エピタキシャル層が埋め込まれ、各柱状の半導体層にそ
れぞれ発光部が形成される。光共振器を構成する半導体
層のうちの活性層に分離溝が到達しないようにする。こ
うすると、活性層を介して各発光部が影響し合い、各発
光部での光の位相は同期する。
A phase-locked surface-emitting semiconductor laser has a separation groove for separating an optical resonator into a plurality of columnar semiconductor layers. A II-VI group compound semiconductor epitaxial layer is buried in this separation groove, and a light emitting portion is formed in each columnar semiconductor layer. The separation trench is prevented from reaching the active layer of the semiconductor layers constituting the optical resonator. In this way, each light emitting section influences each other via the active layer, and the phases of light in each light emitting section are synchronized.

【0021】発光スポットを大きくする場合には、分離
溝に、出射するレーザ光の波長に対して透明なII−V
I族化合物半導体エピタキシャル層を埋め込む。さらに
、光出射側の反射鏡を、複数本の前記柱状の各端面及び
前記分離溝に埋め込まれたII−VI族化合物半導体エ
ピタキシャル層と対向する領域に亘って形成する。こう
すると、柱状の発光部に挾まれた領域も垂直共振器構造
となり、その領域にもれた光も有効にレーザ発振に寄与
して発光スポットが広がる。さらに、位相同期したレー
ザ光が重ね合わされるため、光出力が増加し、放射角も
小さくなる。共振器の半導体層として一般に用いられて
いるGaAsレーザの場合、そのレーザ光の波長に対し
て透明なII−VI族化合物半導体エピタキシャル層と
しては、ZnSe、ZnS、ZnSSe、ZnCdS、
CdSSeのいずれかで構成できる。分離溝を、半導体
基板に対して垂直な溝とすると、屈折率段差を利用して
、分離溝に斜めに入射する光を全反射でき、光の閉じ込
め効果が大きくなる。また、分離溝の半導体基板と平行
な断面の幅を、0.5μm以上で10μm未満とすると
、NFPから測定される発振横モードの次数は、0次基
本モードとなる。
[0021] In order to enlarge the light emitting spot, an II-V film that is transparent to the wavelength of the emitted laser light is placed in the separation groove.
Embed a Group I compound semiconductor epitaxial layer. Furthermore, a reflecting mirror on the light output side is formed over a region facing each end face of the plurality of columnar shapes and the II-VI group compound semiconductor epitaxial layer embedded in the separation trench. In this way, the region sandwiched between the columnar light emitting parts also has a vertical resonator structure, and the light leaking into that region also effectively contributes to laser oscillation, thereby expanding the light emitting spot. Furthermore, since the phase-synchronized laser beams are superimposed, the optical output increases and the radiation angle becomes smaller. In the case of GaAs lasers that are generally used as the semiconductor layer of the resonator, the II-VI group compound semiconductor epitaxial layer that is transparent to the wavelength of the laser light includes ZnSe, ZnS, ZnSSe, ZnCdS,
It can be composed of either CdSSe. When the separation groove is a groove perpendicular to the semiconductor substrate, the light incident obliquely on the separation groove can be totally reflected by utilizing the refractive index step, which increases the light confinement effect. Furthermore, if the width of the cross section of the isolation groove parallel to the semiconductor substrate is set to 0.5 μm or more and less than 10 μm, the order of the oscillation transverse mode measured from the NFP becomes the zero-order fundamental mode.

【0022】半導体基板に垂直な方向に光を出射する本
発明に係る面発光型半導体レーザの製造方法は、半導体
基板上に光共振器を構成する多層の半導体層を形成し、
前記半導体層上にフォトレジストマスクを形成し、半導
体層のうちの少なくともクラッド層を、前記フォトレジ
ストマスクを用いてエッチングして、1本又は複数本の
柱状の半導体層を形成し、前記柱状の半導体層の周囲に
、II−VI族化合物を用いた気相成長法によって埋込
み層を形成することを特徴とする。
A method for manufacturing a surface-emitting semiconductor laser according to the present invention that emits light in a direction perpendicular to a semiconductor substrate includes forming multilayer semiconductor layers constituting an optical resonator on a semiconductor substrate;
A photoresist mask is formed on the semiconductor layer, at least a cladding layer of the semiconductor layer is etched using the photoresist mask to form one or more columnar semiconductor layers, and the columnar semiconductor layer is etched using the photoresist mask. It is characterized in that a buried layer is formed around the semiconductor layer by a vapor phase growth method using a II-VI group compound.

【0023】埋込み層の形成に気相成長法を用いている
ので、柱状半導体層を変形,破損させることがない。ま
た、この気相成長法を実施する際、成長形成される埋込
み層の下層の結晶方向が揃っていると、該下層の上でI
I−VI族化合物はエピタキシャル成長し、埋込み層と
してII−VI族化合物半導体エピタキシャル層が形成
されることになる。前記エッチング工程はクラッド層の
一部を残して終了し、その下層の活性層を露出させない
ことが望ましい。活性層を一旦露出させると、その露出
面に不純物が付着して結晶欠陥を生ずるからである。
Since the vapor phase growth method is used to form the buried layer, the columnar semiconductor layer is not deformed or damaged. Furthermore, when carrying out this vapor phase growth method, if the crystal directions of the lower layer of the buried layer to be grown and formed are aligned, the I
The I-VI group compound is epitaxially grown, and a II-VI group compound semiconductor epitaxial layer is formed as a buried layer. It is preferable that the etching process leaves a portion of the cladding layer and does not expose the underlying active layer. This is because once the active layer is exposed, impurities adhere to the exposed surface and cause crystal defects.

【0024】エッチング工程で使用されるフォトレジス
トマスクを、ハードベークされたフォトレジスト層を反
応性イオンエッチングすることで形成すると、フォトレ
ジストマスクの側面は半導体基板に垂直となる。このフ
ォトレジストマスクを用いて、柱状の半導体層を反応性
イオンビームエッチングにより形成すると、柱状半導体
層の微細加工が可能となり、垂直な側面を持つ柱状半導
体層を形成できる。
When the photoresist mask used in the etching process is formed by reactive ion etching of a hard-baked photoresist layer, the sides of the photoresist mask are perpendicular to the semiconductor substrate. When a columnar semiconductor layer is formed by reactive ion beam etching using this photoresist mask, fine processing of the columnar semiconductor layer becomes possible, and a columnar semiconductor layer with vertical side surfaces can be formed.

【0025】[0025]

【実施例】図1は本発明の実施例における半導体レーザ
(100)の発光部の断面を示す斜視図で、図2は本発
明の実施例における半導体レーザの製造工程を示す断面
図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a perspective view showing a cross section of a light emitting part of a semiconductor laser (100) in an example of the present invention, and FIG. 2 is a cross-sectional view showing a manufacturing process of the semiconductor laser in an example of the present invention.

【0026】(102)n型GaAs基板に、(103
)n型GaAsバッファ層を形成し、n型Al0.7 
Ga0.3 As層とn型Al0.1 Ga0.9 A
s層からなり波長870nm付近の光に対し98%以上
の反射率を持つ30ペアの(104)分布反射型多層膜
ミラーを形成する。さらに、(105)n型Al0.4
 Ga0.6 Asクラッド層、(106)p型GaA
s活性層、(107)p型Al0.4 Ga0.6 A
sクラッド層、(108)p型Al0.1 Ga0.9
 Asコンタクト層を順次MOCVD法でエピタキシャ
ル成長する(図2(a))。この時例えば、成長温度は
700℃、成長圧力は150Torrで、III 族原
料にTMGa(トリメチルガリウム)、TMAl(トリ
メチルアルミニウム)の有機金属を用い、V族原料にA
sH3 、n型ドーパントにH2 Se、p型ドーパン
トにDEZn(ジエチルジンク)を用いた。
(102) On the n-type GaAs substrate, (103
) Form an n-type GaAs buffer layer, and form an n-type Al0.7
Ga0.3 As layer and n-type Al0.1 Ga0.9 A
Thirty pairs of (104) distributed reflection type multilayer mirrors made of S-layers and having a reflectance of 98% or more for light around a wavelength of 870 nm are formed. Furthermore, (105) n-type Al0.4
Ga0.6 As cladding layer, (106) p-type GaA
s active layer, (107) p-type Al0.4 Ga0.6 A
s cladding layer, (108) p-type Al0.1 Ga0.9
An As contact layer is sequentially grown epitaxially by MOCVD (FIG. 2(a)). At this time, for example, the growth temperature is 700°C, the growth pressure is 150 Torr, organic metals such as TMGa (trimethyl gallium) and TMAl (trimethyl aluminum) are used as group III raw materials, and A is used as group V raw materials.
sH3, H2 Se as an n-type dopant, and DEZn (diethyl zinc) as a p-type dopant.

【0027】成長後、表面に熱CVD法により(112
)SiO2 層を形成した後、反応性イオンビームエッ
チング法(以下、RIBE法と記す)により、(113
)ハードベイクレジストで覆われた円柱状の発光部を残
して、(107)p型Al0.4 Ga0.6 Asク
ラッド層の途中までエッチングする(図2(b))。こ
の際、エッチングガスには塩素とアルゴンの混合ガスを
用い、ガス圧1×10−3Torr、引出し電圧400
Vで行った。ここで、(107)p型Al0.4 Ga
0.6 Asクラッド層の途中までしかエッチングしな
いのは、活性層の水平方向の注入キャリアと光の閉じ込
めを、リブ導波路型の屈折率導波構造にするためである
After the growth, the surface was coated with (112
) After forming the SiO2 layer, (113
) The (107) p-type Al0.4 Ga0.6 As cladding layer is etched to the middle, leaving a cylindrical light emitting part covered with hard bake resist (FIG. 2(b)). At this time, a mixed gas of chlorine and argon was used as the etching gas, the gas pressure was 1 x 10-3 Torr, and the extraction voltage was 400.
I went with V. Here, (107) p-type Al0.4 Ga
The reason why the 0.6 As cladding layer is etched only halfway is to create a rib waveguide type refractive index waveguide structure for confining horizontally injected carriers and light in the active layer.

【0028】次に(113)レジストを取り除いた後、
MBE法あるいはMOCVD法などで、GaAsと格子
整合する(109)ZnS0.06Se0.94層を埋
込み成長する(図2(c))。
Next (113) After removing the resist,
A (109) ZnS0.06Se0.94 layer lattice-matched to GaAs is buried and grown by MBE or MOCVD (FIG. 2(c)).

【0029】さらに、表面に4ペアの(111)SiO
2 /α−Si誘電体多層膜を電子ビーム蒸着により形
成し、ウエットエッチングで、発光部の径よりやや小さ
い領域を残して取り去る(図2(d))。波長870n
mでの誘電体多層膜の反射率は94%である。
Furthermore, 4 pairs of (111)SiO on the surface
A 2/α-Si dielectric multilayer film is formed by electron beam evaporation and removed by wet etching, leaving a region slightly smaller than the diameter of the light emitting part (FIG. 2(d)). Wavelength 870n
The reflectance of the dielectric multilayer film at m is 94%.

【0030】しかる後(111)誘電体多層膜以外の表
面に(110)p型オーミック電極を蒸着し、さらに基
板側に(101)n型オーミック電極を蒸着し、N2 
雰囲気中で420℃でアロイングし、(100)面発光
半導体レーザを完成する(図2(e))。
After that, (111) a p-type ohmic electrode (110) is deposited on the surface other than the dielectric multilayer film, a (101) n-type ohmic electrode is further deposited on the substrate side, and N2
Alloying is performed at 420° C. in an atmosphere to complete a (100) surface-emitting semiconductor laser (FIG. 2(e)).

【0031】このように作成した本実施例の面発光半導
体レーザは、埋込みに用いたZnS0.06Se0.9
4層が1GΩ以上の抵抗を有し、埋込み層への注入電流
のもれが起こらないため、極めて有効な電流狭窄が達成
される。 また埋込み層は多層構造にする必要がないため容易に成
長でき、バッチ間の再現性も高い。さらにGaAsに比
べ屈折率が十分小さいZnS0.06Se0.94層を
用いたリブ導波路構造により、より効果的な光の閉じ込
めが実現される。
The surface-emitting semiconductor laser of this example prepared in this manner was manufactured using ZnS0.06Se0.9 used for embedding.
Since the four layers have a resistance of 1 GΩ or more and the current injected into the buried layer does not leak, extremely effective current confinement is achieved. Furthermore, since the buried layer does not need to have a multilayer structure, it can be easily grown and has high batch-to-batch reproducibility. Furthermore, the rib waveguide structure using the ZnS0.06Se0.94 layer, which has a sufficiently lower refractive index than GaAs, realizes more effective light confinement.

【0032】図3は本発明の実施例の面発光半導体レー
ザの駆動電流と発振光出力の関係を示す図である。室温
において連続発振が達成され、しきい値1mAと極めて
低い値を得た。また外部微分量子効率も高く、無効電流
の抑制がレーザの特性向上に貢献している。
FIG. 3 is a diagram showing the relationship between the driving current and the oscillation light output of the surface emitting semiconductor laser according to the embodiment of the present invention. Continuous oscillation was achieved at room temperature, and an extremely low threshold value of 1 mA was obtained. The external differential quantum efficiency is also high, and suppression of reactive current contributes to improved laser characteristics.

【0033】また本発明の実施例の面発光半導体レーザ
の柱状部分の断面形状において、その形状が円、または
正四角形、正八角形などの正多角形ではきれいな円のス
ポットビームになるが、それ以外の長方形、台形などで
は楕円もしくは多モードのビーム形状となってしまいデ
ィバイスへの応用上好ましくない。
Further, in the cross-sectional shape of the columnar portion of the surface-emitting semiconductor laser according to the embodiment of the present invention, if the shape is a circle or a regular polygon such as a regular quadrangle or a regular octagon, a spot beam will be a beautiful circle, but if the shape is not a circle Rectangular, trapezoidal, etc. shapes result in elliptical or multimode beam shapes, which are undesirable for device applications.

【0034】[0034]

【表1】 表1に本発明の実施例の面発光半導体レーザの円柱部分
の断面の直径の長さに対する近視野像の関係を示す。1
0μm未満で基本モードで発振するが、それ以上では、
1次以上のモードで発振した。
[Table 1] Table 1 shows the relationship between the near-field image and the length of the cross-sectional diameter of the cylindrical portion of the surface-emitting semiconductor laser according to the example of the present invention. 1
It oscillates in the fundamental mode below 0 μm, but above that,
It oscillated in a mode higher than the first order.

【0035】本発明の実施例の面発光半導体レーザのコ
ンタクト層の膜厚に関しては、3.0μm以下とするも
のが良い。コンタクト層での光吸収を低減できるからで
ある。より好ましくは0.3μm以下が最適で、素子抵
抗が低く、外部微分量子効率も高い。
The thickness of the contact layer of the surface emitting semiconductor laser according to the embodiment of the present invention is preferably 3.0 μm or less. This is because light absorption in the contact layer can be reduced. More preferably, the thickness is optimally 0.3 μm or less, resulting in low element resistance and high external differential quantum efficiency.

【0036】図4は本発明の別の実施例における半導体
レーザ(200)の発光部の断面を示す斜視図で、図5
は本発明の別の実施例における半導体レーザ(200)
の製造工程を示す断面図である。
FIG. 4 is a perspective view showing a cross section of a light emitting part of a semiconductor laser (200) in another embodiment of the present invention.
is a semiconductor laser (200) in another embodiment of the present invention
FIG. 3 is a cross-sectional view showing the manufacturing process.

【0037】(202)n型GaAs基板に、(203
)n型GaAsバッファ層を形成し、n型AlAs層と
n型Al0.1 Ga0.9 As層からなり波長87
0nm付近の光に対し98%以上の反射率を持つ30ペ
アの(204)分布反射型多層膜ミラーを形成する。さ
らに、(205)n型Al0.4 Ga0.6 Asク
ラッド層、(206)p型GaAs活性層、(207)
p型Al0.4 Ga0.6 Asクラッド層、(20
8)p型Al0.1 Ga0.9 Asコンタクト層を
順次MOCVD法でエピタキシャル成長させる(図5(
a))。この時例えば、成長温度は700℃、成長圧力
は150Torrで、III 族原料にTMGa(トリ
メチルガリウム),TMAl(トリメチルアルミニウム
)の有機金属を用い、V族原料にAsH3 、n型ドー
パントにH2Se、p型ドーパントにDEZn(ジエチ
ルジンク)を用いた。  成長後、表面に熱CVD法に
より(212)SiO2 を形成した後、反応性イオン
ビームエッチング法(以下、RIBE法と記す)により
、(213)ハードベイクレジストで覆われた円柱状の
発光部を残して(205)p型Al0.4 Ga0.6
 Asクラッド層の途中までエッチングする(図5(b
))。この際、エッチングガスには塩素とアルゴンの混
合ガスを用い、ガス圧1×10−3Torr、引出し電
圧400Vで行った。
(202) On the n-type GaAs substrate, (203
) An n-type GaAs buffer layer is formed, consisting of an n-type AlAs layer and an n-type Al0.1 Ga0.9 As layer, with a wavelength of 87
Thirty pairs of (204) distributed reflection multilayer mirrors having a reflectance of 98% or more for light around 0 nm are formed. Furthermore, (205) n-type Al0.4 Ga0.6 As cladding layer, (206) p-type GaAs active layer, (207)
p-type Al0.4 Ga0.6 As cladding layer, (20
8) Epitaxially grow a p-type Al0.1 Ga0.9 As contact layer sequentially by MOCVD (Fig. 5 (
a)). At this time, for example, the growth temperature is 700°C, the growth pressure is 150 Torr, organic metals such as TMGa (trimethyl gallium) and TMAl (trimethyl aluminum) are used as group III raw materials, AsH3 is used as group V raw materials, and H2Se and p are used as n-type dopants. DEZn (diethyl zinc) was used as a mold dopant. After the growth, (212) SiO2 is formed on the surface by thermal CVD, and then a cylindrical light-emitting part covered with (213) hard-baked resist is formed by reactive ion beam etching (hereinafter referred to as RIBE). Leave (205) p-type Al0.4 Ga0.6
Etch the As cladding layer to the middle (Fig. 5(b)
)). At this time, a mixed gas of chlorine and argon was used as the etching gas, and the etching was performed at a gas pressure of 1.times.10@-3 Torr and an extraction voltage of 400 V.

【0038】次に(213)レジストを取り除いた後、
MBE法あるいはMOCVD法などで、(209)Zn
S0.06Se0.94層を埋込み成長する(図5(c
))。
Next (213) After removing the resist,
By MBE method or MOCVD method, (209)Zn
A S0.06Se0.94 layer is buried and grown (Fig. 5(c)
)).

【0039】さらに、表面に4ペアの(211)SiO
2 /α−Si誘電体多層膜を電子ビーム蒸着により形
成し、ウェットエッチングで、発光部の径よりやや小さ
い領域を残して取り去る(図5(d))。波長870n
mでの誘電体多層膜の反射率は94%である。
Furthermore, 4 pairs of (211)SiO on the surface
A 2/α-Si dielectric multilayer film is formed by electron beam evaporation and removed by wet etching, leaving a region slightly smaller than the diameter of the light emitting part (FIG. 5(d)). Wavelength 870n
The reflectance of the dielectric multilayer film at m is 94%.

【0040】しかる後(211)誘電体多層膜以外の表
面に(210)p型オーミック電極を蒸着し、さらに基
板側に(201)n型オーミック電極を蒸着し、N2 
雰囲気中で420℃でアロイングし、面発光半導体レー
ザを完成する(図5(e))。
Thereafter, (211) a p-type ohmic electrode (210) is deposited on the surface other than the dielectric multilayer film, and an n-type ohmic electrode (201) is further deposited on the substrate side, and N2
Alloying is performed at 420° C. in an atmosphere to complete a surface emitting semiconductor laser (FIG. 5(e)).

【0041】このように作成した本実施例の面発光半導
体レーザは、埋込みに用いたZnS0.06Se0.9
4層が1GΩ以上の抵抗を有し、埋込み層への注入電流
のもれが起こらないため、極めて有効な電流狭窄が達成
される。 また埋込み層は多層構造にする必要がないため容易に成
長でき、バッチ間の再現性も高い。さらにGaAsに比
べ屈折率が十分小さいZnS0.06Se0.94層を
用い、活性層を埋め込んだ埋込み型の屈折率導波路構造
により、より効果的な光の閉じ込めが実現される。
The surface-emitting semiconductor laser of this example prepared in this manner was manufactured using ZnS0.06Se0.9 used for embedding.
Since the four layers have a resistance of 1 GΩ or more and the current injected into the buried layer does not leak, extremely effective current confinement is achieved. Furthermore, since the buried layer does not need to have a multilayer structure, it can be easily grown and has high batch-to-batch reproducibility. Furthermore, more effective light confinement is achieved by using a ZnS0.06Se0.94 layer, which has a sufficiently lower refractive index than GaAs, and a buried refractive index waveguide structure in which the active layer is embedded.

【0042】また本発明の実施例では、活性層をGaA
sとしたが、AlGaAsでも同様の効果が得られる。 さらにその他のIII −V族化合物半導体を柱状部に
用いた場合でも、適当なII−VI族化合物半導体を埋
込み層に選ぶことにより同様の効果が得られる。
Further, in the embodiment of the present invention, the active layer is made of GaA.
s, but the same effect can be obtained with AlGaAs. Furthermore, even when other III-V group compound semiconductors are used for the columnar portions, similar effects can be obtained by selecting an appropriate II-VI group compound semiconductor for the buried layer.

【0043】図6,図7は本発明の他の実施例を示し、
図6は発光スポットを拡大できる位相同期型半導体レー
ザ(300)の発光部の断面を示す概略図であり、図7
はその製造工程を示す断面図である。
FIGS. 6 and 7 show other embodiments of the present invention,
FIG. 6 is a schematic diagram showing a cross section of a light emitting part of a phase-locked semiconductor laser (300) that can enlarge a light emitting spot, and FIG.
FIG. 2 is a cross-sectional view showing the manufacturing process.

【0044】(302)n型GaAs基板に、(303
)n型GaAsバッファ層を形成し、n型Al0.9 
Ga0.1 As層とn型Al0.2 Ga0.8 A
s層からなり波長780nmを中心に±30nmの光に
対して98%以上の反射率を持つ25ペアの(304)
半導体多層膜ミラーを形成する。さらに、(305)n
型Al0.5 Ga0.5 Asクラッド層、(306
)p型Al0.1 3Ga0.87As活性層、(30
7)p型Al0.5 Ga0.5 Asクラッド層、(
308)p型Al0.15Ga0.85Asコンタクト
層を順次MOCVD法でエピタキシャル成長する(図7
(a))。この時の成長条件は、例えば成長温度は72
0℃、成長圧力は150Torrで行い、III 族原
料にTMGa(トリメチルガリウム)、TMAl(トリ
メチルアルミニウム)の有機金属を用い、V族原料には
AsH3 、n型ドーパントにH2 Se、p型ドーパ
ントにDEZn(ジエチルジンク)を用いた。
(302) n-type GaAs substrate, (303
) Form an n-type GaAs buffer layer, and form an n-type Al0.9
Ga0.1 As layer and n-type Al0.2 Ga0.8 A
(304) consisting of 25 pairs of S-layers with a reflectance of 98% or more for light with a wavelength of 780 nm and ±30 nm.
Form a semiconductor multilayer mirror. Furthermore, (305)n
Type Al0.5 Ga0.5 As cladding layer, (306
) p-type Al0.13Ga0.87As active layer, (30
7) p-type Al0.5 Ga0.5 As cladding layer, (
308) Epitaxially grow p-type Al0.15Ga0.85As contact layer sequentially by MOCVD method (Fig. 7
(a)). The growth conditions at this time are, for example, the growth temperature is 72
The growth was performed at 0°C and at a pressure of 150 Torr, using organic metals such as TMGa (trimethyl gallium) and TMAl (trimethyl aluminum) as group III raw materials, AsH3 as group V raw materials, H2 Se as n-type dopant, and DEZn as p-type dopant. (diethyl zinc) was used.

【0045】成長後、表面に常圧熱CVD法により(3
12)SiO2 層を形成し、さらにその上にフォトレ
ジストを塗布し、高温で焼きしめて(313)ハードベ
ークレジストを形成する。さらにこのハードベークレジ
スト上にEB蒸着法によりSiO2 層を形成する。
After the growth, the surface was coated with (3
12) Form a SiO2 layer, coat a photoresist on top of it, and bake it at a high temperature (313) to form a hard baked resist. Furthermore, a SiO2 layer is formed on this hard-baked resist by EB evaporation.

【0046】次に反応性イオンエッチング法(以下、R
IE法と記す)を用いて、基板上に形成した各層をエッ
チングする。初めに(313)ハードベークレジスト上
に形成したSiO2 層上に通常用いられるフォトリソ
グラフィー工程を施し、必要なレジストパターンを形成
し、このパターンをマスクとしてRIE法によりSiO
2 層をエッチングする。例えば、CF4 ガスを用い
て、ガス圧4.5Pa、入力RFパワー150W、サン
プルホルダーを20℃にコントロールしてRIEを実施
する。次にこのSiO2 層をマスクにして、RIE法
により(313)ハードベークレジストをエッチングす
る。 例えば、O2 ガスを用いて、ガス圧4.5Pa、入力
パワー150W、サンプルホルダーを20℃にコントロ
ールしてRIEを実施する。この時SiO2 層上に初
めに形成したレジストパターンも同時にエッチングされ
る。 次にパターン状に残っているSiO2 層とエピタキシ
ャル層上に形成した(312)SiO2 層を同時にエ
ッチングするために再びCF4 ガスを用いてエッチン
グを行う。以上のように薄いSiO2 層をマスクにし
て、ドライエッチングの1方法であるRIE法を(31
3)ハードベークレジストに用いることにより、必要な
パターン形状を持ちながら、さらに基板に対して垂直な
側面を持った(313)ハードベークレジストが作成で
きる(図7(b))。
Next, reactive ion etching method (hereinafter referred to as R
Each layer formed on the substrate is etched using a method (referred to as IE method). First, a commonly used photolithography process is performed on the SiO2 layer formed on the (313) hard bake resist to form the necessary resist pattern, and using this pattern as a mask, the SiO2 layer is
Etch two layers. For example, RIE is performed using CF4 gas with a gas pressure of 4.5 Pa, an input RF power of 150 W, and a sample holder controlled at 20°C. Next, using this SiO2 layer as a mask, the hard baked resist (313) is etched by RIE method. For example, RIE is performed using O2 gas with a gas pressure of 4.5 Pa, an input power of 150 W, and a sample holder controlled at 20°C. At this time, the resist pattern initially formed on the SiO2 layer is also etched at the same time. Next, etching is performed again using CF4 gas in order to simultaneously etch the SiO2 layer remaining in the pattern and the (312) SiO2 layer formed on the epitaxial layer. As described above, using the thin SiO2 layer as a mask, the RIE method (31
3) By using it in a hard-baked resist, it is possible to create a hard-baked resist that has the necessary pattern shape and also has (313) side surfaces perpendicular to the substrate (FIG. 7(b)).

【0047】この垂直な側面を持った(313)ハード
ベークレジストをマスクにして、反応性イオンビームエ
ッチング法(以下、RIBE法と記す)を用いて、柱状
の発光部を残して(307)p型Al0.5 Ga0.
5 Asクラッド層の途中までエッチングを行う(図7
(c))。この際、エッチングガスには例えば塩素とア
ルゴンの混合ガスを用い、ガス圧力5×10−4Tor
r、プラズマ引出し電圧400V、エッチング試料上で
のイオン電流密度400μA/cm2 、サンプルホル
ダーを20℃に保って行った。ここで、(307)p型
Al0.5 Ga0.5 Asクラッド層の途中までし
かエッチングしないのは、活性層の水平方向の注入キャ
リアと光の閉じ込めを、屈折率導波型のリブ導波路構造
にして、活性層内の光の一部を活性層水平方向に伝達で
きるようにするためである。
Using this (313) hard bake resist with vertical sides as a mask, a reactive ion beam etching method (hereinafter referred to as RIBE method) was used to leave columnar light emitting parts (307)p. Type Al0.5 Ga0.
5 Etch halfway through the As cladding layer (Fig. 7
(c)). At this time, for example, a mixed gas of chlorine and argon is used as the etching gas, and the gas pressure is 5 x 10-4 Torr.
The plasma extraction voltage was 400 V, the ion current density on the etching sample was 400 μA/cm 2 , and the sample holder was kept at 20° C. Here, the reason why the (307) p-type Al0.5 Ga0.5 As cladding layer is etched only halfway is because the horizontally injected carriers and optical confinement of the active layer are achieved by the refractive index guided rib waveguide structure. This is to allow part of the light within the active layer to be transmitted in the horizontal direction of the active layer.

【0048】また、垂直な側面を持った(313)ハー
ドベークレジストとエッチング試料に対して垂直にイオ
ンをビーム状に照射してエッチングを行うRIBE法を
用いることにより、近接した(320)発光部を基板に
垂直な(314)分離溝で分離できると共に、面発光型
半導体レーザの特性向上に必要な垂直光共振器の作成が
可能となっている。
In addition, by using the RIBE method in which etching is performed by irradiating a beam of ions perpendicularly to a (313) hard bake resist having vertical side surfaces and an etching sample, it is possible to form a (320) light emitting part in close proximity to each other. can be separated by a (314) separation groove perpendicular to the substrate, and it is also possible to create a vertical optical resonator necessary for improving the characteristics of a surface-emitting semiconductor laser.

【0049】次に(313)ハードベークレジストを取
り除いた後、MBE法あるいはMOCVD法などで、A
l0.5 Ga0.5 Asに格子整合するII−VI
族化合物半導体エピタキシャル層としての(309)Z
nS0.06Se0.94層を埋込み成長する(図7(
d))。この(309)層は、(300)面発光型半導
体レーザの発振波長に対して透明である。
Next (313) After removing the hard bake resist, A
II-VI lattice matched to l0.5 Ga0.5 As
(309)Z as a group compound semiconductor epitaxial layer
An nS0.06Se0.94 layer is buried and grown (Fig. 7 (
d)). This (309) layer is transparent to the oscillation wavelength of the (300) surface-emitting semiconductor laser.

【0050】さらに、(312)SiO2 層とその上
にできた多結晶状のZnSSeを取り除いた後、表面に
4ペアの(311)SiO2 /a−Si誘電体多層膜
反射鏡を電子ビーム蒸着により形成し、ドライエッチン
グを用いて分離した(320)発光部の一部と、(32
0)発光部で挟まれた埋込み層を残して取り去る(図7
(e))。波長780nmでの誘電体多層膜反射鏡の反
射率は、95%以上である。ZnSSeで埋め込んだ(
314)分離溝上にも(311)誘電体多層膜反射鏡を
作成することにより発光部に挟まれた領域も垂直共振器
構造が形成され、(314)分離溝にもれた光も有効に
レーザ発振に寄与し、また漏れた光を利用するため、(
320)発光部の位相に同期した発光となる。
Furthermore, after removing the (312) SiO2 layer and the polycrystalline ZnSSe formed on it, four pairs of (311) SiO2/a-Si dielectric multilayer film reflectors were deposited on the surface by electron beam evaporation. A part of the light emitting part (320) formed and separated using dry etching, and a part of the light emitting part (32)
0) Remove leaving the buried layer sandwiched between the light emitting parts (Figure 7)
(e)). The reflectance of the dielectric multilayer mirror at a wavelength of 780 nm is 95% or more. embedded with ZnSSe (
314) By creating a (311) dielectric multilayer reflector on the separation groove, a vertical resonator structure is also formed in the area sandwiched between the light emitting parts, and the light leaking into the (314) separation groove can also be effectively used as a laser beam. In order to contribute to oscillation and utilize leaked light, (
320) Light emission is synchronized with the phase of the light emitting section.

【0051】しかる後に(311)誘電体多層膜反射鏡
以外の表面に(310)p型オーミック電極を蒸着し、
さらに基板側に(301)n型オーミック電極を蒸着し
、N2 雰囲気中で420℃でアロイングを行い、(3
00)面発光半導体レーザを完成する(図7(f))。 ここで、出射側の(310)n型オーミック電極は、各
(320)発光部の各(308)コンタクト層に導通す
るように形成される。
After that, (310) a p-type ohmic electrode is deposited on the surface other than the (311) dielectric multilayer reflector,
Furthermore, a (301) n-type ohmic electrode was deposited on the substrate side, and alloying was performed at 420°C in an N2 atmosphere.
00) Complete a surface emitting semiconductor laser (FIG. 7(f)). Here, the (310) n-type ohmic electrode on the emission side is formed so as to be electrically connected to each (308) contact layer of each (320) light emitting section.

【0052】この様に作製した本実施例の面発光型半導
体レーザは、(309)埋込み層にZnSSeエピタキ
シャル層を用いることにより、従来使用していたAlG
aAs層のp−nジャンクションの逆バイアスを使用す
る電流ブロック構造よりも高抵抗である1GΩ以上の抵
抗を有し、最適な電流ブロック構造を持つとともに、埋
込み層が発振波長780nmに対して吸収を持たない透
過材料であることから(320)発光部からの漏れ光を
有効に利用できるものとなっている。
The surface-emitting semiconductor laser of this example fabricated in this manner uses a ZnSSe epitaxial layer for the (309) buried layer, thereby replacing the previously used AlG
It has a resistance of 1 GΩ or more, which is higher than the current block structure that uses reverse bias of the p-n junction of the aAs layer, and has an optimal current block structure, and the buried layer absorbs the oscillation wavelength of 780 nm. Since it is a transparent material that does not have any (320) light, leakage light from the light emitting part can be used effectively.

【0053】図8は、従来の面発光型半導体レーザと本
実施例の面発光型半導体レーザの光が出射される側の形
状とレーザ発振時のNFPの強度分布を示したものであ
る。図8(a)は、図12に示す従来の面発光型半導体
レーザ(600)の共振器(620)をn−p接合の(
607−608)GaAlAsエピタキシャル層出埋め
込むことが可能な距離である5μm程度まで接近させた
場合を示している。レーザの出射面には、誘電体多層膜
反射鏡とp型オーミック電極があるが、共振器の形状を
比較するために図では削除している。図8(b)は図8
(a)a−b間のNFP強度分布を示している。従来の
面発光型半導体レーザの発光部(620)を複数個、埋
め込み可能な距離まで接近させても発光スポットが複数
個現れるだけで、横方向の光の漏れが無いため、多峰性
のNFPとなり、1つの発光スポットにならない。
FIG. 8 shows the shape of the light emitting side of the conventional surface emitting type semiconductor laser and the surface emitting type semiconductor laser of this embodiment, and the intensity distribution of NFP during laser oscillation. FIG. 8(a) shows the resonator (620) of the conventional surface-emitting semiconductor laser (600) shown in FIG.
607-608) The case is shown in which the GaAlAs epitaxial layer is brought close to about 5 μm, which is a distance that allows embedding. There is a dielectric multilayer reflector and a p-type ohmic electrode on the emission surface of the laser, but these are removed in the figure for comparison of the shape of the resonator. Figure 8(b) is
(a) shows the NFP intensity distribution between a and b. Even if multiple light-emitting parts (620) of conventional surface-emitting semiconductor lasers are brought close enough to be embedded, only multiple light-emitting spots will appear, and there is no lateral light leakage, so multimodal NFP is possible. Therefore, there is no single light emitting spot.

【0054】図8(c)は本実施例の面発光型半導体レ
ーザの形状であり、分離溝を(409)NnS0.06
Se0.94層で埋め込んでおり、気相成長で埋め込む
ので分離溝の最小幅は1μmである。図8(d)は図8
(c)c−d間のNFPである。(314)分離溝の上
からも光が出射されるので、発光点が広がることがNF
Pからわかる。さらに近接したレーザ光の位相が同期す
るので、光出力が増加し、放射角も1°以下の円形ビー
ムが得られる。
FIG. 8(c) shows the shape of the surface-emitting semiconductor laser of this example, in which the separation groove is (409)NnS0.06
The separation groove is filled with a Se0.94 layer and is filled by vapor phase growth, so the minimum width of the separation groove is 1 μm. Figure 8(d) is
(c) NFP between c and d. (314) Since light is also emitted from above the separation groove, the light emitting point spreads, which is NF.
It can be seen from P. Furthermore, since the phases of adjacent laser beams are synchronized, the optical output increases and a circular beam with a radiation angle of 1° or less can be obtained.

【0055】表2に実施例の(300)面発光型半導体
レーザの(314)分離溝の幅とNFPから測定される
発振横モード次数の関係を示す。
Table 2 shows the relationship between the width of the (314) separation groove of the (300) surface-emitting semiconductor laser of the example and the oscillation transverse mode order measured from the NFP.

【0056】[0056]

【表2】 10μmより幅が狭いと位相同期したレーザの発振横モ
ードは基本モードで発振するが、それ以上では1次以上
の高次モードでレーザ発振し、放射角が広がったり、ビ
ーム形状が楕円形になるので、応用上好ましくない。ま
た、0.5μmより狭い分離溝では円形ビームが得られ
にくい傾向がある。
[Table 2] If the width is narrower than 10 μm, the phase-locked laser's oscillation transverse mode oscillates in the fundamental mode, but if the width is narrower than 10 μm, the laser oscillates in higher-order modes such as the first order or higher, and the radiation angle becomes wider and the beam shape changes. Since it becomes elliptical, it is not preferred in terms of application. Furthermore, if the separation groove is narrower than 0.5 μm, it tends to be difficult to obtain a circular beam.

【0057】上述の実施例では、複数の発光部を分離し
て設けた一つの光共振器を有する半導体レーザについて
説明したが、このような光共振器を同一半導体基板上に
複数形成することもできる。そして、各光共振器毎に光
出射側のp型オーミック電極をそれぞれ独立して設けれ
ば、各光共振器からのレーザビームを、それぞれ独立し
てON,OFF,変調可能となる。
In the above embodiment, a semiconductor laser having a single optical resonator in which a plurality of light emitting parts are separated is described, but a plurality of such optical resonators may be formed on the same semiconductor substrate. can. If p-type ohmic electrodes on the light output side are independently provided for each optical resonator, the laser beams from each optical resonator can be turned ON, OFF, and modulated independently.

【0058】なお、上記実施例では、GaAlAs系面
発光型半導体レーザについて説明したが、上述したよう
に、その他のIII −V 族系の面発光型半導体レー
ザにも好適に適用でき、特に活性層はGa0.87Al
0.13Asだけでなく、Alの組成を変えることで発
振波長を変更することもできる。
In the above embodiments, a GaAlAs-based surface-emitting type semiconductor laser has been described, but as mentioned above, it can also be suitably applied to other III-V-based surface-emitting type semiconductor lasers. is Ga0.87Al
The oscillation wavelength can also be changed by changing the composition of not only 0.13As but also Al.

【0059】また、本実施例は図6に示した構造、なら
びに図8(c)に示した発光部の構造をもとに説明を行
ったが、本発明はこれにとらわれない。図9から図11
は、本発明の別の実施例を示したものであり、それぞれ
光出射側からみた光共振器及びその内部に作製した分離
溝の基板に水平な面の形状を表した発光部の概略図であ
る。図9(a)〜(j)及び(m)は、柱状半導体層の
基板に水平な断面を円又は正多角形としたものを複数個
形成し、これらを線対称配置としたものである。いずれ
も、発光部が一つのものより発光スポットを拡大できる
。各発光部及び分離溝から一つの光束を持った比較的大
きなビーム径のレーザビームを得る場合には、図6(k
),(l)に示すように、各発光部の横断面形状を円又
は正多角形以外の形状としても、円形ビームを得ること
ができる。線対称配置された非円形でかつ非正多角形の
各発光部の外縁を連ねた輪郭形状が、円又は正多角形に
近い形状であれば良い。また、図10(a)〜(d)、
図11(a)〜(c)にそれぞれ示した実施例は発光部
をn個形成するものであり、この実施例においても、図
6に示した実施例と同様な効果が得られると共に、発光
スポットを任意の大きさ,形状にすることができる効果
が得られている。図10,図11に示すものはいずれも
、基板と平行な2次元面上で横列及び/又は縦列で等間
隔に複数の発光部を配列することで、ラインビームを得
ることができる。
Further, although this embodiment has been described based on the structure shown in FIG. 6 and the structure of the light emitting section shown in FIG. 8(c), the present invention is not limited to this. Figures 9 to 11
2 shows another embodiment of the present invention, and is a schematic diagram of the light emitting part showing the shape of the optical resonator and the plane horizontal to the substrate of the separation groove fabricated inside the resonator as seen from the light emitting side, respectively. be. In FIGS. 9A to 9J and 9M, a plurality of columnar semiconductor layers each having a circular or regular polygonal horizontal cross section are formed on a substrate, and these are arranged in line symmetry. In either case, the light emitting spot can be expanded compared to one with a single light emitting part. When obtaining a relatively large beam diameter laser beam with one luminous flux from each light emitting part and separation groove,
) and (l), a circular beam can be obtained even if the cross-sectional shape of each light emitting part is a shape other than a circle or a regular polygon. It is sufficient that the contour shape connecting the outer edges of each of the non-circular and non-regular polygonal light emitting portions arranged line-symmetrically has a shape close to a circle or a regular polygon. In addition, FIGS. 10(a) to (d),
In the embodiments shown in FIGS. 11(a) to 11(c), n light emitting parts are formed, and in this embodiment as well, the same effect as the embodiment shown in FIG. The effect is that the spot can be made into any size and shape. In both of the devices shown in FIGS. 10 and 11, a line beam can be obtained by arranging a plurality of light emitting sections at equal intervals in rows and/or columns on a two-dimensional plane parallel to the substrate.

【0060】なお、図6に示す実施例において、(31
0)p型オーミック電極を各(320)発光部の数だけ
分離して設け、それぞれが(308)コンタクト層に接
続された半導体レーザを製造することもできる。この場
合、それぞれが円形ビームを独立してON,OFF,変
調制御可能な複数の発光部を同一基板上に複数形成した
ものとなり、しかも各ビームの波長は同期している。
In the embodiment shown in FIG. 6, (31
0) It is also possible to manufacture a semiconductor laser in which p-type ohmic electrodes are provided separately in the number of (320) light emitting parts and each is connected to a (308) contact layer. In this case, a plurality of light emitting portions are formed on the same substrate, each of which can independently turn ON, OFF, and modulate a circular beam, and the wavelengths of the beams are synchronized.

【0061】また、本発明の面発光型半導体レーザの応
用範囲は、プリンタ、複写機等の印刷装置のみならず、
ファクシミリ、ディスプレイにても全く同様な効果を有
することは言うまでない。
Furthermore, the scope of application of the surface-emitting semiconductor laser of the present invention is not limited to printing devices such as printers and copying machines.
Needless to say, facsimiles and displays have exactly the same effect.

【0062】[0062]

【発明の効果】以上説明したように、本発明に係る面発
光型半導体レーザによれば、共振器を構成する柱状半導
体層の周囲を高抵抗のII−VI族化合物半導体エピタ
キシャル層で埋め込んでいるため、この埋込み層への注
入電流のもれは生じず、極めて有効な電流狭窄が達成さ
れる。そして、無効電流を低減できるので、しきい値電
流を下げることが可能となる。結果として、発熱の少な
い面発光型半導体レーザを実現でき、常温にて連続発振
が可能となる実用性の高い面発光型半導体レーザを提供
できる。また、この埋込み層は多層構造でないので容易
に形成でき、再現性も良好となる。
[Effects of the Invention] As explained above, according to the surface-emitting semiconductor laser according to the present invention, the periphery of the columnar semiconductor layer constituting the resonator is embedded with a high-resistance II-VI group compound semiconductor epitaxial layer. Therefore, the current injected into the buried layer does not leak, and extremely effective current confinement is achieved. Since the reactive current can be reduced, the threshold current can be lowered. As a result, it is possible to realize a surface-emitting semiconductor laser that generates less heat, and to provide a highly practical surface-emitting semiconductor laser that is capable of continuous oscillation at room temperature. Further, since this buried layer does not have a multilayer structure, it can be easily formed and the reproducibility is also good.

【0063】本発明に係る製造方法によれば、本発明に
係る面発光型半導体レーザのII−VI族化合物による
埋込み層を気相成長により形成しているので、柱状半導
体層を変形,破損させることがなく、歩留まりを向上さ
せることができる。
According to the manufacturing method of the present invention, since the buried layer of the II-VI group compound of the surface-emitting semiconductor laser of the present invention is formed by vapor phase growth, there is no need to deform or damage the columnar semiconductor layer. Therefore, the yield can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例における半導体レーザの発光
部の断面を示す斜視図である。
FIG. 1 is a perspective view showing a cross section of a light emitting part of a semiconductor laser in an embodiment of the present invention.

【図2】(a)〜(e)は図1の半導体レーザの製造工
程を示す断面図である。
2A to 2E are cross-sectional views showing the manufacturing process of the semiconductor laser of FIG. 1;

【図3】図1の半導体レーザの駆動電流と発振光出力の
関係を示す図である。
FIG. 3 is a diagram showing the relationship between drive current and oscillation light output of the semiconductor laser in FIG. 1;

【図4】本発明の他の実施例における半導体レーザの発
光部の断面を示す斜視図である。
FIG. 4 is a perspective view showing a cross section of a light emitting part of a semiconductor laser in another embodiment of the present invention.

【図5】(a)〜(e)は図4の半導体レーザの製造工
程を示す断面図である。
5A to 5E are cross-sectional views showing the manufacturing process of the semiconductor laser of FIG. 4;

【図6】本発明の実施例における位相同期型の面発光型
半導体レーザの発光部の断面を示す概略図である。
FIG. 6 is a schematic diagram showing a cross section of a light emitting part of a phase-locked surface-emitting semiconductor laser according to an embodiment of the present invention.

【図7】(a)〜(f)は図6の半導体レーザの製造工
程を示す断面図である。
7A to 7F are cross-sectional views showing the manufacturing process of the semiconductor laser of FIG. 6;

【図8】従来の面発光型半導体レーザと図6半導体レー
ザの形状の違いと発光近視野像の違いを示した図であり
、同図(a)は従来の面発光型半導体レーザの光が出射
される側の形状を示しており、同図(b)は同図(a)
に示した半導体レーザの発光遠視野像の強度分布を示す
。同図(c)は本実施例に於ける半導体レーザの光が出
射される側の形状の一例を示しており、同図(d)は同
図(c)に示した半導体レーザの発光遠視野像の強度分
布を示すである。
FIG. 8 is a diagram showing the difference in shape and near-field image of light emission between a conventional surface-emitting semiconductor laser and the semiconductor laser in FIG. The figure shows the shape of the emitted side, and figure (b) is similar to figure (a).
The intensity distribution of the emission far-field image of the semiconductor laser shown in FIG. Figure (c) shows an example of the shape of the light emitting side of the semiconductor laser in this example, and Figure (d) shows the far field of light emission of the semiconductor laser shown in Figure (c). This shows the intensity distribution of the image.

【図9】(a)〜(m)は、本発明の別の実施例におけ
る位相同期型の面発光型半導体半導体レーザの光が出射
される側の形状を示す概略図である。
FIGS. 9A to 9M are schematic diagrams showing the shape of the light emitting side of a phase-locked surface-emitting semiconductor laser according to another embodiment of the present invention.

【図10】(a)〜(d)は、本発明の別の実施例に於
ける位相同期型の面発光型半導体レーザの光が出射され
る側の形状を示す概略図である。
FIGS. 10(a) to 10(d) are schematic diagrams showing the shape of the light emitting side of a phase-locked surface-emitting semiconductor laser in another embodiment of the present invention.

【図11】(a)〜(c)は、本発明の別の実施例に於
ける位相同期型の面発光型半導体レーザの光が出射され
る側の形状を示す概略図である。
FIGS. 11A to 11C are schematic diagrams showing the shape of the light emitting side of a phase-locked surface-emitting semiconductor laser in another embodiment of the present invention.

【図12】従来の面発光型半導体レーザの発光部を示す
斜視図である。
FIG. 12 is a perspective view showing a light emitting section of a conventional surface emitting semiconductor laser.

【符号の説明】[Explanation of symbols]

102,202,302  半導体基板106,206
,306  活性層 107,207,307  クラッド層108,208
,308  コンタクト層109,209,309  
II−VI族化合物半導体エピタキシャル層 111,211,311  光出射側反射鏡314  
分離溝 320  発光部
102, 202, 302 Semiconductor substrate 106, 206
, 306 Active layer 107, 207, 307 Cladding layer 108, 208
, 308 contact layer 109, 209, 309
II-VI group compound semiconductor epitaxial layer 111, 211, 311 Light exit side reflecting mirror 314
Separation groove 320 Light emitting part

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】  半導体基板に垂直な方向に光を出射す
る面発光型半導体レーザにおいて、反射率の異なる一対
の反射鏡とそれらの間の多層の半導体層とを有し、前記
半導体層のうちの少なくともクラッド層が1本又は複数
本の柱状に形成されている光共振器と、柱状の前記半導
体層の周囲に埋め込まれたII−VI族化合物半導体エ
ピタキシャル層と、を有することを特徴とする面発光型
半導体レーザ。
1. A surface-emitting semiconductor laser that emits light in a direction perpendicular to a semiconductor substrate, comprising a pair of reflecting mirrors with different reflectances and multiple semiconductor layers between them, wherein one of the semiconductor layers is an optical resonator in which at least one cladding layer is formed in the shape of one or more columns, and a group II-VI compound semiconductor epitaxial layer embedded around the columnar semiconductor layer. Surface-emitting semiconductor laser.
【請求項2】  請求項1において、前記II−VI族
化合物半導体エピタキシャル層は、II族元素であるZ
n,Cd,Hgと、VI族元素であるO,S,Se,T
eとを、2元素,3元素又は4元素組み合わせた半導体
エピタキシャル層であることを特徴とする面発光型半導
体レーザ。
2. In claim 1, the II-VI group compound semiconductor epitaxial layer comprises Z, which is a group II element.
n, Cd, Hg and group VI elements O, S, Se, T
A surface-emitting semiconductor laser characterized in that it is a semiconductor epitaxial layer in which e is a combination of two elements, three elements, or four elements.
【請求項3】  請求項1又は2において、前記II−
VI族化合物半導体エピタキシャル層の格子定数が、前
記柱状の半導体層の格子定数と一致していることを特徴
とする面発光型半導体レーザ。
3. In claim 1 or 2, the II-
1. A surface-emitting semiconductor laser, wherein a lattice constant of the Group VI compound semiconductor epitaxial layer matches a lattice constant of the columnar semiconductor layer.
【請求項4】  請求項1乃至3のいずれかにおいて、
前記柱状の半導体層の前記半導体基板と平行な断面が、
円、正多角形のいずれかであることを特徴とする面発光
型半導体レーザ。
[Claim 4] In any one of claims 1 to 3,
A cross section of the columnar semiconductor layer parallel to the semiconductor substrate is
A surface-emitting semiconductor laser characterized by being either circular or regular polygonal.
【請求項5】  請求項4において、前記柱状の半導体
層の前記半導体基板と平行な断面の直径、対角線の長さ
のいずれかが10μm以下であることを特徴とする面発
光型半導体レーザ。
5. The surface-emitting semiconductor laser according to claim 4, wherein either a diameter of a cross section parallel to the semiconductor substrate or a length of a diagonal line of the columnar semiconductor layer is 10 μm or less.
【請求項6】  請求項1乃至5のいずれかにおいて、
前記光共振器の光出射側の半導体コンタクト層の膜厚が
、3.0μm以下であることを特徴とする面発光型半導
体レーザ。
[Claim 6] In any one of claims 1 to 5,
A surface emitting semiconductor laser characterized in that the thickness of the semiconductor contact layer on the light emitting side of the optical resonator is 3.0 μm or less.
【請求項7】  請求項1乃至6のいずれかにおいて、
前記光共振器は、複数本の前記柱状の半導体層に分離す
る分離溝を有し、前記II−VI族化合物半導体エピタ
キシャル層が前記分離溝に埋込み形成されて、各柱状の
前記半導体層にそれぞれ発光部が形成され、前記光共振
器を構成する半導体層のうちの活性層には前記分離溝が
到達せず、各発光部での光の位相が同期していることを
特徴とする面発光型半導体レーザ。
[Claim 7] In any one of claims 1 to 6,
The optical resonator has a separation groove that separates the plurality of columnar semiconductor layers, and the II-VI group compound semiconductor epitaxial layer is embedded in the separation groove, and each of the columnar semiconductor layers has a separation groove. A surface emitting device characterized in that a light emitting section is formed, the separation groove does not reach an active layer of the semiconductor layers constituting the optical resonator, and the phase of light in each light emitting section is synchronized. type semiconductor laser.
【請求項8】  請求項7において、前記分離溝は、前
記半導体基板に対して垂直な溝であることを特徴とする
面発光型半導体レーザ。
8. The surface-emitting semiconductor laser according to claim 7, wherein the separation groove is a groove perpendicular to the semiconductor substrate.
【請求項9】  請求項7又は8において、前記分離溝
には、出射するレーザ光の波長に対して透明な前記II
−VI族化合物半導体エピタキシャル層が埋め込まれ、
光出射側の前記反射鏡は、複数本の前記柱状の各端面及
び前記分離溝に埋め込まれた前記II−VI族化合物半
導体エピタキシャル層と対向する領域に亘って形成され
ていることを特徴とする面発光型半導体レーザ。
9. In claim 7 or 8, the separation groove includes the II which is transparent to the wavelength of the emitted laser beam.
- a group VI compound semiconductor epitaxial layer is embedded;
The reflecting mirror on the light exit side is formed over a region facing each end face of the plurality of columnar shapes and the II-VI group compound semiconductor epitaxial layer embedded in the separation groove. Surface-emitting semiconductor laser.
【請求項10】  請求項9において、前記II−VI
族化合物半導体エピタキシャル層は、ZnSe、ZnS
、ZnSSe、ZnCdS、CdSSeのいずれかであ
ることを特徴とする面発光型半導体レーザ。
10. In claim 9, the II-VI
Group compound semiconductor epitaxial layer is ZnSe, ZnS
, ZnSSe, ZnCdS, or CdSSe.
【請求項11】  請求項7乃至10のいずれかにおい
て、前記分離溝の前記半導体基板と平行な断面の幅は、
0.5μm以上で10μm未満であることを特徴とする
面発光型半導体レーザ。
11. In any one of claims 7 to 10, the width of a cross section of the isolation trench parallel to the semiconductor substrate is:
A surface emitting semiconductor laser characterized in that the diameter is 0.5 μm or more and less than 10 μm.
【請求項12】  半導体基板に垂直な方向に光を出射
する面発光型半導体レーザの製造方法において、半導体
基板上に光共振器を構成する多層の半導体層を形成し、
前記半導体層上にフォトレジストマスクを形成し、半導
体層のうちの少なくともクラッド層を、前記フォトレジ
ストマスクを用いてエッチングして、1本又は複数本の
柱状の半導体層を形成し、前記柱状の半導体層の周囲に
、II−VI族化合物を用いた気相成長法によって埋込
み層を形成することを特徴とする面発光型半導体レーザ
の製造方法。
12. A method for manufacturing a surface-emitting semiconductor laser that emits light in a direction perpendicular to a semiconductor substrate, comprising: forming a multilayer semiconductor layer constituting an optical resonator on a semiconductor substrate;
A photoresist mask is formed on the semiconductor layer, at least a cladding layer of the semiconductor layer is etched using the photoresist mask to form one or more columnar semiconductor layers, and the columnar semiconductor layer is etched using the photoresist mask. 1. A method for manufacturing a surface emitting semiconductor laser, comprising forming a buried layer around a semiconductor layer by a vapor phase growth method using a II-VI group compound.
【請求項13】  請求項12において、前記II−V
I族化合物を用いた気相成長法の実施により、前記II
−VI族化合物がエピタキシャル成長してII−VI族
化合物半導体エピタキシャル層が形成されることを特徴
とする面発光型半導体レーザの製造方法。
13. In claim 12, the II-V
By implementing a vapor phase growth method using a Group I compound, the above II
- A method for manufacturing a surface emitting semiconductor laser, characterized in that a group VI compound is epitaxially grown to form a group II-VI compound semiconductor epitaxial layer.
【請求項14】  請求項12又は13において、前記
エッチング工程は前記クラッド層の一部を残して終了し
、その下層の活性層を露出させないことを特徴とする面
発光型半導体レーザの製造方法。
14. The method of manufacturing a surface emitting semiconductor laser according to claim 12 or 13, wherein the etching step is completed leaving a part of the cladding layer and does not expose an underlying active layer.
【請求項15】  請求項12乃至14のいずれかにお
いて、前記フォトレジストマスクは、露光されたフォト
レジスト層を反応性イオンエッチングすることで形成さ
れ、前記フォトレジストマスクの側面は前記半導体基板
に垂直であることを特徴とする面発光型半導体レーザの
製造方法。
15. In any one of claims 12 to 14, the photoresist mask is formed by reactive ion etching of an exposed photoresist layer, and the side surfaces of the photoresist mask are perpendicular to the semiconductor substrate. A method of manufacturing a surface emitting semiconductor laser, characterized in that:
【請求項16】  請求項15において、前記フォトレ
ジストマスクを用いて、前記柱状の半導体層を反応性イ
オンビームエッチングにより形成し、前記柱状半導体層
の側面が前記半導体基板に垂直であることを特徴とする
面発光型半導体レーザの製造方法。
16. The method according to claim 15, wherein the columnar semiconductor layer is formed by reactive ion beam etching using the photoresist mask, and a side surface of the columnar semiconductor layer is perpendicular to the semiconductor substrate. A method for manufacturing a surface-emitting semiconductor laser.
JP22415391A 1990-09-12 1991-09-04 Surface emitting semiconductor laser Expired - Lifetime JP3395194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22415391A JP3395194B2 (en) 1990-09-12 1991-09-04 Surface emitting semiconductor laser

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP24200090 1990-09-12
JP2-242000 1990-09-12
JP22415391A JP3395194B2 (en) 1990-09-12 1991-09-04 Surface emitting semiconductor laser

Publications (2)

Publication Number Publication Date
JPH04363081A true JPH04363081A (en) 1992-12-15
JP3395194B2 JP3395194B2 (en) 2003-04-07

Family

ID=26525877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22415391A Expired - Lifetime JP3395194B2 (en) 1990-09-12 1991-09-04 Surface emitting semiconductor laser

Country Status (1)

Country Link
JP (1) JP3395194B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5295148A (en) * 1990-09-12 1994-03-15 Seiko Epson Corporation Surface emission type semiconductor laser
US5317584A (en) * 1990-09-12 1994-05-31 Seiko Epson Corporation Surface emission type semiconductor laser
US5356832A (en) * 1990-09-12 1994-10-18 Seiko Epson Corporation Method of making surface emission type semiconductor laser
US5404369A (en) * 1990-09-12 1995-04-04 Seiko Epson Corporation Surface emission type semiconductor laser
US5436922A (en) * 1990-09-12 1995-07-25 Seiko Epson Corporation Surface emission type semiconductor laser
US5537666A (en) * 1990-09-12 1996-07-16 Seiko Epson Coropration Surface emission type semiconductor laser
JP2002164575A (en) * 2000-11-27 2002-06-07 Nichia Chem Ind Ltd Nitride semiconductor light emitting element
JP2002359432A (en) * 2001-03-27 2002-12-13 Fuji Xerox Co Ltd Surface emission type semiconductor laser and method for manufacturing the same
US6785476B1 (en) 1999-03-04 2004-08-31 Infineon Technologies Ag Transmission configuration
KR100472045B1 (en) * 2002-02-06 2005-03-08 주식회사 옵토웰 Method for fabricating vertical-cavity surface-emitting laser diode
JP2006253340A (en) * 2005-03-10 2006-09-21 Ricoh Co Ltd Surface emission laser element, manufacturing method thereof, surface emission laser array, electrophotographic system, optical communication system, and optical interconnection system
WO2018031582A1 (en) * 2016-08-08 2018-02-15 Finisar Corporation Etched planarized vcsel
JP2022058667A (en) * 2016-12-20 2022-04-12 ソニーグループ株式会社 Light emitting element
EP3930122A4 (en) * 2019-02-21 2022-11-30 Stanley Electric Co., Ltd. Vertical resonator-type light-emitting device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5317584A (en) * 1990-09-12 1994-05-31 Seiko Epson Corporation Surface emission type semiconductor laser
US5356832A (en) * 1990-09-12 1994-10-18 Seiko Epson Corporation Method of making surface emission type semiconductor laser
US5404369A (en) * 1990-09-12 1995-04-04 Seiko Epson Corporation Surface emission type semiconductor laser
US5436922A (en) * 1990-09-12 1995-07-25 Seiko Epson Corporation Surface emission type semiconductor laser
US5537666A (en) * 1990-09-12 1996-07-16 Seiko Epson Coropration Surface emission type semiconductor laser
US5587335A (en) * 1990-09-12 1996-12-24 Seiko Epson Corporation Method of making surface emission type semiconductor laser
US5295148A (en) * 1990-09-12 1994-03-15 Seiko Epson Corporation Surface emission type semiconductor laser
US6785476B1 (en) 1999-03-04 2004-08-31 Infineon Technologies Ag Transmission configuration
JP2002164575A (en) * 2000-11-27 2002-06-07 Nichia Chem Ind Ltd Nitride semiconductor light emitting element
JP2002359432A (en) * 2001-03-27 2002-12-13 Fuji Xerox Co Ltd Surface emission type semiconductor laser and method for manufacturing the same
KR100472045B1 (en) * 2002-02-06 2005-03-08 주식회사 옵토웰 Method for fabricating vertical-cavity surface-emitting laser diode
JP2006253340A (en) * 2005-03-10 2006-09-21 Ricoh Co Ltd Surface emission laser element, manufacturing method thereof, surface emission laser array, electrophotographic system, optical communication system, and optical interconnection system
WO2018031582A1 (en) * 2016-08-08 2018-02-15 Finisar Corporation Etched planarized vcsel
US10230215B2 (en) 2016-08-08 2019-03-12 Finisar Corporation Etched planarized VCSEL
JP2019525485A (en) * 2016-08-08 2019-09-05 フィニサー コーポレイション Etched planarization VCSEL
JP2022058667A (en) * 2016-12-20 2022-04-12 ソニーグループ株式会社 Light emitting element
US11611196B2 (en) 2016-12-20 2023-03-21 Sony Corporation Light emitting element
EP3930122A4 (en) * 2019-02-21 2022-11-30 Stanley Electric Co., Ltd. Vertical resonator-type light-emitting device

Also Published As

Publication number Publication date
JP3395194B2 (en) 2003-04-07

Similar Documents

Publication Publication Date Title
KR100210290B1 (en) Surface emitting type semiconductor laser
US5295148A (en) Surface emission type semiconductor laser
JPH04363081A (en) Surface emitting type semiconductor laser and manufacture thereof
US5587335A (en) Method of making surface emission type semiconductor laser
JP2628801B2 (en) Semiconductor laser structure
US5317584A (en) Surface emission type semiconductor laser
JP3206097B2 (en) Surface emitting semiconductor laser
US5404369A (en) Surface emission type semiconductor laser
JP3448939B2 (en) Surface emitting semiconductor laser
US5436922A (en) Surface emission type semiconductor laser
US5356832A (en) Method of making surface emission type semiconductor laser
JP3240636B2 (en) Surface emitting semiconductor laser
JP3666444B2 (en) Surface emitting semiconductor laser and manufacturing method thereof
JP3293221B2 (en) Surface emitting semiconductor laser and method of manufacturing the same
JPH04363082A (en) Surface emitting type semiconductor laser
KR100255695B1 (en) Semiconductor laser device and its manufacturing method
JP3358197B2 (en) Semiconductor laser
JP2751699B2 (en) Semiconductor laser
JP3245960B2 (en) Surface emitting semiconductor laser and method of manufacturing the same
KR100261249B1 (en) Semiconductor laser device and its manufacturing method
JP3468236B2 (en) Semiconductor laser
KR100287202B1 (en) Semiconductor laser device and manufacturing method thereof
KR100259006B1 (en) Manufacturing method of semiconductor laser device
KR100343203B1 (en) Semiconductor laser device
JPH0513879A (en) Semiconductor laser

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090207

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090207

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110207

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110207

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120207

Year of fee payment: 9

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120207

Year of fee payment: 9