JP3395194B2 - Surface emitting semiconductor laser - Google Patents

Surface emitting semiconductor laser

Info

Publication number
JP3395194B2
JP3395194B2 JP22415391A JP22415391A JP3395194B2 JP 3395194 B2 JP3395194 B2 JP 3395194B2 JP 22415391 A JP22415391 A JP 22415391A JP 22415391 A JP22415391 A JP 22415391A JP 3395194 B2 JP3395194 B2 JP 3395194B2
Authority
JP
Japan
Prior art keywords
semiconductor laser
layer
type
surface emitting
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22415391A
Other languages
Japanese (ja)
Other versions
JPH04363081A (en
Inventor
克己 森
達也 浅賀
英明 岩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP22415391A priority Critical patent/JP3395194B2/en
Publication of JPH04363081A publication Critical patent/JPH04363081A/en
Application granted granted Critical
Publication of JP3395194B2 publication Critical patent/JP3395194B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/18Semiconductor lasers with special structural design for influencing the near- or far-field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • H01S5/18338Non-circular shape of the structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • H01S5/18369Structure of the reflectors, e.g. hybrid mirrors based on dielectric materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18386Details of the emission surface for influencing the near- or far-field, e.g. a grating on the surface
    • H01S5/18394Apertures, e.g. defined by the shape of the upper electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2211Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on II-VI materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2222Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties
    • H01S5/2224Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties semi-insulating semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • H01S5/4068Edge-emitting structures with lateral coupling by axially offset or by merging waveguides, e.g. Y-couplers

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、基板の垂直方向にレー
ザ光を発振する面発光型半導体レーザおよびその製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface emitting semiconductor laser which oscillates laser light in a direction perpendicular to a substrate and a method for manufacturing the same.

【0002】[0002]

【従来の技術】基板の垂直方向に共振器を持つ面発光レ
ーザは、第50回応用物理学会学術講演会の講演予稿集
第3分冊p.909 29a−ZG−7(1989年9月
27日発行)に開示されている。この従来技術によれ
ば、図12に示すように、先ず、(602)n型GaA
s基板に(603)n型AlGaAs/AlAs多層
膜、(604)n型AlGaAsクラッド層、(60
5)p型GaAs活性層、(606)p型AlGaAs
クラッド層を順次成長させて形成している。その後、円
柱状の領域を残してエッチングし、(607)p型、
(608)n型、(609)p型、(610)p型の順
にAlGaAsを液相成長させて形成し、円柱状領域の
周囲を埋め込む。しかる後、(610)p型AlGaA
sキャップ層の上部に(611)誘電体多層膜を蒸着
し、(612)p型オーミック電極、(601)n型オ
ーミック電極を形成することで、面発光型半導体レーザ
を構成している。 このように、従来技術では活性層以
外の部分に電流が流れるのを防ぐ手段として、埋込み層
に(607−608)から成るp−n接合を設けてい
る。
2. Description of the Related Art A surface emitting laser having a resonator in a direction perpendicular to a substrate is described in Proceedings of the 50th Academic Meeting of the Society of Applied Physics, 3rd volume, p. 9029a-ZG-7 (issued September 27, 1989). According to this conventional technique, as shown in FIG. 12, first, (602) n-type GaA
(603) n-type AlGaAs / AlAs multilayer film, (604) n-type AlGaAs cladding layer, (60)
5) p-type GaAs active layer, (606) p-type AlGaAs
The clad layer is formed by sequentially growing it. After that, etching is performed leaving the columnar region, and (607) p-type,
(608) n-type, (609) p-type, (610) p-type are formed in this order by liquid phase growth of AlGaAs, and the periphery of the cylindrical region is buried. After that, (610) p-type AlGaA
A surface emitting semiconductor laser is formed by vapor-depositing a (611) dielectric multilayer film on the s cap layer to form a (612) p-type ohmic electrode and a (601) n-type ohmic electrode. As described above, in the conventional technique, the pn junction made of (607-608) is provided in the buried layer as a means for preventing the current from flowing to the portion other than the active layer.

【0003】[0003]

【発明が解決しようとする課題】しかし、このp−n接
合では十分な電流狭窄を得ることは難しく、完全には無
効電流を抑制できない。このため、従来技術では素子の
発熱に起因して、室温での連続発振駆動することが困難
であり、実用性に欠けている。従って、無効電流の抑制
は、面発光型半導体レーザにおいて重要な課題である。
However, it is difficult to obtain sufficient current confinement in this pn junction, and the reactive current cannot be completely suppressed. Therefore, in the conventional technique, it is difficult to drive the continuous oscillation at room temperature due to the heat generation of the element, which is not practical. Therefore, suppression of the reactive current is an important issue in the surface emitting semiconductor laser.

【0004】また埋込み層を、従来のようにp−n接合
を形成するための多層構造にした場合、埋込み層のp−
n界面の位置は、円柱状に残した各成長層の界面位置を
考慮する必要がある。従って、多層構造の各埋込み成長
層の膜厚制御が難しく、再現性良く面発光型半導体レー
ザを製造することは極めて困難である。
Further, when the buried layer has a multi-layer structure for forming a pn junction as in the conventional case, the buried layer p-
Regarding the position of the n-interface, it is necessary to consider the interface position of each growth layer left in a cylindrical shape. Therefore, it is difficult to control the film thickness of each embedded growth layer having a multilayer structure, and it is extremely difficult to manufacture a surface-emitting type semiconductor laser with good reproducibility.

【0005】また、従来技術のように液相成長により円
柱の周囲に埋込み層を形成すると円柱部分が折れてしま
う危険性が高く、歩留まりが悪く、特性の改善が構造上
の原因から制約されてしまう。
Further, when a buried layer is formed around a cylinder by liquid phase growth as in the prior art, there is a high risk that the cylinder part will be broken, the yield is poor, and the improvement of characteristics is restricted due to structural reasons. I will end up.

【0006】さらに従来技術では、レーザプリンタなど
のディバイスに応用する場合にも種々の課題を有する。
Further, the prior art has various problems when applied to devices such as laser printers.

【0007】レーザープリンタなどでは、光源に使用す
る発光源(半導体レーザなど)の発光スポットサイズが
数10μmと大きく、かつ発光強度が強い発光素子を使
用すると、光学系の簡素化や光路長を短くできることな
ど設計に自由度が増える。
In a laser printer or the like, when a light-emitting spot size of a light-emitting source (semiconductor laser or the like) used as a light source is as large as several tens of μm and a light-emitting element having a strong light emission intensity is used, the optical system is simplified and the optical path length is shortened. More freedom in designing things you can do.

【0008】従来技術を用いた面発光型半導体レーザ1
素子の場合には、光共振器全体を共振器よりも低屈折率
の材料で回りを埋め込んでいるため、光はおもに垂直方
向に導波され、基本発振モードでの発光スポットは水平
方向の共振器形状を変化させても直径2μm程度の点発
光となってしまう。
Surface-emitting type semiconductor laser 1 using conventional technology
In the case of an element, since the entire optical resonator is embedded with a material having a lower refractive index than the resonator, light is mainly guided in the vertical direction, and the light emission spot in the fundamental oscillation mode resonates in the horizontal direction. Even if the shape of the container is changed, point emission with a diameter of about 2 μm will occur.

【0009】そこで、これらの各発光点を2μm程度ま
で接近させ、複数の光源でスポットサイズを大きくしよ
うと試みるが、従来技術では数μm間隔の共振器をLP
E成長で埋め込むことは、再現性、歩留まりなどの点か
ら非常に難しく、作製は困難である。また、数μm程度
まで接近させ共振器を埋め込んだとしても光の横方向の
漏れが少ないため、スポットを1つにすることはできな
い。
Therefore, it is attempted to bring these light emitting points close to each other by about 2 μm to increase the spot size with a plurality of light sources.
Embedding by E growth is extremely difficult in terms of reproducibility and yield, and is difficult to manufacture. Moreover, even if the resonator is embedded by approaching it to a distance of several μm, there is little light leakage in the lateral direction, so that one spot cannot be formed.

【0010】また、複数の発光スポットにより1つの光
束を持ったビームにし、発光強度を強くするには複数ス
ポットの各々のレーザ光の位相を同期させなければなら
ない。従来技術では複数のレーザ光の位相を同期させる
ためにレーザ光を互いに影響させる距離まで接近させて
作製するのは困難である。
Further, it is necessary to synchronize the phases of the laser beams of the plurality of spots in order to increase the light emission intensity by forming a beam having one luminous flux from the plurality of light emission spots. In the prior art, it is difficult to manufacture the laser beams in close proximity to each other so as to influence each other in order to synchronize the phases of the laser beams.

【0011】本発明はこのような課題を解決するもの
で、その目的とするところは、埋込み層の材質を改善す
ることで、完全な電流狭窄が可能な構造を有し、極めて
簡単に製造できる高効率の面発光半導体レーザ及びその
製造方法を提供するところにある。
The present invention solves such a problem. An object of the present invention is to improve the material of the burying layer so that it has a structure capable of complete current confinement and can be manufactured extremely easily. An object of the present invention is to provide a highly efficient surface emitting semiconductor laser and a manufacturing method thereof.

【0012】本発明の他の目的は、複数の発光部を近接
させることができ、各発光部からのレーザ光の位相を同
期させることができる面発光型半導体レーザ及びその製
造方法を提供することにある。
Another object of the present invention is to provide a surface-emitting type semiconductor laser capable of bringing a plurality of light emitting parts close to each other and synchronizing the phase of laser light from each light emitting part, and a method for manufacturing the same. It is in.

【0013】本発明の更に他の目的は、複数の発光部か
らの位相同期したレーザ光を一つの光束を持った光と
し、その発光スポットが大きく、レーザ光の放射角が狭
い面発光型半導体レーザ及びその製造方法を提供すると
ころにある。
Still another object of the present invention is to use a phase-synchronized laser beam from a plurality of light emitting sections as a beam of light having a single luminous flux, a large emission spot, and a narrow emission angle of the laser beam. A laser and a manufacturing method thereof are provided.

【0014】[0014]

【課題を解決するための手段】本発明の第1の面発光型
半導体レーザは、半導体基板と、前記半導体基板の上方
に形成された下部反射鏡と、前記下部反射鏡の上方に形
成された下部クラッド層と、前記下部クラッド層の上方
に形成された活性層と、前記活性層の上方に形成され上
部に柱状部を有する上部クラッド層と、を含む光共振器
と、前記柱状部の上方に形成された上部反射鏡と、を含
み、前記光共振器には、前記柱状部を分割しかつ前記活
性層には達しない分離溝が形成されてなり、前記上部反
射鏡は、少なくとも前記分離溝の上に形成されているこ
とを特徴とする。
A first surface-emitting type semiconductor laser of the present invention includes a semiconductor substrate, a lower reflecting mirror formed above the semiconductor substrate, and a lower reflecting mirror formed above the lower reflecting mirror. An optical resonator including a lower clad layer, an active layer formed above the lower clad layer, and an upper clad layer formed above the active layer and having a columnar portion in the upper part, and above the columnar portion. An upper reflection mirror formed on the optical resonator, and a separation groove that divides the columnar portion and does not reach the active layer is formed in the optical resonator. It is characterized in that it is formed on the groove.

【0015】上記の面発光型半導体レーザにおいて、前
記分離溝の幅が5μm以下であることが好ましい。ま
た、前記複数の発光部は、前記半導体基板と平行な断面
の形状が、円形または正多角形のいずれかであり、前記
円形の直径あるいは前記正多角形の対角線のいずれか
が、10μm未満であることが好ましい。さらに、前記
コンタクト層の膜厚が、3.0μm以下であることが好
ましい。前記柱状部のそれぞれに対応して、光出射部と
なる領域を有することが好ましい。前記柱状部の周囲に
II−VI族化合物半導体のエピタキシャル層が形成されて
いることが好ましい。
In the above surface emitting semiconductor laser, it is preferable that the width of the separation groove is 5 μm or less. In addition, the plurality of light emitting units have a cross-sectional shape parallel to the semiconductor substrate, which is either a circle or a regular polygon, and a diameter of the circle or a diagonal line of the regular polygon is less than 10 μm. Preferably there is. Further, the thickness of the contact layer is preferably 3.0 μm or less. It is preferable that each of the columnar portions has a region serving as a light emitting portion. Around the column
It is preferable that an epitaxial layer of a II-VI group compound semiconductor is formed.

【0016】II−VI族化合物半導体エピタキシャル層は
高抵抗であるため、この高抵抗層で形成された埋込み層
への注入電流のもれは生じず、極めて有効な電流狭窄が
達成される。そして、無効電流を低減できるので、しき
い値電流を下げることが可能となる。結果として、発熱
の少ない面発光型半導体レーザを実現でき、常温にて連
続発振が可能となる実用性の高い面発光型半導体レーザ
を提供できる。また、この埋込み層は多層構造でないの
で容易に形成でき、再現性も良好となる。さらに、II−
VI族化合物半導体エピタキシャル層は液相成長以外の方
法例えば気相成長にて形成でき、柱状半導体層を歩留ま
り良く形成できる。しかも、気相成長等を用いれば、埋
込み幅が狭くても確実に埋込み層を形成できるため、複
数本の柱状半導体層を近接配置できる効果がある。
Since the II-VI group compound semiconductor epitaxial layer has a high resistance, leakage of the injection current into the buried layer formed of this high resistance layer does not occur, and extremely effective current confinement is achieved. Since the reactive current can be reduced, the threshold current can be reduced. As a result, it is possible to realize a surface-emitting type semiconductor laser with less heat generation, and to provide a highly practical surface-emitting type semiconductor laser capable of continuous oscillation at room temperature. Further, since this buried layer does not have a multi-layer structure, it can be easily formed and the reproducibility is also good. In addition, II-
The Group VI compound semiconductor epitaxial layer can be formed by a method other than liquid phase growth, for example, vapor phase growth, and columnar semiconductor layers can be formed with good yield. Moreover, by using vapor phase growth or the like, the buried layer can be reliably formed even if the buried width is narrow, so that there is an effect that a plurality of columnar semiconductor layers can be arranged close to each other.

【0017】本発明の第5の面発光型半導体レーザのよ
うに、光共振器の光出射側の半導体コンタクト層の膜厚
が、3.0μm以下であると、コンタクト層での光吸収
を低減できる。
Like the fifth surface-emitting type semiconductor laser of the present invention, when the thickness of the semiconductor contact layer on the light emitting side of the optical resonator is 3.0 μm or less, light absorption in the contact layer is reduced. it can.

【0018】本発明の第3の面発光型半導体レーザのよ
うに、この柱状の半導体層の半導体基板と平行な断面
を、円、正多角形のいずれかとすると、きれいな円形の
スポットビームが得られる。また、本発明の第4の面発
光型半導体レーザのように、柱状の半導体層の半導体基
板と平行な断面の直径、対角線の長さのいずれかが10
μm以下であると、NFPのモードは0次基本モードと
なる。
As in the third surface-emitting type semiconductor laser of the present invention, if the cross section of the columnar semiconductor layer parallel to the semiconductor substrate is either a circle or a regular polygon, a clean circular spot beam can be obtained. . As in the fourth surface-emitting type semiconductor laser of the present invention, either the diameter of the cross section of the columnar semiconductor layer parallel to the semiconductor substrate or the length of the diagonal line is 10
When it is less than μm, the NFP mode becomes the 0th-order basic mode.

【0019】[0019]

【0020】[0020]

【0021】発光スポットを大きくする場合には、分離
溝に、出射するレーザ光の波長に対して透明なII−VI族
化合物半導体エピタキシャル層を埋め込む。さらに、光
出射側の反射鏡を、複数本の前記柱状の各端面及び前記
分離溝に埋め込まれたII−VI族化合物半導体エピタキシ
ャル層と対向する領域に亘って形成する。こうすると、
柱状の発光部に挾まれた領域も垂直共振器構造となり、
その領域にもれた光も有効にレーザ発振に寄与して発光
スポットが広がる。さらに、位相同期したレーザ光が重
ね合わされるため、光出力が増加し、放射角も小さくな
る。共振器の半導体層として一般に用いられているGa
Asレーザの場合、そのレーザ光の波長に対して透明な
II−VI族化合物半導体エピタキシャル層としては、Zn
Se、ZnS、ZnSSe、ZnCdS、CdSSeの
いずれかで構成できる。分離溝を、半導体基板に対して
垂直な溝とすると、屈折率段差を利用して、分離溝に斜
めに入射する光を全反射でき、光の閉じ込め効果が大き
くなる。また、分離溝の半導体基板と平行な断面の幅
を、0.5μm以上で10μm未満とすると、NFPか
ら測定される発振横モードの次数は、0次基本モードと
なる。
To increase the emission spot, the separation groove is filled with a II-VI group compound semiconductor epitaxial layer which is transparent to the wavelength of the emitted laser light. Further, the light emitting side reflecting mirror is formed over a region facing the II-VI group compound semiconductor epitaxial layer embedded in each of the plurality of columnar end faces and the separation groove. This way
The region sandwiched by the columnar light emitting parts also has a vertical resonator structure,
The light leaked into the area also effectively contributes to the laser oscillation and the light emission spot spreads. Further, since the phase-synchronized laser lights are superposed, the light output increases and the emission angle also decreases. Ga which is generally used as a semiconductor layer of a resonator
In the case of As laser, it is transparent to the wavelength of the laser light.
As the II-VI group compound semiconductor epitaxial layer, Zn
It can be composed of any one of Se, ZnS, ZnSSe, ZnCdS, and CdSSe. When the separation groove is a groove that is perpendicular to the semiconductor substrate, the light that obliquely enters the separation groove can be totally reflected by utilizing the refractive index step, and the light confinement effect becomes large. If the width of the cross section of the separation groove parallel to the semiconductor substrate is 0.5 μm or more and less than 10 μm, the order of the oscillation transverse mode measured from the NFP is the 0th fundamental mode.

【0022】[0022]

【0023】[0023]

【0024】[0024]

【0025】[0025]

【実施例】図1は本発明の実施例における半導体レーザ
(100)の発光部の断面を示す斜視図で、図2は本発
明の実施例における半導体レーザの製造工程を示す断面
図である。
1 is a perspective view showing a cross section of a light emitting portion of a semiconductor laser (100) in an embodiment of the present invention, and FIG. 2 is a cross sectional view showing a manufacturing process of a semiconductor laser in an embodiment of the present invention.

【0026】(102)n型GaAs基板に、(10
3)n型GaAsバッファ層を形成し、n型Al0.7
0.3 As層とn型Al0.1 Ga0.9 As層からなり波
長870nm付近の光に対し98%以上の反射率を持つ
30ペアの(104)分布反射型多層膜ミラーを形成す
る。さらに、(105)n型Al0.4 Ga0.6 Asクラ
ッド層、(106)p型GaAs活性層、(107)p
型Al0.4 Ga0.6 Asクラッド層、(108)p型A
0.1 Ga0.9 Asコンタクト層を順次MOCVD法で
エピタキシャル成長する(図2(a))。この時例え
ば、成長温度は700℃、成長圧力は150Torr
で、III 族原料にTMGa(トリメチルガリウム)、T
MAl(トリメチルアルミニウム)の有機金属を用い、
V族原料にAsH3 、n型ドーパントにH2 Se、p型
ドーパントにDEZn(ジエチルジンク)を用いた。
(102) n-type GaAs substrate, (10
3) An n-type GaAs buffer layer is formed, and n-type Al 0.7 G
30 pairs of (104) distributed reflection type multilayer film mirrors each having a reflectance of 98% or more with respect to light having a wavelength of about 870 nm are formed from an a 0.3 As layer and an n-type Al 0.1 Ga 0.9 As layer. Further, (105) n-type Al 0.4 Ga 0.6 As cladding layer, (106) p-type GaAs active layer, (107) p
Type Al 0.4 Ga 0.6 As clad layer, (108) p-type A
l 0.1 Ga 0.9 As contact layer are successively epitaxially grown by MOCVD (FIG. 2 (a)). At this time, for example, the growth temperature is 700 ° C. and the growth pressure is 150 Torr.
Then, TMGa (trimethylgallium), T
Using an organic metal such as MAl (trimethylaluminum),
AsH 3 was used as the group V raw material, H 2 Se was used as the n-type dopant, and DEZn (diethyl zinc) was used as the p-type dopant.

【0027】成長後、表面に熱CVD法により(11
2)SiO2 層を形成した後、反応性イオンビームエッ
チング法(以下、RIBE法と記す)により、(11
3)ハードベイクレジストで覆われた円柱状の発光部を
残して、(107)p型Al0.4 Ga0.6 Asクラッド
層の途中までエッチングする(図2(b))。この際、
エッチングガスには塩素とアルゴンの混合ガスを用い、
ガス圧1×10-3Torr、引出し電圧400Vで行っ
た。ここで、(107)p型Al0.4 Ga0.6 Asクラ
ッド層の途中までしかエッチングしないのは、活性層の
水平方向の注入キャリアと光の閉じ込めを、リブ導波路
型の屈折率導波構造にするためである。
After the growth, the surface (11
2) After forming the SiO 2 layer, a reactive ion beam etching method (hereinafter referred to as RIBE method) is used to perform (11
3) The (107) p-type Al 0.4 Ga 0.6 As cladding layer is etched halfway, leaving the columnar light-emitting portion covered with the hard bake resist (FIG. 2B). On this occasion,
Using a mixed gas of chlorine and argon as the etching gas,
The gas pressure was 1 × 10 −3 Torr, and the extraction voltage was 400V. Here, the reason why the (107) p-type Al 0.4 Ga 0.6 As clad layer is etched only halfway is that the horizontal injection carrier and light confinement in the active layer are made into a rib waveguide type refractive index waveguide structure. This is because.

【0028】次に(113)レジストを取り除いた後、
MBE法あるいはMOCVD法などで、GaAsと格子
整合する(109)ZnS0.06Se0.94層を埋込み成長
する(図2(c))。
(113) After removing the resist,
A (109) ZnS 0.06 Se 0.94 layer lattice-matched with GaAs is buried and grown by the MBE method or MOCVD method (FIG. 2C).

【0029】さらに、表面に4ペアの(111)SiO
2 /α−Si誘電体多層膜を電子ビーム蒸着により形成
し、ウエットエッチングで、発光部の径よりやや小さい
領域を残して取り去る(図2(d))。波長870nm
での誘電体多層膜の反射率は94%である。
Further, 4 pairs of (111) SiO 2 are formed on the surface.
A 2 / α-Si dielectric multilayer film is formed by electron beam vapor deposition and removed by wet etching, leaving a region slightly smaller than the diameter of the light emitting portion (FIG. 2D). Wavelength 870nm
The reflectance of the dielectric multilayer film is 94%.

【0030】しかる後(111)誘電体多層膜以外の表
面に(110)p型オーミック電極を蒸着し、さらに基
板側に(101)n型オーミック電極を蒸着し、N2
囲気中で420℃でアロイングし、(100)面発光半
導体レーザを完成する(図2(e))。
Then, a (110) p-type ohmic electrode is vapor-deposited on the surface other than the (111) dielectric multilayer film, and a (101) n-type ohmic electrode is vapor-deposited on the substrate side at 420 ° C. in an N 2 atmosphere. By alloying, a (100) surface emitting semiconductor laser is completed (FIG. 2E).

【0031】このように作成した本実施例の面発光半導
体レーザは、埋込みに用いたZnS0.06Se0.94層が1
GΩ以上の抵抗を有し、埋込み層への注入電流のもれが
起こらないため、極めて有効な電流狭窄が達成される。
また埋込み層は多層構造にする必要がないため容易に成
長でき、バッチ間の再現性も高い。さらにGaAsに比
べ屈折率が十分小さいZnS0.06Se0.94層を用いたリ
ブ導波路構造により、より効果的な光の閉じ込めが実現
される。
In the surface emitting semiconductor laser of this example thus produced, the ZnS 0.06 Se 0.94 layer used for burying was one layer.
Since it has a resistance of GΩ or more and leakage of the injection current into the buried layer does not occur, extremely effective current confinement is achieved.
Further, since the embedded layer does not need to have a multi-layer structure, it can be easily grown and the reproducibility between batches is high. Further, the rib waveguide structure using a ZnS 0.06 Se 0.94 layer having a sufficiently smaller refractive index than GaAs realizes more effective light confinement.

【0032】図3は本発明の実施例の面発光半導体レー
ザの駆動電流と発振光出力の関係を示す図である。室温
において連続発振が達成され、しきい値1mAと極めて
低い値を得た。また外部微分量子効率も高く、無効電流
の抑制がレーザの特性向上に貢献している。
FIG. 3 is a diagram showing the relationship between the drive current and the oscillation light output of the surface emitting semiconductor laser according to the embodiment of the present invention. Continuous oscillation was achieved at room temperature, and an extremely low value of 1 mA was obtained. The external differential quantum efficiency is also high, and the suppression of reactive current contributes to the improvement of laser characteristics.

【0033】また本発明の実施例の面発光半導体レーザ
の柱状部分の断面形状において、その形状が円、または
正四角形、正八角形などの正多角形ではきれいな円のス
ポットビームになるが、それ以外の長方形、台形などで
は楕円もしくは多モードのビーム形状となってしまいデ
ィバイスへの応用上好ましくない。
In the cross-sectional shape of the columnar portion of the surface emitting semiconductor laser according to the embodiment of the present invention, if the shape is a circle or a regular polygon such as a regular quadrangle or a regular octagon, the spot beam becomes a clean circle, but otherwise. The rectangular shape, the trapezoidal shape, or the like has an elliptical shape or a multimode beam shape, which is not preferable for application to a device.

【0034】[0034]

【表1】 表1に本発明の実施例の面発光半導体レーザの円柱部分
の断面の直径の長さに対する近視野像の関係を示す。1
0μm未満で基本モードで発振するが、それ以上では、
1次以上のモードで発振した。
[Table 1] Table 1 shows the relationship between the near-field image and the diameter length of the cross section of the cylindrical portion of the surface emitting semiconductor laser of the example of the present invention. 1
It oscillates in the fundamental mode below 0 μm, but above that,
It oscillated in the first and higher modes.

【0035】本発明の実施例の面発光半導体レーザのコ
ンタクト層の膜厚に関しては、3.0μm以下とするも
のが良い。コンタクト層での光吸収を低減できるからで
ある。より好ましくは0.3μm以下が最適で、素子抵
抗が低く、外部微分量子効率も高い。
The thickness of the contact layer of the surface emitting semiconductor laser of the embodiment of the present invention is preferably 3.0 μm or less. This is because light absorption in the contact layer can be reduced. More preferably, 0.3 μm or less is optimal, the device resistance is low, and the external differential quantum efficiency is high.

【0036】図4は本発明の別の実施例における半導体
レーザ(200)の発光部の断面を示す斜視図で、図5
は本発明の別の実施例における半導体レーザ(200)
の製造工程を示す断面図である。
FIG. 4 is a perspective view showing a cross section of a light emitting portion of a semiconductor laser (200) according to another embodiment of the present invention.
Is a semiconductor laser (200) according to another embodiment of the present invention.
FIG. 6 is a cross-sectional view showing the manufacturing process of.

【0037】(202)n型GaAs基板に、(20
3)n型GaAsバッファ層を形成し、n型AlAs層
とn型Al0.1 Ga0.9 As層からなり波長870nm
付近の光に対し98%以上の反射率を持つ30ペアの
(204)分布反射型多層膜ミラーを形成する。さら
に、(205)n型Al0.4 Ga0.6 Asクラッド層、
(206)p型GaAs活性層、(207)p型Al
0.4 Ga0.6 Asクラッド層、(208)p型Al0.1
Ga0.9 Asコンタクト層を順次MOCVD法でエピタ
キシャル成長させる(図5(a))。この時例えば、成
長温度は700℃、成長圧力は150Torrで、III
族原料にTMGa(トリメチルガリウム),TMAl
(トリメチルアルミニウム)の有機金属を用い、V族原
料にAsH3 、n型ドーパントにH2Se、p型ドーパ
ントにDEZn(ジエチルジンク)を用いた。成長後、
表面に熱CVD法により(212)SiO2を形成した
後、反応性イオンビームエッチング法(以下、RIBE
法と記す)により、(213)ハードベイクレジストで
覆われた円柱状の発光部を残して(205)n型Al
0.4 Ga0.6 Asクラッド層の途中までエッチングする
(図5(b))。この際、エッチングガスには塩素とア
ルゴンの混合ガスを用い、ガス圧1×10-3Torr、
引出し電圧400Vで行った。
(202) n-type GaAs substrate, (20
3) An n-type GaAs buffer layer is formed and is composed of an n-type AlAs layer and an n-type Al 0.1 Ga 0.9 As layer and has a wavelength of 870 nm.
30 pairs of (204) distributed reflection type multilayer film mirrors having a reflectance of 98% or more with respect to nearby light are formed. Further, a (205) n-type Al 0.4 Ga 0.6 As clad layer,
(206) p-type GaAs active layer, (207) p-type Al
0.4 Ga 0.6 As clad layer, (208) p-type Al 0.1
A Ga 0.9 As contact layer is sequentially epitaxially grown by MOCVD (FIG. 5A). At this time, for example, the growth temperature is 700 ° C., the growth pressure is 150 Torr, and III
TMGa (trimethylgallium) and TMAl as group materials
An organic metal (trimethylaluminum) was used, AsH 3 was used as a group V raw material, H 2 Se was used as an n-type dopant, and DEZn (diethyl zinc) was used as a p-type dopant. After growth,
After forming (212) SiO 2 on the surface by thermal CVD method, reactive ion beam etching method (hereinafter, RIBE
(213) n-type Al by leaving (213) a cylindrical light emitting portion covered with a hard bake resist.
Etching is performed up to the middle of the 0.4 Ga 0.6 As clad layer (FIG. 5B). At this time, a mixed gas of chlorine and argon was used as the etching gas, and the gas pressure was 1 × 10 −3 Torr,
The extraction voltage was 400V.

【0038】次に(213)レジストを取り除いた後、
MBE法あるいはMOCVD法などで、(209)Zn
0.06Se0.94層を埋込み成長する(図5(c))。
(213) After removing the resist,
(209) Zn by MBE method or MOCVD method
A S 0.06 Se 0.94 layer is embedded and grown (FIG. 5C).

【0039】さらに、表面に4ペアの(211)SiO
2 /α−Si誘電体多層膜を電子ビーム蒸着により形成
し、ウェットエッチングで、発光部の径よりやや小さい
領域を残して取り去る(図5(d))。波長870nm
での誘電体多層膜の反射率は94%である。
Furthermore, 4 pairs of (211) SiO 2 are formed on the surface.
A 2 / α-Si dielectric multilayer film is formed by electron beam evaporation, and is removed by wet etching, leaving a region slightly smaller than the diameter of the light emitting portion (FIG. 5D). Wavelength 870nm
The reflectance of the dielectric multilayer film is 94%.

【0040】しかる後(211)誘電体多層膜以外の表
面に(210)p型オーミック電極を蒸着し、さらに基
板側に(201)n型オーミック電極を蒸着し、N2
囲気中で420℃でアロイングし、面発光半導体レーザ
を完成する(図5(e))。
After that, a (210) p-type ohmic electrode is vapor-deposited on the surface other than the (211) dielectric multilayer film, and a (201) n-type ohmic electrode is vapor-deposited on the substrate side at 420 ° C. in an N 2 atmosphere. By alloying, a surface emitting semiconductor laser is completed (FIG. 5E).

【0041】このように作成した本実施例の面発光半導
体レーザは、埋込みに用いたZnS0.06Se0.94層が1
GΩ以上の抵抗を有し、埋込み層への注入電流のもれが
起こらないため、極めて有効な電流狭窄が達成される。
また埋込み層は多層構造にする必要がないため容易に成
長でき、バッチ間の再現性も高い。さらにGaAsに比
べ屈折率が十分小さいZnS0.06Se0.94層を用い、活
性層を埋め込んだ埋込み型の屈折率導波路構造により、
より効果的な光の閉じ込めが実現される。
In the surface emitting semiconductor laser of this example thus produced, the ZnS 0.06 Se 0.94 layer used for the burying was one layer.
Since it has a resistance of GΩ or more and leakage of the injection current into the buried layer does not occur, extremely effective current confinement is achieved.
Further, since the embedded layer does not need to have a multi-layer structure, it can be easily grown and the reproducibility between batches is high. Furthermore, by using a ZnS 0.06 Se 0.94 layer whose refractive index is sufficiently smaller than that of GaAs and using an embedded refractive index waveguide structure in which an active layer is embedded,
More effective light confinement is realized.

【0042】また本発明の実施例では、活性層をGaA
sとしたが、AlGaAsでも同様の効果が得られる。
さらにその他のIII −V族化合物半導体を柱状部に用い
た場合でも、適当なII−VI族化合物半導体を埋込み層に
選ぶことにより同様の効果が得られる。
In the embodiment of the present invention, the active layer is made of GaA.
However, similar effects can be obtained with AlGaAs.
Even when other III-V compound semiconductors are used for the columnar portion, the same effect can be obtained by selecting an appropriate II-VI compound semiconductor for the buried layer.

【0043】図6,図7は本発明の他の実施例を示し、
図6は発光スポットを拡大できる位相同期型半導体レー
ザ(300)の発光部の断面を示す概略図であり、図7
はその製造工程を示す断面図である。
FIGS. 6 and 7 show another embodiment of the present invention.
FIG. 6 is a schematic view showing a cross section of a light emitting portion of a phase-locking type semiconductor laser (300) capable of enlarging a light emitting spot.
FIG. 6A is a cross-sectional view showing the manufacturing process.

【0044】(302)n型GaAs基板に、(30
3)n型GaAsバッファ層を形成し、n型Al0.9
0.1 As層とn型Al0.2 Ga0.8 As層からなり波
長780nmを中心に±30nmの光に対して98%以
上の反射率を持つ25ペアの(304)半導体多層膜ミ
ラーを形成する。さらに、(305)n型Al0.5 Ga
0.5 Asクラッド層、(306)p型Al0.1 3Ga
0.87As活性層、(307)p型Al0.5 Ga0.5 As
クラッド層、(308)p型Al0.15Ga0.85Asコン
タクト層を順次MOCVD法でエピタキシャル成長する
(図7(a))。この時の成長条件は、例えば成長温度
は720℃、成長圧力は150Torrで行い、III 族
原料にTMGa(トリメチルガリウム)、TMAl(ト
リメチルアルミニウム)の有機金属を用い、V族原料に
はAsH3 、n型ドーパントにH2 Se、p型ドーパン
トにDEZn(ジエチルジンク)を用いた。
On the (302) n-type GaAs substrate, (30
3) An n-type GaAs buffer layer is formed, and n-type Al 0.9 G
A 25-pair (304) semiconductor multilayer mirror having a reflectance of 98% or more with respect to light of ± 30 nm centered at a wavelength of 780 nm is formed of an a 0.1 As layer and an n-type Al 0.2 Ga 0.8 As layer. Furthermore, (305) n-type Al 0.5 Ga
0.5 As clad layer, (306) p-type Al 0.1 3 Ga
0.87 As active layer, (307) p-type Al 0.5 Ga 0.5 As
A clad layer and a (308) p-type Al 0.15 Ga 0.85 As contact layer are sequentially epitaxially grown by MOCVD (FIG. 7A). The growth conditions at this time are, for example, a growth temperature of 720 ° C. and a growth pressure of 150 Torr, using TMGa (trimethylgallium) and TMAl (trimethylaluminum) organic metals as the group III source, and AsH 3 as the group V source. H 2 Se was used as the n-type dopant, and DEZn (diethyl zinc) was used as the p-type dopant.

【0045】成長後、表面に常圧熱CVD法により(3
12)SiO2 層を形成し、さらにその上にフォトレジ
ストを塗布し、高温で焼きしめて(313)ハードベー
クレジストを形成する。さらにこのハードベークレジス
ト上にEB蒸着法によりSiO2 層を形成する。
After the growth, the surface (3
12) A SiO 2 layer is formed, a photoresist is further applied thereon, and baked at a high temperature (313) to form a hard bake resist. Further, a SiO 2 layer is formed on this hard bake resist by the EB vapor deposition method.

【0046】次に反応性イオンエッチング法(以下、R
IE法と記す)を用いて、基板上に形成した各層をエッ
チングする。初めに(313)ハードベークレジスト上
に形成したSiO2 層上に通常用いられるフォトリソグ
ラフィー工程を施し、必要なレジストパターンを形成
し、このパターンをマスクとしてRIE法によりSiO
2 層をエッチングする。例えば、CF4 ガスを用いて、
ガス圧4.5Pa、入力RFパワー150W、サンプル
ホルダーを20℃にコントロールしてRIEを実施す
る。次にこのSiO2 層をマスクにして、RIE法によ
り(313)ハードベークレジストをエッチングする。
例えば、O2 ガスを用いて、ガス圧4.5Pa、入力パ
ワー150W、サンプルホルダーを20℃にコントロー
ルしてRIEを実施する。この時SiO2 層上に初めに
形成したレジストパターンも同時にエッチングされる。
次にパターン状に残っているSiO2 層とエピタキシャ
ル層上に形成した(312)SiO2 層を同時にエッチ
ングするために再びCF4 ガスを用いてエッチングを行
う。以上のように薄いSiO2 層をマスクにして、ドラ
イエッチングの1方法であるRIE法を(313)ハー
ドベークレジストに用いることにより、必要なパターン
形状を持ちながら、さらに基板に対して垂直な側面を持
った(313)ハードベークレジストが作成できる(図
7(b))。
Next, the reactive ion etching method (hereinafter, R
Each layer formed on the substrate is etched by using the IE method). First, (313) the SiO 2 layer formed on the hard bake resist is subjected to a photolithography process which is usually used to form a necessary resist pattern, and this pattern is used as a mask to form a SiO film by RIE.
Etch two layers. For example, using CF 4 gas,
RIE is performed by controlling the gas pressure at 4.5 Pa, the input RF power at 150 W, and the sample holder at 20 ° C. Then, using this SiO 2 layer as a mask, the (313) hard bake resist is etched by the RIE method.
For example, RIE is performed by using O 2 gas and controlling the gas pressure at 4.5 Pa, the input power at 150 W, and the sample holder at 20 ° C. At this time, the resist pattern initially formed on the SiO 2 layer is simultaneously etched.
Next, in order to simultaneously etch the pattern-remaining SiO 2 layer and the (312) SiO 2 layer formed on the epitaxial layer, etching is performed again using CF 4 gas. By using the RIE method, which is one method of dry etching, as the hard bake resist using the thin SiO 2 layer as a mask as described above, the side surface perpendicular to the substrate while having the required pattern shape is obtained. A hard bake resist having (313) can be created (FIG. 7B).

【0047】この垂直な側面を持った(313)ハード
ベークレジストをマスクにして、反応性イオンビームエ
ッチング法(以下、RIBE法と記す)を用いて、柱状
の発光部を残して(307)p型Al0.5 Ga0.5 As
クラッド層の途中までエッチングを行う(図7
(c))。この際、エッチングガスには例えば塩素とア
ルゴンの混合ガスを用い、ガス圧力5×10-4Tor
r、プラズマ引出し電圧400V、エッチング試料上で
のイオン電流密度400μA/cm2 、サンプルホルダ
ーを20℃に保って行った。ここで、(307)p型A
0.5 Ga0.5 Asクラッド層の途中までしかエッチン
グしないのは、活性層の水平方向の注入キャリアと光の
閉じ込めを、屈折率導波型のリブ導波路構造にして、活
性層内の光の一部を活性層水平方向に伝達できるように
するためである。
Using the (313) hard bake resist having the vertical side faces as a mask, a reactive ion beam etching method (hereinafter referred to as RIBE method) is used to leave a columnar light emitting portion (307) p. Type Al 0.5 Ga 0.5 As
Etching is performed up to the middle of the clad layer (Fig. 7).
(C)). At this time, a mixed gas of chlorine and argon is used as an etching gas, and the gas pressure is 5 × 10 −4 Tor.
r, the plasma extraction voltage was 400 V, the ion current density was 400 μA / cm 2 on the etched sample, and the sample holder was kept at 20 ° C. Where (307) p-type A
The reason why the l 0.5 Ga 0.5 As clad layer is etched only halfway is that the confinement of carriers and light in the horizontal direction of the active layer is made to be a refractive index waveguide type rib waveguide structure so that light in the active layer This is so that the parts can be transmitted in the horizontal direction of the active layer.

【0048】また、垂直な側面を持った(313)ハー
ドベークレジストとエッチング試料に対して垂直にイオ
ンをビーム状に照射してエッチングを行うRIBE法を
用いることにより、近接した(320)発光部を基板に
垂直な(314)分離溝で分離できると共に、面発光型
半導体レーザの特性向上に必要な垂直光共振器の作成が
可能となっている。
Further, by using the (313) hard bake resist having a vertical side surface and the RIBE method in which the etching is performed by vertically irradiating the etching sample with ions in the form of a beam, the (320) light-emitting portion located close to the hard baking resist is etched. Can be separated by a (314) separation groove perpendicular to the substrate, and a vertical optical resonator necessary for improving the characteristics of the surface-emitting type semiconductor laser can be manufactured.

【0049】次に(313)ハードベークレジストを取
り除いた後、MBE法あるいはMOCVD法などで、A
0.5 Ga0.5 Asに格子整合するII−VI族化合物半導
体エピタキシャル層としての(309)ZnS0.06Se
0.94層を埋込み成長する(図7(d))。この(30
9)層は、(300)面発光型半導体レーザの発振波長
に対して透明である。
Next, (313) after removing the hard bake resist, A is formed by the MBE method or the MOCVD method.
(309) ZnS 0.06 Se as a II-VI group compound semiconductor epitaxial layer lattice-matched to l 0.5 Ga 0.5 As
0.94 layer is buried and grown (FIG. 7D). This (30
The layer 9) is transparent to the oscillation wavelength of the (300) surface-emitting type semiconductor laser.

【0050】さらに、(312)SiO2 層とその上に
できた多結晶状のZnSSeを取り除いた後、表面に4
ペアの(311)SiO2 /a−Si誘電体多層膜反射
鏡を電子ビーム蒸着により形成し、ドライエッチングを
用いて分離した(320)発光部の一部と、(320)
発光部で挟まれた埋込み層を残して取り去る(図7
(e))。波長780nmでの誘電体多層膜反射鏡の反
射率は、95%以上である。ZnSSeで埋め込んだ
(314)分離溝上にも(311)誘電体多層膜反射鏡
を作成することにより発光部に挟まれた領域も垂直共振
器構造が形成され、(314)分離溝にもれた光も有効
にレーザ発振に寄与し、また漏れた光を利用するため、
(320)発光部の位相に同期した発光となる。
Further, after removing the (312) SiO 2 layer and the polycrystalline ZnSSe formed thereon, 4
A pair of (311) SiO 2 / a-Si dielectric multilayer mirrors were formed by electron beam evaporation and separated by dry etching (320) and a part of the light emitting part, and (320)
The buried layer sandwiched between the light emitting parts is removed leaving (FIG. 7).
(E)). The reflectance of the dielectric multilayer film reflecting mirror at a wavelength of 780 nm is 95% or more. By forming a (311) dielectric multilayer reflector on the (314) isolation groove filled with ZnSSe, a vertical cavity structure is formed in the region sandwiched by the light emitting portions, and the (314) isolation groove is left. Light also contributes effectively to laser oscillation, and since leaked light is used,
(320) Light emission is synchronized with the phase of the light emitting unit.

【0051】しかる後に(311)誘電体多層膜反射鏡
以外の表面に(310)p型オーミック電極を蒸着し、
さらに基板側に(301)n型オーミック電極を蒸着
し、N2 雰囲気中で420℃でアロイングを行い、(3
00)面発光半導体レーザを完成する(図7(f))。
ここで、出射側の(310)n型オーミック電極は、各
(320)発光部の各(308)コンタクト層に導通す
るように形成される。
Then, (311) a (310) p-type ohmic electrode is vapor-deposited on the surface other than the dielectric multilayer film reflecting mirror,
Further, a (301) n-type ohmic electrode is vapor-deposited on the substrate side, and alloying is performed at 420 ° C. in an N 2 atmosphere.
(00) surface emitting semiconductor laser is completed (FIG. 7F).
Here, the (310) n-type ohmic electrode on the emission side is formed so as to be electrically connected to each (308) contact layer of each (320) light emitting portion.

【0052】この様に作製した本実施例の面発光型半導
体レーザは、(309)埋込み層にZnSSeエピタキ
シャル層を用いることにより、従来使用していたAlG
aAs層のp−nジャンクションの逆バイアスを使用す
る電流ブロック構造よりも高抵抗である1GΩ以上の抵
抗を有し、最適な電流ブロック構造を持つとともに、埋
込み層が発振波長780nmに対して吸収を持たない透
過材料であることから(320)発光部からの漏れ光を
有効に利用できるものとなっている。
In the surface-emitting type semiconductor laser of this example manufactured in this way, the (309) buried layer uses a ZnSSe epitaxial layer, so that the conventional AlG is used.
It has a resistance of 1 GΩ or more, which is higher than the current block structure using the reverse bias of the pn junction of the aAs layer, and has an optimum current block structure, and the buried layer absorbs the oscillation wavelength of 780 nm. Since it is a transparent material that does not have, it is possible to effectively use the leakage light from the (320) light emitting portion.

【0053】図8は、従来の面発光型半導体レーザと本
実施例の面発光型半導体レーザの光が出射される側の形
状とレーザ発振時のNFPの強度分布を示したものであ
る。図8(a)は、図12に示す従来の面発光型半導体
レーザ(600)の共振器(620)をn−p接合の
(607−608)GaAlAsエピタキシャル層
め込むことが可能な距離である5μm程度まで接近させ
た場合を示している。レーザの出射面には、誘電体多層
膜反射鏡とp型オーミック電極があるが、共振器の形状
を比較するために図では削除している。図8(b)は図
8(a)a−b間のNFP強度分布を示している。従来
の面発光型半導体レーザの発光部(620)を複数個、
埋め込み可能な距離まで接近させても発光スポットが複
数個現れるだけで、横方向の光の漏れが無いため、多峰
性のNFPとなり、1つの発光スポットにならない。
FIG. 8 shows the shapes of the conventional surface-emitting type semiconductor laser and the surface-emitting type semiconductor laser of this embodiment on the side where light is emitted and the NFP intensity distribution during laser oscillation. 8 (a) is that the writing resonator (620) to the n-p junction (607-608) <br/> Me embedded in GaAlAs epitaxial layer of a conventional surface emitting semiconductor laser shown in FIG. 12 (600) It shows a case where the distance is close to 5 μm which is a possible distance. The laser emitting surface has a dielectric multilayer mirror and a p-type ohmic electrode, but they are omitted in the figure for the purpose of comparing the shapes of the resonators. FIG. 8B shows the NFP intensity distribution between FIGS. 8A and 8B. A plurality of light emitting parts (620) of the conventional surface emitting semiconductor laser,
Even if they are brought close to the embeddable distance, only a plurality of light emission spots appear, and since there is no light leakage in the lateral direction, it becomes a multi-modal NFP and does not become one light emission spot.

【0054】図8(c)は本実施例の面発光型半導体レ
ーザの形状であり、分離溝を(309)Zn0.06Se
0.94層で埋め込んでおり、気相成長で埋め込むので分離
溝の最小幅は1μmである。図8(d)は図8(c)c
−d間のNFPである。(314)分離溝の上からも光
が出射されるので、発光点が広がることがNFPからわ
かる。さらに近接したレーザ光の位相が同期するので、
光出力が増加し、放射角も1°以下の円形ビームが得ら
れる。
FIG. 8C shows the shape of the surface-emitting type semiconductor laser of this embodiment, in which the separation groove is formed of (309) ZnS 0.06 Se.
The minimum width of the separation groove is 1 μm because it is embedded by 0.94 layer and is embedded by vapor phase growth. 8 (d) is shown in FIG. 8 (c) c.
It is NFP between -d. (314) Since light is emitted also from above the separation groove, it can be seen from the NFP that the light emitting point spreads. Since the phases of the laser beams that are closer together are synchronized,
A circular beam with an increased light output and an emission angle of 1 ° or less is obtained.

【0055】表2に実施例の(300)面発光型半導体
レーザの(314)分離溝の幅とNFPから測定される
発振横モード次数の関係を示す。
Table 2 shows the relationship between the width of the (314) separation groove of the (300) surface-emitting type semiconductor laser of the embodiment and the oscillation transverse mode order measured from NFP.

【0056】[0056]

【表2】 10μmより幅が狭いと位相同期したレーザの発振横モ
ードは基本モードで発振するが、それ以上では1次以上
の高次モードでレーザ発振し、放射角が広がったり、ビ
ーム形状が楕円形になるので、応用上好ましくない。ま
た、0.5μmより狭い分離溝では円形ビームが得られ
にくい傾向がある。
[Table 2] When the width is narrower than 10 μm, the phase-locked laser oscillation transverse mode oscillates in the fundamental mode, but above that, laser oscillation occurs in the higher-order modes higher than the first order, and the radiation angle widens or the beam shape becomes elliptical. Therefore, it is not preferable in application. In addition, a circular beam tends to be difficult to obtain with a separation groove narrower than 0.5 μm.

【0057】上述の実施例では、複数の発光部を分離し
て設けた一つの光共振器を有する半導体レーザについて
説明したが、このような光共振器を同一半導体基板上に
複数形成することもできる。そして、各光共振器毎に光
出射側のp型オーミック電極をそれぞれ独立して設けれ
ば、各光共振器からのレーザビームを、それぞれ独立し
てON,OFF,変調可能となる。
In the above-mentioned embodiment, the semiconductor laser having one optical resonator in which a plurality of light emitting portions are separately provided has been described, but a plurality of such optical resonators may be formed on the same semiconductor substrate. it can. When the p-type ohmic electrode on the light emitting side is independently provided for each optical resonator, the laser beam from each optical resonator can be independently turned on, off, and modulated.

【0058】なお、上記実施例では、GaAlAs系面
発光型半導体レーザについて説明したが、上述したよう
に、その他のIII −V 族系の面発光型半導体レーザにも
好適に適用でき、特に活性層はGa0.87Al0.13Asだ
けでなく、Alの組成を変えることで発振波長を変更す
ることもできる。
Although the GaAlAs-based surface-emitting type semiconductor laser has been described in the above embodiment, it can be suitably applied to other III-V group surface-emitting type semiconductor lasers as described above, and particularly the active layer. In addition to Ga 0.87 Al 0.13 As, the oscillation wavelength can be changed by changing the composition of Al.

【0059】また、本実施例は図6に示した構造、なら
びに図8(c)に示した発光部の構造をもとに説明を行
ったが、本発明はこれにとらわれない。図9から図11
は、本発明の別の実施例を示したものであり、それぞれ
光出射側からみた光共振器及びその内部に作製した分離
溝の基板に水平な面の形状を表した発光部の概略図であ
る。図9(a)〜(j)及び(m)は、柱状半導体層の
基板に水平な断面を円又は正多角形としたものを複数個
形成し、これらを線対称配置としたものである。いずれ
も、発光部が一つのものより発光スポットを拡大でき
る。各発光部及び分離溝から一つの光束を持った比較的
大きなビーム径のレーザビームを得る場合には、図6
(k),(l)に示すように、各発光部の横断面形状を
円又は正多角形以外の形状としても、円形ビームを得る
ことができる。線対称配置された非円形でかつ非正多角
形の各発光部の外縁を連ねた輪郭形状が、円又は正多角
形に近い形状であれば良い。また、図10(a)〜
(d)、図11(a)〜(c)にそれぞれ示した実施例
は発光部をn個形成するものであり、この実施例におい
ても、図6に示した実施例と同様な効果が得られると共
に、発光スポットを任意の大きさ,形状にすることがで
きる効果が得られている。図10,図11に示すものは
いずれも、基板と平行な2次元面上で横列及び/又は縦
列で等間隔に複数の発光部を配列することで、ラインビ
ームを得ることができる。
Although the present embodiment has been described based on the structure shown in FIG. 6 and the structure of the light emitting portion shown in FIG. 8C, the present invention is not limited to this. 9 to 11
FIG. 4 shows another embodiment of the present invention, and is a schematic view of a light emitting portion showing the shape of a plane horizontal to the substrate of an optical resonator and a separation groove formed inside the resonator when viewed from the light emitting side. is there. In FIGS. 9A to 9J and 9M, a plurality of substrates each having a columnar semiconductor layer having a horizontal cross section of a circle or a regular polygon are formed and arranged in line symmetry. In each case, the light emission spot can be enlarged more than that having one light emitting unit. When a laser beam having a relatively large beam diameter having one light beam is obtained from each light emitting portion and the separation groove, FIG.
As shown in (k) and (l), a circular beam can be obtained even if the cross-sectional shape of each light emitting portion is a shape other than a circle or a regular polygon. The outline shape in which the outer edges of the non-circular and non-regular polygonal light emitting portions arranged in line symmetry are connected may be a circle or a shape close to a regular polygon. In addition, FIG.
(D) and the examples shown in FIGS. 11 (a) to (c) respectively form n light emitting portions, and in this example, the same effect as that of the example shown in FIG. 6 can be obtained. In addition, the effect that the light emission spot can be formed in an arbitrary size and shape is obtained. 10 and 11, a line beam can be obtained by arranging a plurality of light emitting units at equal intervals in rows and / or columns on a two-dimensional surface parallel to the substrate.

【0060】なお、図6に示す実施例において、(31
0)p型オーミック電極を各(320)発光部の数だけ
分離して設け、それぞれが(308)コンタクト層に接
続された半導体レーザを製造することもできる。この場
合、それぞれが円形ビームを独立してON,OFF,変
調制御可能な複数の発光部を同一基板上に複数形成した
ものとなり、しかも各ビームの波長は同期している。
In the embodiment shown in FIG. 6, (31
It is also possible to manufacture a semiconductor laser in which 0) p-type ohmic electrodes are provided separately for each (320) light emitting portion and each is connected to the (308) contact layer. In this case, a plurality of light emitting portions each capable of independently controlling ON / OFF and modulation of a circular beam are formed on the same substrate, and the wavelengths of the respective beams are synchronized.

【0061】また、本発明の面発光型半導体レーザの応
用範囲は、プリンタ、複写機等の印刷装置のみならず、
ファクシミリ、ディスプレイにても全く同様な効果を有
することは言うまでない。
The surface-emitting type semiconductor laser of the present invention can be applied not only to printing devices such as printers and copying machines, but also to
It goes without saying that the same effect can be obtained for a facsimile and a display.

【0062】[0062]

【0063】[0063]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における半導体レーザの発光
部の断面を示す斜視図である。
FIG. 1 is a perspective view showing a cross section of a light emitting portion of a semiconductor laser according to an embodiment of the present invention.

【図2】(a)〜(e)は図1の半導体レーザの製造工
程を示す断面図である。
2A to 2E are cross-sectional views showing a manufacturing process of the semiconductor laser of FIG.

【図3】図1の半導体レーザの駆動電流と発振光出力の
関係を示す図である。
FIG. 3 is a diagram showing the relationship between the drive current and the oscillation light output of the semiconductor laser of FIG.

【図4】本発明の他の実施例における半導体レーザの発
光部の断面を示す斜視図である。
FIG. 4 is a perspective view showing a cross section of a light emitting portion of a semiconductor laser according to another embodiment of the present invention.

【図5】(a)〜(e)は図4の半導体レーザの製造工
程を示す断面図である。
5A to 5E are cross-sectional views showing a manufacturing process of the semiconductor laser of FIG.

【図6】本発明の実施例における位相同期型の面発光型
半導体レーザの発光部の断面を示す概略図である。
FIG. 6 is a schematic view showing a cross section of a light emitting portion of a phase-locking surface-emitting type semiconductor laser in an example of the present invention.

【図7】(a)〜(f)は図6の半導体レーザの製造工
程を示す断面図である。
7A to 7F are cross-sectional views showing a manufacturing process of the semiconductor laser of FIG.

【図8】従来の面発光型半導体レーザと図6半導体レー
ザの形状の違いと発光近視野像の違いを示した図であ
り、同図(a)は従来の面発光型半導体レーザの光が出
射される側の形状を示しており、同図(b)は同図
(a)に示した半導体レーザの発光遠視野像の強度分布
を示す。同図(c)は本実施例に於ける半導体レーザの
光が出射される側の形状の一例を示しており、同図
(d)は同図(c)に示した半導体レーザの発光遠視野
像の強度分布を示すである。
FIG. 8 is a diagram showing a difference in shape and a difference in emission near-field image between the conventional surface-emitting type semiconductor laser and the semiconductor laser shown in FIG. 6, in which FIG. The shape on the side of emission is shown, and the figure (b) shows the intensity distribution of the emission far-field image of the semiconductor laser shown in the figure (a). FIG. 7C shows an example of the shape of the side of the semiconductor laser from which light is emitted in this embodiment, and FIG. 7D shows the emission far field of the semiconductor laser shown in FIG. 3 is a diagram showing the intensity distribution of an image.

【図9】(a)〜(m)は、本発明の別の実施例におけ
る位相同期型の面発光型半導体半導体レーザの光が出射
される側の形状を示す概略図である。
9 (a) to 9 (m) are schematic views showing the shape on the light emitting side of a phase-locking surface-emitting type semiconductor semiconductor laser according to another embodiment of the present invention.

【図10】(a)〜(d)は、本発明の別の実施例に於
ける位相同期型の面発光型半導体レーザの光が出射され
る側の形状を示す概略図である。
10 (a) to 10 (d) are schematic views showing the shape on the light emitting side of a phase-locking surface-emitting type semiconductor laser according to another embodiment of the present invention.

【図11】(a)〜(c)は、本発明の別の実施例に於
ける位相同期型の面発光型半導体レーザの光が出射され
る側の形状を示す概略図である。
11 (a) to (c) are schematic views showing the shape of a phase-locking surface-emitting type semiconductor laser on the side from which light is emitted in another embodiment of the present invention.

【図12】従来の面発光型半導体レーザの発光部を示す
斜視図である。
FIG. 12 is a perspective view showing a light emitting portion of a conventional surface emitting semiconductor laser.

【符号の説明】[Explanation of symbols]

102,202,302 半導体基板 106,206,306 活性層 107,207,307 クラッド層 108,208,308 コンタクト層 109,209,309 II−VI族化合物半導体エピタ
キシャル層 111,211,311 光出射側反射鏡 314 分離溝 320 発光部
102, 202, 302 Semiconductor substrates 106, 206, 306 Active layers 107, 207, 307 Clad layers 108, 208, 308 Contact layers 109, 209, 309 II-VI group compound semiconductor epitaxial layers 111, 211, 311 Light emission side reflection Mirror 314 Separation groove 320 Light emitting part

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−188983(JP,A) 特開 平2−54981(JP,A) 特開 平1−289291(JP,A) 特開 昭64−44083(JP,A) 特開 昭64−66988(JP,A) 特開 昭64−50431(JP,A) 特開 昭63−7692(JP,A) 特開 平2−198184(JP,A) 特開 平2−128481(JP,A) 特表 平5−508971(JP,A) Electron.Lett.Vo l.26 No.1(1990)p.18−19 (58)調査した分野(Int.Cl.7,DB名) H01S 5/00 - 5/50 ─────────────────────────────────────────────────── --Continued from the front page (56) Reference JP-A 63-188983 (JP, A) JP-A 2-54981 (JP, A) JP-A 1-289291 (JP, A) JP-A 64-- 44083 (JP, A) JP 64-66988 (JP, A) JP 64-50431 (JP, A) JP 63-7692 (JP, A) JP 2-198184 (JP, A) JP-A-2-128481 (JP, A) JP-A-5-508971 (JP, A) Electron. Lett. Vol. 26 No. 1 (1990) p. 18-19 (58) Fields investigated (Int.Cl. 7 , DB name) H01S 5/00-5/50

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 半導体基板と、 前記半導体基板の上方に形成された下部反射鏡と、 前記下部反射鏡の上方に形成された下部クラッド層と、
前記下部クラッド層の上方に形成された活性層と、前記
活性層の上方に形成され上部に柱状部を有する上部クラ
ッド層と、を含む光共振器と、 前記柱状部の上方に形成された上部反射鏡と、を含み、 前記光共振器には、前記柱状部を分割しかつ前記活性層
には達しない分離溝により、複数の発光部が形成されて
なり、 前記上部反射鏡は、少なくとも前記分離溝の上に形成さ
れていることを特徴とする面発光型半導体レーザ。
1. A semiconductor substrate, a lower reflecting mirror formed above the semiconductor substrate, and a lower cladding layer formed above the lower reflecting mirror,
An optical resonator including an active layer formed above the lower clad layer, and an upper clad layer formed above the active layer and having a columnar part in the upper part, and an upper part formed above the columnar part. A plurality of light emitting portions are formed in the optical resonator by a separation groove that divides the columnar portion and does not reach the active layer, and the upper reflecting mirror includes at least the A surface-emitting type semiconductor laser characterized by being formed on a separation groove.
【請求項2】 前記分離溝の幅が5μm以下であること
を特徴とする請求項1に記載の面発光型半導体レーザ。
2. The surface emitting semiconductor laser according to claim 1, wherein the width of the separation groove is 5 μm or less.
【請求項3】 前記複数の発光部は、前記半導体基板と
平行な断面の形状が、円形または正多角形のいずれかで
あり、前記円形の直径あるいは前記正多角形の対角線の
いずれかが、10μm未満であること、を特徴とする請求
項1または2に記載の面発光型半導体レーザ。
3. The plurality of light emitting portions have a cross-sectional shape parallel to the semiconductor substrate that is either a circle or a regular polygon, and either the diameter of the circle or the diagonal line of the regular polygon, 3. The surface emitting semiconductor laser according to claim 1, wherein the surface emitting semiconductor laser has a thickness of less than 10 μm.
【請求項4】 前記コンタクト層の膜厚が、3.0μm
以下であることを特徴とする請求項1乃至3のいずれか
に記載の面発光型半導体レーザ。
4. The contact layer has a thickness of 3.0 μm.
The surface emitting semiconductor laser according to claim 1, wherein:
【請求項5】 前記柱状部のそれぞれに対応して、光出
射部となる領域を有することを特徴とする請求項1乃至
4のいずれかに記載の面発光型半導体レーザ。
5. The surface emitting semiconductor laser according to claim 1, further comprising a region serving as a light emitting portion corresponding to each of the columnar portions.
【請求項6】 前記柱状部の周囲にII−VI族化合物半導
体のエピタキシャル層が形成されていることを特徴とす
る請求項1乃至5のいずれかに記載の面発光型半導体レ
ーザ。
6. The surface emitting semiconductor laser according to claim 1, wherein an epitaxial layer of a II-VI group compound semiconductor is formed around the columnar portion.
【請求項7】 前記II−VI族化合物半導体は、II族元素
であるZn、Cd、及びHgから選ばれた少なくとも1つの元
素と、VI族元素であるO、S、Se、及びTeから選ばれた少
なくとも1つの元素と、により構成されるII−VI族化合
物半導体であることを特徴とする請求項6記載の面発光
型半導体レーザ。
7. The II-VI group compound semiconductor is selected from at least one element selected from Group II elements Zn, Cd, and Hg and from Group VI elements O, S, Se, and Te. 7. A surface-emitting type semiconductor laser according to claim 6, which is a II-VI group compound semiconductor composed of at least one selected element.
【請求項8】 前記II−VI族化合物半導体は、ZnSe、Zn
S、ZnSSe、ZnCdS、及びCdSSeのうちいずれかであること
を特徴とする請求項7記載の面発光型半導体レーザ。
8. The II-VI group compound semiconductor is ZnSe or Zn.
8. The surface emitting semiconductor laser according to claim 7, wherein the surface emitting semiconductor laser is any one of S, ZnSSe, ZnCdS, and CdSSe.
JP22415391A 1990-09-12 1991-09-04 Surface emitting semiconductor laser Expired - Lifetime JP3395194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22415391A JP3395194B2 (en) 1990-09-12 1991-09-04 Surface emitting semiconductor laser

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-242000 1990-09-12
JP24200090 1990-09-12
JP22415391A JP3395194B2 (en) 1990-09-12 1991-09-04 Surface emitting semiconductor laser

Publications (2)

Publication Number Publication Date
JPH04363081A JPH04363081A (en) 1992-12-15
JP3395194B2 true JP3395194B2 (en) 2003-04-07

Family

ID=26525877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22415391A Expired - Lifetime JP3395194B2 (en) 1990-09-12 1991-09-04 Surface emitting semiconductor laser

Country Status (1)

Country Link
JP (1) JP3395194B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5404369A (en) * 1990-09-12 1995-04-04 Seiko Epson Corporation Surface emission type semiconductor laser
US5436922A (en) * 1990-09-12 1995-07-25 Seiko Epson Corporation Surface emission type semiconductor laser
US5537666A (en) * 1990-09-12 1996-07-16 Seiko Epson Coropration Surface emission type semiconductor laser
US5295148A (en) * 1990-09-12 1994-03-15 Seiko Epson Corporation Surface emission type semiconductor laser
US5356832A (en) * 1990-09-12 1994-10-18 Seiko Epson Corporation Method of making surface emission type semiconductor laser
US5317584A (en) * 1990-09-12 1994-05-31 Seiko Epson Corporation Surface emission type semiconductor laser
DE19911433B4 (en) 1999-03-04 2006-06-08 Infineon Technologies Ag Optical transmission device
JP2002164575A (en) * 2000-11-27 2002-06-07 Nichia Chem Ind Ltd Nitride semiconductor light emitting element
JP4621393B2 (en) * 2001-03-27 2011-01-26 富士ゼロックス株式会社 Surface emitting semiconductor laser and method for manufacturing surface emitting semiconductor laser
KR100472045B1 (en) * 2002-02-06 2005-03-08 주식회사 옵토웰 Method for fabricating vertical-cavity surface-emitting laser diode
JP2006253340A (en) * 2005-03-10 2006-09-21 Ricoh Co Ltd Surface emission laser element, manufacturing method thereof, surface emission laser array, electrophotographic system, optical communication system, and optical interconnection system
KR102182921B1 (en) * 2016-08-08 2020-11-25 피니사 코포레이숀 Etched planarization VCSEL
US11611196B2 (en) 2016-12-20 2023-03-21 Sony Corporation Light emitting element
JP7291497B2 (en) * 2019-02-21 2023-06-15 スタンレー電気株式会社 Vertical cavity light emitting device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Electron.Lett.Vol.26 No.1(1990)p.18−19

Also Published As

Publication number Publication date
JPH04363081A (en) 1992-12-15

Similar Documents

Publication Publication Date Title
KR100210288B1 (en) Surface emitting type semiconductor laser
JP3395194B2 (en) Surface emitting semiconductor laser
US5295148A (en) Surface emission type semiconductor laser
US5587335A (en) Method of making surface emission type semiconductor laser
US5317584A (en) Surface emission type semiconductor laser
JPH05299779A (en) Surface light emitting type semiconductor laser
JP3448939B2 (en) Surface emitting semiconductor laser
JP3206080B2 (en) Semiconductor laser
US5356832A (en) Method of making surface emission type semiconductor laser
JP3240636B2 (en) Surface emitting semiconductor laser
JP3467593B2 (en) Surface emitting semiconductor laser
JP3666444B2 (en) Surface emitting semiconductor laser and manufacturing method thereof
JP3293221B2 (en) Surface emitting semiconductor laser and method of manufacturing the same
JP2002198613A (en) Semiconductor device having salient structure, and method of manufacturing the semiconductor device
JP2751699B2 (en) Semiconductor laser
JP3358197B2 (en) Semiconductor laser
JPH05243678A (en) Semiconductor laser and manufacturing method of the same
JP3468236B2 (en) Semiconductor laser
KR100255695B1 (en) Semiconductor laser device and its manufacturing method
JPH05343795A (en) Surface emission-type semiconductor laser
JPH0513879A (en) Semiconductor laser
JP2699671B2 (en) Semiconductor laser
KR100287202B1 (en) Semiconductor laser device and manufacturing method thereof
JP2679358B2 (en) Semiconductor laser device
JPH0677594A (en) Semiconductor laser

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090207

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090207

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110207

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110207

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120207

Year of fee payment: 9

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120207

Year of fee payment: 9