JPH06231933A - Manufacture of junction ferrite - Google Patents

Manufacture of junction ferrite

Info

Publication number
JPH06231933A
JPH06231933A JP5018467A JP1846793A JPH06231933A JP H06231933 A JPH06231933 A JP H06231933A JP 5018467 A JP5018467 A JP 5018467A JP 1846793 A JP1846793 A JP 1846793A JP H06231933 A JPH06231933 A JP H06231933A
Authority
JP
Japan
Prior art keywords
ferrite
polycrystalline
manganese
single crystal
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5018467A
Other languages
Japanese (ja)
Inventor
Norio Sasaki
教雄 佐々木
Takashi Tamura
孝 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP5018467A priority Critical patent/JPH06231933A/en
Publication of JPH06231933A publication Critical patent/JPH06231933A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To acquire junction ferrite with satisfactory junction strength wherein single crystallization of polycrystalline ferrite whose core is single-crystal ferrite is restrained and the turbulence of an interface between a sing-crystal part and a polycrystalline part is reduced. CONSTITUTION:In a manufacturing method of junction ferrite comprised of single-crystal manganese-zinc ferrite and polycrystalline ferrite, a manganese-zinc ferrite thin film having film thickness of 10nm or more and 100nm or less is intervened in a junction surface between the single-crystal ferrite and the polycrystalline ferrite and is formed integral at a temperature of 1200 deg.C or higher and 1250 deg.C or lower.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば複合型磁気ヘッ
ド等に用いられる接合フェライトに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bonded ferrite used, for example, in a composite magnetic head or the like.

【0002】[0002]

【従来の技術】従来、磁気ヘッド、例えばビデオヘッド
においては、出力が高く、耐摩耗性に優れたマンガン−
亜鉛単結晶フェライトを磁気コアに用いてきた。しか
し、近年のVRTの高画質化に伴い、記録周波数帯域の
高周波数化が進み、再生出力の低下を招いている。更
に、単結晶フェライトを磁気コアに有するヘッドでは摺
動ノイズレベルが高いため、再生出力の低下は、S/N
比の低下をもたらしている。
2. Description of the Related Art Conventionally, in a magnetic head, for example, a video head, manganese-based material having high output and excellent wear resistance is used.
Zinc single crystal ferrite has been used for magnetic cores. However, as the image quality of VRT has been improved in recent years, the recording frequency band has been increased in frequency, resulting in a decrease in reproduction output. Further, since the sliding noise level is high in the head having the single-crystal ferrite in the magnetic core, the reproduction output is decreased by the S / N ratio.
This has led to a drop in the ratio.

【0003】近年、S/N比の向上を図るために単結晶
フェライトと多結晶フェライトとを接合一体化した接合
フェライト材を磁気コアに有する磁気ヘッドが用いられ
ている。この接合フェライト材を磁気コアに有する磁気
ヘッドは、単結晶フェライトをフロントギャップ側に、
多結晶フェライトをバックギャップ側に配した構造を持
ち、出力及び耐摩耗性が単結晶フェライト単体を磁気コ
アに有する磁気ヘッドと同等でありながら、摺動ノイズ
レベルが低く、高S/N比が得られるという特徴があ
る。
In recent years, in order to improve the S / N ratio, a magnetic head having a bonded ferrite material in which a single crystal ferrite and a polycrystalline ferrite are bonded and integrated in a magnetic core is used. A magnetic head that has this bonded ferrite material in the magnetic core is a single crystal ferrite on the front gap side,
It has a structure in which polycrystalline ferrite is arranged on the back gap side, and while the output and wear resistance are the same as those of a magnetic head having a single crystal ferrite simple substance in the magnetic core, the sliding noise level is low and the high S / N ratio is high. There is a feature that it can be obtained.

【0004】[0004]

【発明が解決しようとする課題】接合フェライト材を磁
気コアに有する磁気ヘッドは、単結晶フェライト単体を
磁気コアに有する磁気ヘッドより摺動ノイズレベルが低
いという特徴があるが、この摺動ノイズ低減効果は、磁
気ヘッドにおける単結晶と多結晶の界面位置に左右さ
れ、単結晶の占める体積が大きくなるほど、すなわち、
界面位置がバックギャップ側になるほど摺動ノイズ低減
効果は小さくなる。
A magnetic head having a bonded ferrite material in the magnetic core has a characteristic that the sliding noise level is lower than that of a magnetic head having a single crystal ferrite simple substance in the magnetic core. The effect depends on the position of the interface between the single crystal and the polycrystal in the magnetic head, and the larger the volume occupied by the single crystal, that is,
The sliding noise reduction effect becomes smaller as the interface position becomes closer to the back gap side.

【0005】従来より接合フェライトは、単結晶フェラ
イト及び多結晶フェライトブロックに鏡面加工を施し、
その鏡面部分を接触させ接合界面に数百kPaの圧力を
かけながら熱処理することにより接合一体化されてお
り、接合時、接合界面近傍において単結晶フェライトを
核とした固相反応により、数μm〜数十μmにおよぶ多
結晶フェライトの単結晶化層が生じている。この単結晶
化はしばしば不均一に進行するため、単結晶部と多結晶
部の界面の乱れを生じることとなる。この界面の乱れに
よって、磁気ヘッドにおいては単結晶部と多結晶部の界
面位置をコントロールする事が難しく、その結果、単結
晶フェライト単体をコアに有する磁気ヘッドより摺動ノ
イズレベルは低いものの、安定した摺動ノイズ低減効果
を引き出すことが困難となっている。
Conventionally, the bonded ferrite has been obtained by subjecting a single crystal ferrite and a polycrystalline ferrite block to mirror finishing,
The mirror surface portions are brought into contact with each other and heat-treated while applying a pressure of several hundred kPa to the bonding interface, so that they are integrated by bonding. A single-crystallized layer of polycrystalline ferrite having a size of several tens of μm is formed. Since this single crystallization often progresses nonuniformly, the interface between the single crystal part and the polycrystal part is disturbed. Due to this interface disorder, it is difficult to control the interface position between the single crystal part and the polycrystalline part in the magnetic head. It is difficult to bring out the sliding noise reduction effect.

【0006】この多結晶フェライトの単結晶化を抑制す
る方法として、本出願人は、酸化物磁性薄膜を介し単結
晶フェライトと多結晶フェライトを接合一体化すること
を提案した(特開昭63−14311号公報)。しか
し、この単結晶化抑制効果は膜厚が薄くなると小さくな
り、また、膜厚を厚くすると、接合界面の膜部に空孔が
発生し、結果として接合強度の低下を招いてしまう。こ
の接合強度の低下により、ヘッドチップ加工工程におい
ては単結晶部と多結晶部の界面から剥がれが生じ、歩留
りが低下すると共に、磁気ヘッドとしての信頼性も低下
することになる。
As a method for suppressing the single crystallization of the polycrystalline ferrite, the present applicant has proposed that the single crystal ferrite and the polycrystalline ferrite are bonded and integrated via an oxide magnetic thin film (Japanese Patent Laid-Open No. 63-63). 14311). However, this effect of suppressing single crystallization becomes smaller as the film thickness becomes thinner, and as the film thickness becomes thicker, vacancies are generated in the film portion at the bonding interface, resulting in a decrease in bonding strength. Due to this decrease in the bonding strength, peeling occurs from the interface between the single crystal portion and the polycrystalline portion in the head chip processing step, which lowers the yield and also lowers the reliability of the magnetic head.

【0007】そこで、更に本出願人は、上記問題を解決
すべく多結晶フェライトの単結晶化層厚を10μm以上
30μm以下と規定することにより摺動ノイズ低減効果
と十分な接合強度が得られることを提案した(特開平2
−61808号公報)。しかし、近年のヘッド加工技術
の進歩により、ヘッドにおける単結晶部と多結晶部の界
面位置コントロールをより精密に行なう事が可能とな
り、更に摺動ノイズの低減を図るには単結晶部と多結晶
部の界面をより平坦にする必要が生じている。
[0007] Therefore, the present applicant further stipulates that the sliding noise reduction effect and sufficient bonding strength can be obtained by defining the thickness of the single-crystallized layer of polycrystalline ferrite to be 10 μm or more and 30 μm or less in order to solve the above problems. Was proposed (Japanese Patent Laid-Open No. Hei 2
-61808). However, due to recent advances in head processing technology, it is possible to more precisely control the interface position between the single crystal portion and the polycrystalline portion in the head, and to further reduce sliding noise, the single crystal portion and the polycrystalline portion can be reduced. It is necessary to make the interface of the part flatter.

【0008】そこで、本発明はこのような実状に鑑みて
提案されたものであって、多結晶フェライトの単結晶化
を抑制し、単結晶部と多結晶部の界面の乱れを低減する
と共に、十分な接合強度を持つ接合フェライトを提供す
ることを目的とする。
Therefore, the present invention has been proposed in view of such an actual situation, and suppresses single crystallization of polycrystalline ferrite, reduces disturbance of the interface between the single crystal portion and the polycrystalline portion, and An object is to provide a bonded ferrite having a sufficient bonding strength.

【0009】[0009]

【課題を解決するための手段】本発明者等は、上記の目
標を達成せんものと鋭意研究の結果、マンガン−亜鉛単
結晶フェライトと多結晶フェライトからなる接合フェラ
イトにおいて、その接合界面に酸化物磁性薄膜としてマ
ンガン―亜鉛フェライト薄膜を10nm以上100nm
以下の膜厚で介在させかつ1200℃以上1250℃以
下の温度下で接合一体化することにより、熱間加圧処理
による接合一体化の際に生じる多結晶フェライトの単結
晶化が抑制され、単結晶部と多結晶部の界面の乱れが低
減し、かつ、十分な接合強度が得られることを見出し、
本発明を完成するに至った。
Means for Solving the Problems As a result of earnest studies, the inventors of the present invention have not achieved the above-mentioned goals, and as a result, in a bonding ferrite composed of a manganese-zinc single crystal ferrite and a polycrystalline ferrite, an oxide is present at the bonding interface. Manganese-zinc ferrite thin film as a magnetic thin film 10 nm or more 100 nm
By interposing with the following film thickness and joining and unifying at a temperature of 1200 ° C. or more and 1250 ° C. or less, single crystallization of polycrystalline ferrite that occurs at the time of joining and unifying by hot pressure treatment is suppressed, It was found that the disorder of the interface between the crystal part and the polycrystal part was reduced, and sufficient bonding strength was obtained.
The present invention has been completed.

【0010】即ち、本発明はマンガン−亜鉛単結晶フェ
ライトと多結晶フェライトとからなる接合フェライトに
おいて、その単結晶フェライトと多結晶フェライトの接
合界面にマンガン―亜鉛フェライト薄膜を10nm以上
100nm以下の膜厚で介在させ、かつ1200℃以上
1250℃以下の温度下で接合一体化することを特徴と
するものである。
That is, according to the present invention, in a bonded ferrite composed of manganese-zinc single crystal ferrite and polycrystalline ferrite, a manganese-zinc ferrite thin film having a film thickness of 10 nm or more and 100 nm or less is formed at the bonding interface between the single crystal ferrite and the polycrystalline ferrite. It is characterized in that it is made to intervene and is joined and integrated at a temperature of 1200 ° C. or more and 1250 ° C. or less.

【0011】[0011]

【作用】マンガン−亜鉛単結晶フェライトと多結晶フェ
ライトとからなる接合フェライトにおいて、その単結晶
フェライトと多結晶フェライトの接合界面にマンガン―
亜鉛フェライト薄膜を10nm以上100nm以下の膜
厚で介在させ、かつ1200℃以上1250℃以下の温
度下で接合一体化することにより、熱間加圧処理による
接合一体化の際に生じる単結晶フェライトを核とした固
相反応による多結晶フェライトの単結晶化が抑制され、
単結晶部と多結晶部の界面の乱れが低減されると共に、
十分な接合強度が得られる。
[Function] In the bonding ferrite composed of manganese-zinc single crystal ferrite and polycrystalline ferrite, manganese is bonded to the bonding interface between the single crystal ferrite and the polycrystalline ferrite.
By interposing a zinc ferrite thin film with a film thickness of 10 nm or more and 100 nm or less and joining and unifying it at a temperature of 1,200 ° C. or more and 1,250 ° C. or less, single crystal ferrite generated at the time of joining and unifying by hot pressure treatment Single crystal crystallization of polycrystalline ferrite due to solid-state reaction as nuclei is suppressed,
Disturbance at the interface between the single crystal part and the polycrystalline part is reduced,
Sufficient bonding strength can be obtained.

【0012】[0012]

【実施例】以下、本発明を具体的な実施例により説明す
るが、本発明がこの実施例に限定されるものではないこ
とは言うまでもない。Fe2 3 52.5モル%、Zn
O 19.5モル%、MnO 28.0モル%組成の単
結晶フェライトをブリッジマン法により作製した。ま
た、前記組成の多結晶フェライトを、通常の湿式混合、
乾燥、仮焼、粉砕、造粒、成形後、平衡酸素圧を考慮し
温度1250℃、保持時間5時間の条件で焼結し作製し
た。
EXAMPLES The present invention will be described below with reference to specific examples, but it goes without saying that the present invention is not limited to these examples. Fe 2 O 3 52.5 mol%, Zn
A single crystal ferrite having a composition of O 19.5 mol% and MnO 28.0 mol% was prepared by the Bridgman method. In addition, polycrystalline ferrite having the above composition is usually wet mixed,
After drying, calcination, pulverization, granulation, and molding, sintering was performed under conditions of a temperature of 1250 ° C. and a holding time of 5 hours in consideration of equilibrium oxygen pressure.

【0013】この単結晶及び多結晶フェライトを30m
m×10mm×3mm寸法に加工し、それぞれ30mm
×10mmの面の片面に鏡面加工を施した。この鏡面加
工を施した単結晶フェライトの鏡面加工面に、Fe2
3 50.0モル%、ZnO25.0モル%、MnO 2
5.0モル%組成からなるターゲットを用い、高周波マ
グネトロンスパッタリング法により、10、50、10
0、200、300nmの膜厚のマンガン―亜鉛フェラ
イト薄膜を形成した。
This single crystal and polycrystalline ferrite is
Processed to m x 10 mm x 3 mm dimensions, 30 mm each
One side of the surface of × 10 mm was mirror-finished. Fe 2 O is added to the mirror-polished surface of the single-crystal ferrite that has been mirror-polished.
3 50.0 mol%, ZnO 25.0 mol%, MnO 2
10, 50, 10 by high frequency magnetron sputtering method using a target composed of 5.0 mol% composition
A manganese-zinc ferrite thin film having a thickness of 0, 200 or 300 nm was formed.

【0014】その後、単結晶フェライトのマンガン―亜
鉛フェライト薄膜面と多結晶フェライトの鏡面部分を接
触させ、接触面の法線方向より0.5MPaの圧力を加
えながら、N2 雰囲気で1150℃、1200℃、12
50℃、1300℃の温度下で2時間保持し、単結晶フ
ェライトと多結晶フェライトからなる接合フェライトを
作製した。
After that, the manganese-zinc ferrite thin film surface of the single crystal ferrite and the mirror surface portion of the polycrystalline ferrite are brought into contact with each other, and a pressure of 0.5 MPa is applied from the normal line direction of the contact surface under N 2 atmosphere at 1150 ° C., 1200. ℃, 12
The temperature was maintained at 50 ° C. and 1300 ° C. for 2 hours to produce a bonded ferrite composed of single crystal ferrite and polycrystalline ferrite.

【0015】また、マンガン―亜鉛フェライト薄膜を介
さずに単結晶フェライトと多結晶フェライトの鏡面加工
面を直接接触させ、上記熱間加圧処理条件と同条件で接
合フェライトを作製し比較例とした。これら接合フェラ
イトを図3に示すように10mm幅方向の中央部で切断
し、切断面に鏡面加工を施した後、顕微鏡にて接合界面
部の空孔率を測定した。
Further, the single-crystal ferrite and the mirror-polished surface of the polycrystalline ferrite were brought into direct contact with each other without interposing the manganese-zinc ferrite thin film, and a bonded ferrite was produced under the same conditions as the above hot press treatment conditions and made a comparative example. . As shown in FIG. 3, these bonded ferrites were cut at the central portion in the width direction of 10 mm, the cut surface was mirror-finished, and then the porosity of the bonded interface portion was measured with a microscope.

【0016】ここで言う空孔率とは、接合界面の長さに
対する、空孔の占める割合である。更に、空孔率測定後
の試料を濃塩酸にてエッチングし、偏光顕微鏡にて多結
晶フェライトの単結晶化層厚の平均値及び分布範囲を測
定した。
The porosity referred to here is the ratio of voids to the length of the bonding interface. Further, the sample after the porosity measurement was etched with concentrated hydrochloric acid, and the average value and distribution range of the single crystallized layer thickness of the polycrystalline ferrite were measured with a polarization microscope.

【0017】上記測定結果より、各熱間加圧処理温度に
おけるマンガン―亜鉛フェライト薄膜の膜厚と単結晶化
層厚の平均値(以下、平均単結晶化層厚と記す)、単結
晶化層厚の最大値(以下、最大単結晶化層厚と記す)及
び接合界面部の空孔率の関係を表1に示す。表1より、
単結晶化層厚を見ると、処理温度1300℃において最
大単結晶化層厚が20μm以上、平均単結晶化層厚が5
μm以上と他の処理温度と比較し大きな値となってお
り、処理温度1300℃ではマンガン―亜鉛フェライト
薄膜を接合界面に介在させた効果は十分に発揮されない
ことがわかる。
From the above measurement results, the average value of the film thickness of the manganese-zinc ferrite thin film and the thickness of the single crystallized layer (hereinafter, referred to as the average single crystallized layer thickness) at each hot pressure treatment temperature, the single crystallized layer Table 1 shows the relationship between the maximum value of thickness (hereinafter referred to as the maximum single crystallized layer thickness) and the porosity of the bonded interface portion. From Table 1,
Looking at the single crystallized layer thickness, the maximum single crystallized layer thickness is 20 μm or more and the average single crystallized layer thickness is 5 at the processing temperature of 1300 ° C.
This value is larger than μm, which is a large value as compared with other processing temperatures, and it is understood that the effect of interposing the manganese-zinc ferrite thin film at the bonding interface is not sufficiently exhibited at the processing temperature of 1300 ° C.

【0018】また、接合界面の空孔率を見ると、処理温
度1150℃において、他の処理温度より高い値となっ
ている。これは、処理温度1150℃では1200℃以
上で見られる接合界面の点状の空孔以外に、処理温度が
低いため接合不良が発生し線状に観察される剥がれが生
じたことによるものである。以上より、マンガン―亜鉛
フェライト薄膜の単結晶化抑制効果が十分に得られ、か
つ、接合不良が発生しない熱間加圧処理温度は1200
℃以上1250℃以下ということになる。
Further, looking at the porosity of the bonding interface, the value at the processing temperature of 1150 ° C. is higher than the other processing temperatures. This is because, in addition to the point-like voids at the bonding interface, which are observed at 1200 ° C. or higher at a processing temperature of 1150 ° C., the processing temperature is low, resulting in defective bonding and linear peeling. . From the above, the hot pressing treatment temperature at which the effect of suppressing single crystallization of the manganese-zinc ferrite thin film is sufficiently obtained and the bonding failure does not occur is 1200.
This means that the temperature is not lower than 0 ° C and not higher than 1250 ° C.

【0019】次に、熱間加圧処理温度1200℃及び1
250℃の試料について、四点曲げ試験による接合強度
の測定を行った。四点曲げ試験は、図4に示すように、
0.50mm×0.33mm×4mmの試験片を、接合
界面が治具の上支持ロール及び下支持ロールの中央部に
なるように設置し、クロスヘッド速度0.1mm/mi
nで行なった。ここで、試験個数は、各試料について2
0個とした。また、試験片の表面には、鏡面加工を施し
た。
Next, the hot pressure treatment temperature is 1200 ° C. and 1
The joint strength of the 250 ° C. sample was measured by a four-point bending test. The four-point bending test, as shown in FIG.
A 0.50 mm × 0.33 mm × 4 mm test piece was installed so that the bonding interface was at the center of the upper support roll and the lower support roll of the jig, and the crosshead speed was 0.1 mm / mi.
n. Here, the test number is 2 for each sample.
It was set to 0 pieces. The surface of the test piece was mirror-finished.

【0020】測定結果を単結晶化層厚の測定値ととも
に、マンガン―亜鉛フェライト薄膜の膜厚との関係を示
す線図として図1、図2に示す。
The measurement results are shown in FIGS. 1 and 2 as a diagram showing the relationship between the thickness of the manganese-zinc ferrite thin film and the measured value of the single crystallized layer thickness.

【0021】図1、図2より、マンガン―亜鉛フェライ
ト薄膜の膜厚が100nm以下でマンガン―亜鉛フェラ
イト薄膜を介在させない接合フェライトの接合強度とほ
ぼ同等の接合強度が得られ、また、膜厚が10nm以上
で多結晶フェライトの単結晶化が大きく抑制されること
がわかる。接合強度に関しては、表1に示している空孔
率の増加に対応して低下しており、接合界面の空孔の増
加が接合強度の低下を招いていることは明らかである。
From FIGS. 1 and 2, it is possible to obtain a bonding strength almost equal to the bonding strength of the bonding ferrite in which the thickness of the manganese-zinc ferrite thin film is 100 nm or less and the manganese-zinc ferrite thin film does not intervene. It can be seen that single crystallization of polycrystalline ferrite is significantly suppressed when the thickness is 10 nm or more. Regarding the bonding strength, it decreases corresponding to the increase in the porosity shown in Table 1, and it is clear that the increase in the porosity at the bonding interface leads to the decrease in the bonding strength.

【0022】以上の結果より、接合界面に介在させるマ
ンガン―亜鉛フェライト薄膜の膜厚を10nm以上、1
00nm以下とし、かつ熱間加圧処理温度を1200℃
以上1250℃以下とすることにより、多結晶フェライ
トの単結晶化を十分に抑制し、かつ、マンガン―亜鉛フ
ェライト薄膜を介在させない接合フェライトの接合強度
とほぼ同等の接合強度が得られることがわかる。
From the above results, the thickness of the manganese-zinc ferrite thin film interposed at the bonding interface is 10 nm or more, 1
00 nm or less and the hot pressurizing temperature is 1200 ° C
It can be seen that by setting the temperature to 1250 ° C. or lower, it is possible to sufficiently suppress the single crystallization of the polycrystalline ferrite and obtain a bonding strength almost equal to the bonding strength of the bonded ferrite in which the manganese-zinc ferrite thin film is not interposed.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【発明の効果】以上の説明からも明らかなように、本発
明では、マンガン−亜鉛単結晶フェライトと多結晶フェ
ライトとをマンガン―亜鉛フェライト薄膜を介し熱間加
圧処理によって接合一体化する際、その薄膜の膜厚を1
0nm以上100nm以下とし、かつ処理温度を120
0℃以上1250℃以下とすることで、単結晶フェライ
トを核とした多結晶フェライトの単結晶化が抑制され、
単結晶部と多結晶部の界面の乱れが低減されると共に、
マンガン―亜鉛フェライト薄膜を介在させない接合フェ
ライトの接合強度とほぼ同等の接合強度を持つ接合フェ
ライトが得られる。従って、本発明による接合フェライ
トを用いることにより、バラツキが少なく安定した、よ
り大きな摺動ノイズ低減効果を持ち、かつ、接合強度に
おいて信頼性の高い磁気ヘッドが得られる。また、ヘッ
ドチップ加工工程においては単結晶部と多結晶部の界面
からの剥がれが無くなり歩留りが改善されることにな
る。
As is apparent from the above description, in the present invention, when the manganese-zinc single crystal ferrite and the polycrystalline ferrite are joined and integrated by the hot press treatment through the manganese-zinc ferrite thin film, The film thickness of the thin film is 1
0 nm or more and 100 nm or less, and the processing temperature is 120
By setting the temperature to 0 ° C. or higher and 1250 ° C. or lower, single crystallization of the polycrystalline ferrite centered on the single crystal ferrite is suppressed,
Disturbance at the interface between the single crystal part and the polycrystalline part is reduced,
It is possible to obtain a bonded ferrite having a bonding strength almost the same as the bonding strength of the bonded ferrite without interposing the manganese-zinc ferrite thin film. Therefore, by using the bonded ferrite according to the present invention, it is possible to obtain a magnetic head which is stable with a small variation and has a larger sliding noise reduction effect and which is highly reliable in bonding strength. Further, in the head chip processing step, peeling from the interface between the single crystal portion and the polycrystalline portion is eliminated, and the yield is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】熱間加圧処理温度1250℃におけるマンガン
―亜鉛フェライト薄膜の膜厚と接合フェライト材の単結
晶化層厚、接合強度の関係を示す線図である。
FIG. 1 is a diagram showing the relationship between the film thickness of a manganese-zinc ferrite thin film, the thickness of a single crystallized layer of a bonded ferrite material, and the bonding strength at a hot pressing temperature of 1250 ° C.

【図2】熱間加圧処理温度1200℃におけるマンガン
―亜鉛フェライト薄膜の膜厚と接合フェライト材の単結
晶化層厚、接合強度の関係を示す線図である。
FIG. 2 is a diagram showing the relationship between the film thickness of a manganese-zinc ferrite thin film, the thickness of a single crystallized layer of a bonded ferrite material, and the bonding strength at a hot pressurizing temperature of 1200 ° C.

【図3】本発明の単結晶フェライトと多結晶フェライト
からなる接合フェライトの一実施例と接合界面の空孔率
及び単結晶化層厚測定のための切断部を示す斜視図であ
る。
FIG. 3 is a perspective view showing an example of a bonded ferrite composed of a single crystal ferrite and a polycrystalline ferrite according to the present invention, and a cut portion for measuring the porosity of the bonded interface and the thickness of the single crystallized layer.

【図4】四点曲げ試験の治具と試料の設置位置を示す模
式図である。
FIG. 4 is a schematic diagram showing a jig and a sample installation position for a four-point bending test.

【符号の説明】[Explanation of symbols]

3−1 単結晶フェライト 3−2 多結晶フェライト 3−3 マンガン―亜鉛フェライト薄膜 3−4 単結晶化層厚測定のための切断部 4−1 単結晶フェライト 4−2 多結晶フェライト 4−3 接合界面 4−4 試験片 4−5 球(Sφ2mm) 4−6 ガイド 4−7 荷重台 4−8 上支持ロール(φ0.66mm) 4−9 下支持ロール(φ0.66mm) 4−10 支持台 3-1 Single crystal ferrite 3-2 Polycrystalline ferrite 3-3 Manganese-zinc ferrite thin film 3-4 Cut portion for measuring single crystallized layer thickness 4-1 Single crystal ferrite 4-2 Polycrystalline ferrite 4-3 Bonding Interface 4-4 Test piece 4-5 Sphere (Sφ2mm) 4-6 Guide 4-7 Load platform 4-8 Upper support roll (φ0.66mm) 4-9 Lower support roll (φ0.66mm) 4-10 Support platform

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 マンガン−亜鉛単結晶フェライトと多結
晶フェライトとからなる接合フェライトの製造方法にお
いて、上記単結晶フェライトと多結晶フェライトの接合
界面にマンガン―亜鉛フェライト薄膜を10nm以上1
00nm以下の膜厚で介在させ1200℃以上1250
℃以下の温度下で接合一体化することを特徴とする接合
フェライトの製造方法。
1. A method for producing a bonded ferrite comprising a manganese-zinc single crystal ferrite and a polycrystalline ferrite, wherein a manganese-zinc ferrite thin film having a thickness of 10 nm or more is formed at a bonding interface between the single crystal ferrite and the polycrystalline ferrite.
Intercalated with a film thickness of 00 nm or less, 1200 ° C. or more and 1250
A method for producing a bonded ferrite, which comprises integrally bonding at a temperature of ℃ or less.
JP5018467A 1993-02-05 1993-02-05 Manufacture of junction ferrite Pending JPH06231933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5018467A JPH06231933A (en) 1993-02-05 1993-02-05 Manufacture of junction ferrite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5018467A JPH06231933A (en) 1993-02-05 1993-02-05 Manufacture of junction ferrite

Publications (1)

Publication Number Publication Date
JPH06231933A true JPH06231933A (en) 1994-08-19

Family

ID=11972451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5018467A Pending JPH06231933A (en) 1993-02-05 1993-02-05 Manufacture of junction ferrite

Country Status (1)

Country Link
JP (1) JPH06231933A (en)

Similar Documents

Publication Publication Date Title
KR940007574B1 (en) Method of producing a magnetic head core
US3943570A (en) Semiconductor magnetic head
CN1066275C (en) Magnetic head
JPH06231933A (en) Manufacture of junction ferrite
US5034285A (en) Magnetic head
JPS6314311A (en) Magnetic head
JPH02121309A (en) Manufacture of fe-si-al magnetic core and magnetic head using same
JPH06120023A (en) Manufacture of bonded ferrite
JP2799238B2 (en) Method for producing Mn-Zn ferrite joined body
JPH07133165A (en) Production of joined ferrite
JP3284638B2 (en) Manufacturing method of bonded ferrite
JPS6156185B2 (en)
JPH05258939A (en) Bonded ferrite
JPH0855713A (en) Manufacture of composite magnetic material
JPH05251226A (en) Bonded ferrite
JPH0684125A (en) Manufacture for magnetic head
JP2682042B2 (en) Magnetic head
JP2862694B2 (en) Manufacturing method of composite ferrite
JPH07130526A (en) Manufacture of compound magnetic material
JPH09198610A (en) Production of joined ferrite for magnetic head
JP2862693B2 (en) Manufacturing method of composite ferrite
JPH02107577A (en) Production of joint ferrite
US5606479A (en) Magnetic head
JPH06244014A (en) Manufacture of composite magnetic material
JPH0512620A (en) Magnetic head

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020702