JPH06120023A - Manufacture of bonded ferrite - Google Patents

Manufacture of bonded ferrite

Info

Publication number
JPH06120023A
JPH06120023A JP4290919A JP29091992A JPH06120023A JP H06120023 A JPH06120023 A JP H06120023A JP 4290919 A JP4290919 A JP 4290919A JP 29091992 A JP29091992 A JP 29091992A JP H06120023 A JPH06120023 A JP H06120023A
Authority
JP
Japan
Prior art keywords
ferrite
polycrystal
single crystal
bonded
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4290919A
Other languages
Japanese (ja)
Inventor
Takashi Tamura
孝 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP4290919A priority Critical patent/JPH06120023A/en
Publication of JPH06120023A publication Critical patent/JPH06120023A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)
  • Soft Magnetic Materials (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a manufacturing method for a bonded ferrite which can be junctioned at a low temperature and its junction interface can also be flatly controlled. CONSTITUTION:In the manufacturing method for a bonded ferrite which is formed by bonding Mn-Zn ferrite single crystal and Mn-Zn ferrite polycrystal, Mn-Zn ferrite single crystal having the flatness per length of junction surface of 0.02mum/mm or less and Mn-Zn ferrite polycrystalline substrate is used for junction. Accordingly, sliding noise can be reduced on the magnetic head on which the above-mentioned bonded ferrite is used, and the irregularity in flatness can be made small. Also, as the bonding can be accomplished at the temperature at which the pores of HIP (highly efficient ferrite polycrystal) material are not closed, the HIP material can be used in a highly efficient state as Mn-Zn ferrite polycrystal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高性能VTR等に使わ
れる複合型磁気ヘッド等に用いられる接合フェライトの
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a bonded ferrite used in a composite type magnetic head used in a high performance VTR or the like.

【0002】[0002]

【従来の技術】近年、高性能なビデオヘッド等の磁気ヘ
ッドの磁気コアとして、Mn−Znフェライト単結晶に
替わり、フロントギャプ側にMn−Znフェライト単結
晶、バックギャプ側にMn−Znフェライト多結晶を配
して構成される接合フェライトが採用されている。前記
接合フェライトを磁気コアとして採用した磁気ヘッド
は、Mn−Znフェライト単結晶を磁気コアとした磁気
ヘッドと比較し、摺動ノイズが低く、S/N比が高い特
徴がある。このような接合フェライトは、Mn−Znフ
ェライト単結晶とMn−Znフェライト多結晶をそれぞ
れ作製し、続いて加圧しながら熱処理し接合する方法に
より製造されている。
2. Description of the Related Art In recent years, as magnetic cores for magnetic heads such as high-performance video heads, Mn-Zn ferrite single crystals have been replaced by Mn-Zn ferrite single crystals on the front gap side and Mn-Zn ferrite polycrystalline crystals on the back gap side. Adopted is a bonded ferrite configured by arranging. The magnetic head using the bonded ferrite as a magnetic core is characterized by lower sliding noise and a higher S / N ratio than a magnetic head using a magnetic core of Mn—Zn ferrite single crystal. Such a bonded ferrite is manufactured by a method in which a Mn-Zn ferrite single crystal and a Mn-Zn ferrite polycrystal are produced, respectively, and subsequently heat-treated while being pressed and bonded.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述の
接合フェライトの製造方法では、剥がれがなく十分な接
合強度を得るため、Mn−Znフェライト単結晶とMn
−Znフェライト多結晶の固相熱拡散を十分におこさせ
るため、Mn−Znフェライト単結晶とMn−Znフェ
ライト多結晶を直接接触させ、数MPaで加圧しながら
1200℃以上の高温で処理することが必要である。こ
のため、接合界面でMn−Znフェライト多結晶の粒成
長が起こり、接合界面が数μm〜数十μm乱れている。
この結果、前記製造方法で作製した接合フェライトを磁
気コアとした磁気ヘッドの摺動ノイズは、Mn−Znフ
ェライト単結晶を磁気コアとした磁気ヘッドと比較し、
十分に低いものの、バラツキが大きくなる問題が生じて
いる。
However, in the above-mentioned method for producing bonded ferrite, in order to obtain sufficient bonding strength without peeling, Mn-Zn ferrite single crystal and Mn-Zn ferrite single crystal are used.
In order to sufficiently cause the solid-phase thermal diffusion of the -Zn ferrite polycrystal, the Mn-Zn ferrite single crystal and the Mn-Zn ferrite polycrystal are brought into direct contact with each other and treated at a high temperature of 1200 ° C or higher while being pressurized at several MPa. is necessary. For this reason, grain growth of Mn—Zn ferrite polycrystal occurs at the bonding interface, and the bonding interface is disturbed by several μm to several tens of μm.
As a result, the sliding noise of the magnetic head using the bonded ferrite manufactured by the manufacturing method as the magnetic core was compared with that of the magnetic head using the Mn—Zn ferrite single crystal as the magnetic core.
Although it is sufficiently low, there is a problem of large variations.

【0004】また、Mn−Znフェライト多結晶として
加工性に優れた熱間等方圧プレス処理を施した高性能な
Mn−Znフェライト多結晶(以下、HIP材とす
る。)を用いて従来の接合フェライトの製造方法で接合
した場合、HIP材の気孔が戻るため、ヘッドチップの
加工時における寸法精度及びHIP材の特性が劣化して
しまう。そのため、従来の接合フェライトの製造方法で
は、HIP材を適用することはできない。そこで、本発
明は接合界面を平坦に制御するとともに、従来の接合温
度よりも低い温度で接合が可能な接合フェライトの製造
方法を提供することを目的とする。
Further, as a Mn-Zn ferrite polycrystal, a high-performance Mn-Zn ferrite polycrystal (hereinafter referred to as a HIP material) which has been hot-isostatically pressed with excellent workability is used. When bonded by the method of manufacturing the bonded ferrite, the pores of the HIP material are restored, so that the dimensional accuracy and the characteristics of the HIP material during processing of the head chip deteriorate. Therefore, the HIP material cannot be applied in the conventional method for producing bonded ferrite. Therefore, it is an object of the present invention to provide a method for producing a bonded ferrite that can control the bonding interface to be flat and can bond at a temperature lower than the conventional bonding temperature.

【0005】[0005]

【課題を解決するための手段】本発明は、Mn−Znフ
ェライト単結晶とMn−Znフェライト多結晶とを接合
してなる接合フェライトの製造方法において、接合面の
長さあたりの平坦度が0.02μm/mm以下のMn−
Znフェライト単結晶及びMn−Znフェライト多結晶
の基板を用い接合することを特徴とするものである。
According to the present invention, in a method for producing a bonded ferrite, which comprises bonding a Mn-Zn ferrite single crystal and a Mn-Zn ferrite polycrystal, the flatness per length of the bonded surface is 0. Mn− of not more than 0.02 μm / mm
It is characterized in that the substrates are made of a Zn ferrite single crystal and a Mn-Zn ferrite polycrystal.

【0006】[0006]

【作用】かかる本発明において、Mn−Znフェライト
単結晶及びMn−Znフェライト多結晶の接合面の長さ
あたりの平坦度が0.02μm/mm以下の基板を用い
ることにより、従来の接合フェライトの製造方法の接合
温度よりも低い温度で接合することが可能となるととも
に、接合界面を平坦に制御することも可能となる。この
ため、本発明の製造方法により作製した接合フェライト
を採用した磁気ヘッドは、従来の製造方法で作製した接
合フェライトを磁気コアとした磁気ヘッドと比較し、摺
動ノイズをより低減でき、かつバラツキを小さくするこ
とが可能となる。また、HIP材の気孔が戻らない温度
で接合が可能になるため、Mn−Znフェライト多結晶
としてHIP材を高性能なまま適用することが可能とな
る。
In the present invention, by using a substrate whose flatness per length of the joint surface of Mn-Zn ferrite single crystal and Mn-Zn ferrite polycrystal is 0.02 μm / mm or less, the conventional joint ferrite It becomes possible to join at a temperature lower than the joining temperature of the manufacturing method, and it is also possible to control the joining interface to be flat. Therefore, the magnetic head that uses the bonded ferrite manufactured by the manufacturing method of the present invention can reduce sliding noise more than the magnetic head in which the bonded ferrite manufactured by the conventional manufacturing method is used as the magnetic core, and the variation can be improved. Can be reduced. Further, since the bonding can be performed at a temperature at which the pores of the HIP material do not return, the HIP material can be applied as a Mn-Zn ferrite polycrystal while maintaining high performance.

【0007】[0007]

【実施例】以下、本発明を具体的な実施例により説明す
るが、本発明がこの実施例に限定されるものではないこ
とは言うまでもない。 〔実施例1〕先ず、Mn−Znフェライト多結晶を作製
した。即ち、Fe2 3 52.5モル%、ZnO 1
9.0モル%、MnO 28.5モル%からなるフェラ
イト原料粉を湿式混合し、これらを乾燥させた後、所定
のサイズのブロックにプレス成形し、続いて1300℃
の温度のもとで5時間かけて焼結し、Mn−Znフェラ
イト多結晶を得た。
EXAMPLES The present invention will be described below with reference to specific examples, but it goes without saying that the present invention is not limited to these examples. Example 1 First, a Mn-Zn ferrite polycrystal was produced. That is, Fe 2 O 3 52.5 mol%, ZnO 1
Ferrite raw material powder consisting of 9.0 mol% and MnO 28.5 mol% is wet-mixed, dried, and then press-molded into a block of a predetermined size, followed by 1300 ° C.
Sintering was performed for 5 hours under the temperature of 1 to obtain Mn-Zn ferrite polycrystal.

【0008】次に、Mn−Znフェライト単結晶を作製
した。即ち、上述のMn−Znフェライト多結晶の作製
方法と同様にMn−Znフェライト多結晶を作製し、得
られたMn−Znフェライト多結晶を公知のブリッジマ
ン法により白金ルツボ中で溶解させた後、先端部より単
結晶化させMn−Znフェライト単結晶を得た。
Next, a Mn-Zn ferrite single crystal was prepared. That is, after the Mn-Zn ferrite polycrystal was prepared in the same manner as the above Mn-Zn ferrite polycrystal, and the obtained Mn-Zn ferrite polycrystal was dissolved in a platinum crucible by the known Bridgman method. , And single crystallized from the tip to obtain Mn-Zn ferrite single crystal.

【0009】続いて、得られたMn−Znフェライト多
結晶とMn−Znフェライト単結晶よりおのおの30m
m×10mm×3mmの平板に加工し、30mm×10
mmの接合面を鏡面加工により、接合面の長さあたりの
平坦度が0.005μm/mm〜0.08μm/mmに
なるようにした。
Subsequently, each of the obtained Mn-Zn ferrite polycrystal and Mn-Zn ferrite single crystal was 30 m long.
Processed into a flat plate measuring 30 mm x 10 mm x 3 mm, 30 mm x 10
The joint surface of mm was mirror-finished so that the flatness per length of the joint surface was 0.005 μm / mm to 0.08 μm / mm.

【0010】そして、得られたMn−Znフェライト多
結晶及びMn−Znフェライト単結晶の基板を用いて、
Mn−Znフェライト多結晶の接合面とMn−Znフェ
ライト単結晶の接合面を接触させ、接触面の法線方向よ
り2MPaの圧力を加えながら、1体積%O2 −99体
積%N2 雰囲気のもと1000℃で2hr熱処理を行
い、接合面の長さあたりの平坦度と剥がれ率及び接合強
度の関係を検討した。ここで、剥がれ率とは、測定した
接合界面の長さに対する剥がれている部分の長さの割合
を示した。また、接合強度は四点曲げ試験により測定し
た。この結果を図1に示す。
Then, using the obtained Mn-Zn ferrite polycrystal and Mn-Zn ferrite single crystal substrates,
While contacting the bonding surface of the Mn-Zn ferrite polycrystal and the bonding surface of the Mn-Zn ferrite single crystal, and applying a pressure of 2 MPa from the normal direction of the contact surface, a 1 vol% O 2 -99 vol% N 2 atmosphere Originally, heat treatment was performed at 1000 ° C. for 2 hours, and the relationship between the flatness per length of the joint surface, the peeling rate, and the joint strength was examined. Here, the peeling rate indicates the ratio of the length of the peeled portion to the measured length of the bonding interface. The bonding strength was measured by a four-point bending test. The result is shown in FIG.

【0011】ところで、四点曲げ試験は、図2に示すよ
うな治具を使う。図2において、試験片4は、Mn−Z
nフェライト単結晶1とMn−Znフェライト多結晶2
を接合したもので、3は接合界面である。0.50mm
×0.33mm×4mmの試験片4を、接合界面3が治
具の上支持ロール8及び下支持ロール9の中央部になる
ように設置し、クロスヘッド速度0.1mm/minで
行なった。ここで、試験個数は、各試料について20個
とした。また、試験片の表面には、鏡面加工を施した。
尚、5は鋼球、6はガイド、7は荷重台、そして10は
支持台を示す。図1に示すように、接合面の長さあたり
の平坦度が0.02μm/mm以下の基板を用いること
により、従来の接合温度よりも低い温度で接合しても、
剥がれが無く、十分な接合強度を有する接合フェライト
が得られることが判明した。
By the way, in the four-point bending test, a jig as shown in FIG. 2 is used. In FIG. 2, the test piece 4 is Mn-Z.
n-ferrite single crystal 1 and Mn-Zn ferrite polycrystal 2
And 3 is a bonding interface. 0.50 mm
A test piece 4 of × 0.33 mm × 4 mm was set so that the bonding interface 3 was at the center of the upper support roll 8 and the lower support roll 9 of the jig, and the test was performed at a crosshead speed of 0.1 mm / min. Here, the number of tests was 20 for each sample. The surface of the test piece was mirror-finished.
In addition, 5 is a steel ball, 6 is a guide, 7 is a load stand, and 10 is a support stand. As shown in FIG. 1, by using a substrate having a flatness per length of the bonding surface of 0.02 μm / mm or less, even if bonding is performed at a temperature lower than the conventional bonding temperature,
It was found that bonded ferrite having sufficient bonding strength without peeling was obtained.

【0012】〔実施例2〕実施例1と同様な組成及び作
製法で、Mn−Znフェライト多結晶及びMn−Znフ
ェライト単結晶を作製した。続いて、得られたMn−Z
nフェライト多結晶とMn−Znフェライト単結晶より
おのおの30mm×10mm×3mmの平板に加工し、
30mm×10mmの接合面を鏡面加工により、接合面
の長さあたりの平坦度を0.01μm/mmとした。
Example 2 A Mn-Zn ferrite polycrystal and an Mn-Zn ferrite single crystal were produced by the same composition and production method as in Example 1. Then, the obtained Mn-Z
Each of the n-ferrite polycrystal and the Mn-Zn ferrite single crystal was processed into a flat plate of 30 mm × 10 mm × 3 mm,
The 30 mm × 10 mm joint surface was mirror-finished so that the flatness per length of the joint surface was 0.01 μm / mm.

【0013】その後、Mn−Znフェライト多結晶の接
合面とMn−Znフェライト単結晶の接合面を接触さ
せ、接触面の法線方向より2MPaの圧力を加えなが
ら、1体積%02 −99体積%N2 雰囲気のもと100
0℃で2hr熱処理を行い接合フェライトを得た。この
ようにして得られた接合フェライトの接合界面を顕微鏡
で観察した写真が図3である。図3より明らかなよう
に、従来の製造方法よりも200℃以上低い接合温度
で、剥がれが無く、しかも、接合界面が平坦であり乱れ
がない接合フェライトが得られた。
Thereafter, the joint surface of the Mn-Zn ferrite polycrystal and the joint surface of the Mn-Zn ferrite single crystal are brought into contact with each other, and a pressure of 2 MPa is applied from the normal line direction of the contact surface to 1% by volume 0 2 -99 volume. 100% under N 2 atmosphere
Heat treatment was performed at 0 ° C. for 2 hours to obtain a bonded ferrite. FIG. 3 is a photograph of the joint interface of the joint ferrite thus obtained, observed with a microscope. As is clear from FIG. 3, at a bonding temperature lower than the conventional manufacturing method by 200 ° C. or more, bonded ferrite having no peeling and a flat bonding interface and no disturbance was obtained.

【0014】〔実施例3〕実施例1と同様な組成及び作
製法で、Mn−Znフェライト多結晶及びMn−Znフ
ェライト単結晶を作製した。その後、Mn−Znフェラ
イト多結晶をArにより100MPaで加圧しながら、
1200℃で2hrHIP処理を行いHIP材を作製し
た。続いて、得られたHIP材とMn−Znフェライト
単結晶よりおのおの30mm×10mm×3mmの平板
に加工し、30mm×10mmの接合面を鏡面加工によ
り、接合面の長さあたりの平坦度を0.01μm/mm
とした。
[Example 3] A Mn-Zn ferrite polycrystal and a Mn-Zn ferrite single crystal were produced by the same composition and production method as in Example 1. Then, while pressing the Mn-Zn ferrite polycrystal with Ar at 100 MPa,
A HIP material was produced by performing a 2 hr HIP treatment at 1200 ° C. Subsequently, each of the obtained HIP material and Mn-Zn ferrite single crystal was processed into a flat plate of 30 mm × 10 mm × 3 mm, and the joint surface of 30 mm × 10 mm was mirror-finished so that the flatness per length of the joint surface was 0. 0.01 μm / mm
And

【0015】その後、Mn−Znフェライト単結晶の接
合面とHIP材の接合面を接触させ、接触面の法線方向
より2MPaの圧力を加えながら、1体積%O2 −99体積
%N2 雰囲気のもと1000℃で2hr熱処理を行い接
合フェライトを得た。このようにして得られた接合フェ
ライトの接合界面を顕微鏡で観察した写真が図4であ
る。図4より明らかなように、従来の製造方法よりも2
00℃以上低い接合温度で、剥がれが無く、しかも、接
合界面が平坦であり乱れがない接合フェライトが得られ
た。また、接合後、HIP材の気孔は戻っておらず平板
の寸法の変化は認められなかった。
After that, the bonding surface of the Mn-Zn ferrite single crystal and the bonding surface of the HIP material are brought into contact with each other, and a pressure of 2 MPa is applied from the normal line direction of the contact surface, and a 1 volume% O 2 -99 volume% N 2 atmosphere Then, heat treatment was performed at 1000 ° C. for 2 hours to obtain a bonded ferrite. FIG. 4 is a photograph of the joint interface of the joint ferrite thus obtained, observed with a microscope. As is clear from FIG. 4, it is more difficult than the conventional manufacturing method.
At a bonding temperature of 00 ° C. or lower, bonded ferrite having no peeling and having a flat bonding interface and no disorder was obtained. Further, after joining, the pores of the HIP material did not return and no change in the dimensions of the flat plate was observed.

【0016】以上述べてきたように、Mn−Znフェラ
イト単結晶とMn−Znフェライト多結晶とを接合して
なる接合フェライトの製造方法において、接合面の長さ
あたりの平坦度が0.02μm/mm以下のMn−Zn
フェライト単結晶及びMn−Znフェライト多結晶の基
板を用い接合することにより、接合温度を低くでき、し
かも、接合界面を平坦に制御することができた。
As described above, in the method for producing a bonded ferrite obtained by bonding a Mn-Zn ferrite single crystal and a Mn-Zn ferrite polycrystal, the flatness per length of the bonded surface is 0.02 μm / mm or less Mn-Zn
By joining using the ferrite single crystal and Mn-Zn ferrite polycrystal substrates, the joining temperature could be lowered and the joining interface could be controlled to be flat.

【0017】尚、上述実施例においては、Mn−Znフ
ェライト多結晶及びMn−Znフェライト単結晶の作製
時の原料粉の混合割合を、Fe2 3 を52.5モル
%、ZnOを19.0モル%、MnOを28.5モル%
とした場合について述べたが、この混合割合はFe2
3 が50.0〜65.0モル%、ZnOが5.0〜3
0.0モル%、MnOが5.0〜45.0モル%の範囲
で任意に設定することができ、この場合にも上述同様の
作用効果を得ることができる。
In the above examples, the mixing ratios of the raw material powders at the time of producing the Mn-Zn ferrite polycrystal and the Mn-Zn ferrite single crystal were 52.5 mol% for Fe 2 O 3 and 19 for ZnO. 0 mol%, MnO 28.5 mol%
However, the mixing ratio is Fe 2 O.
3 is 50.0 to 65.0 mol% and ZnO is 5.0 to 3
0.0 mol% and MnO can be arbitrarily set in the range of 5.0 to 45.0 mol%, and in this case, the same function and effect as described above can be obtained.

【0018】また、必要に応じて前記混合割合の組成
に、Fe2 3 、ZnO及びMnO以外の酸化物の中、
1種類以上を0.01重量%以上1重量%以下添加した
場合でも上述同様の作用効果を得ることができる。
If necessary, the composition of the above mixing ratio may be adjusted to any of oxides other than Fe 2 O 3 , ZnO and MnO,
Even when one or more kinds are added in an amount of 0.01% by weight or more and 1% by weight or less, the same effects as described above can be obtained.

【0019】[0019]

【発明の効果】本発明に依れば、Mn−Znフェライト
単結晶とMn−Znフェライト多結晶の接合面の長さあ
たりの平坦度が0.02μm/mm以下の基板を用いる
ことにより、従来の接合フェライトの製造方法の接合温
度よりも低い温度で接合することが可能となるととも
に、接合界面を平坦に制御することも可能となる。この
ため、本発明の製造方法により作製した接合フェライト
を採用した磁気ヘッドは、従来の製造方法で作製した接
合フェライトを磁気コアとした磁気ヘッドと比較し、摺
動ノイズをより低減でき、かつバラツキを小さくするこ
とが可能となる。また、HIP材の気孔が戻らない温度
で接合が可能になるため、Mn−Znフェライト多結晶
として、HIP材を高性能なまま適用することが可能と
なる。
According to the present invention, the flatness per unit length of the joint surface of the Mn-Zn ferrite single crystal and the Mn-Zn ferrite polycrystal is 0.02 .mu.m / mm or less. It becomes possible to perform the joining at a temperature lower than the joining temperature of the method for producing the joined ferrite of (1), and it is also possible to control the joining interface to be flat. Therefore, the magnetic head that uses the bonded ferrite manufactured by the manufacturing method of the present invention can reduce sliding noise more than the magnetic head in which the bonded ferrite manufactured by the conventional manufacturing method is used as the magnetic core, and the variation can be improved. Can be reduced. Further, since the bonding can be performed at a temperature at which the pores of the HIP material do not return, it is possible to apply the HIP material as a Mn-Zn ferrite polycrystal with high performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】接合面の長さあたりの平坦度と剥がれ率及び接
合強度の関係を示す図である。
FIG. 1 is a diagram showing a relationship between a flatness per length of a joint surface, a peeling rate, and a joint strength.

【図2】四点曲げ試験の治具と試料の設置位置を示す模
式図である。
FIG. 2 is a schematic diagram showing a jig and a sample installation position for a four-point bending test.

【図3】接合面の長さあたりの平坦度が0.01μm/
mmのMn−Znフェライト単結晶とMn−Znフェラ
イト多結晶の基板を用い接合して得られた接合フェライ
トの接合界面の顕微鏡写真図である。
FIG. 3 is a flatness per length of a joint surface of 0.01 μm /
It is a microscope picture figure of the joining interface of the joining ferrite obtained by joining using the substrate of Mn-Zn ferrite single crystal of mm, and Mn-Zn ferrite polycrystal.

【図4】接合面の長さあたりの平坦度が0.01μm/
mmのMn−Znフェライト単結晶とHIP材の基板を
用い接合して得られた接合フェライトの接合界面の顕微
鏡写真図である。
FIG. 4 is a flatness per length of a joint surface of 0.01 μm /
It is a microscope picture figure of the joining interface of the joining ferrite obtained by joining using a substrate of a Mn-Zn ferrite single crystal of mm, and a HIP material.

【符号の説明】[Explanation of symbols]

1 Mn−Znフェライト単結晶 2 Mn−Znフェライト多結晶 3 接合界面 4 試験片 5 鋼球 6 ガイド 7 荷重台 8 上支持ロール 9 下支持ロール 10 支持台 DESCRIPTION OF SYMBOLS 1 Mn-Zn ferrite single crystal 2 Mn-Zn ferrite polycrystal 3 Bonding interface 4 Test piece 5 Steel ball 6 Guide 7 Load platform 8 Upper support roll 9 Lower support roll 10 Support platform

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Mn−Znフェライト単結晶とMn−Z
nフェライト多結晶とを接合してなる接合フェライトの
製造方法において、接合面の長さあたりの平坦度が0.
02μm/mm以下のMn−Znフェライト単結晶及び
Mn−Znフェライト多結晶の基板を用いて接合するこ
とを特徴とする接合フェライトの製造方法。
1. A Mn-Zn ferrite single crystal and Mn-Z.
In a method for producing a bonded ferrite formed by bonding an n-ferrite polycrystal, the flatness per length of the bonded surface is 0.
A method for producing a bonded ferrite, which comprises bonding using a substrate of Mn-Zn ferrite single crystal and Mn-Zn ferrite polycrystalline having a thickness of 02 µm / mm or less.
JP4290919A 1992-10-06 1992-10-06 Manufacture of bonded ferrite Pending JPH06120023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4290919A JPH06120023A (en) 1992-10-06 1992-10-06 Manufacture of bonded ferrite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4290919A JPH06120023A (en) 1992-10-06 1992-10-06 Manufacture of bonded ferrite

Publications (1)

Publication Number Publication Date
JPH06120023A true JPH06120023A (en) 1994-04-28

Family

ID=17762212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4290919A Pending JPH06120023A (en) 1992-10-06 1992-10-06 Manufacture of bonded ferrite

Country Status (1)

Country Link
JP (1) JPH06120023A (en)

Similar Documents

Publication Publication Date Title
JP2003505316A (en) Method for growing single crystal of barium titanate and barium titanate solid solution
US20060078670A1 (en) Oxide superconductor thick film and method for manufacturing the same
JPH06120023A (en) Manufacture of bonded ferrite
JPH06128047A (en) Production of joined ferrite
JPS6314311A (en) Magnetic head
JPH07133165A (en) Production of joined ferrite
JP3284638B2 (en) Manufacturing method of bonded ferrite
JPH06231933A (en) Manufacture of junction ferrite
JPS5950618B2 (en) Manufacturing method of ferrite element assembly
JPH05258939A (en) Bonded ferrite
JP2799238B2 (en) Method for producing Mn-Zn ferrite joined body
JPH02121309A (en) Manufacture of fe-si-al magnetic core and magnetic head using same
JPH0855713A (en) Manufacture of composite magnetic material
JPH09198610A (en) Production of joined ferrite for magnetic head
JPH07130526A (en) Manufacture of compound magnetic material
JP2770432B2 (en) Manufacturing method of bonded ferrite
JPH05275226A (en) Manufacture of junction ferrite
JPH0336798B2 (en)
JPH06244014A (en) Manufacture of composite magnetic material
JP2862694B2 (en) Manufacturing method of composite ferrite
EP0490345A1 (en) Non-magnetic substrate of magnetic head, Magnetic head and method for producing substrate
JP2639513B2 (en) Oxide superconducting magnetic shield and manufacturing method thereof
JPH02107577A (en) Production of joint ferrite
JPH09153203A (en) Joined ferrite for magnetic head
JPH0684125A (en) Manufacture for magnetic head

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020326