JPH06224614A - Radome and its manufacture - Google Patents

Radome and its manufacture

Info

Publication number
JPH06224614A
JPH06224614A JP899993A JP899993A JPH06224614A JP H06224614 A JPH06224614 A JP H06224614A JP 899993 A JP899993 A JP 899993A JP 899993 A JP899993 A JP 899993A JP H06224614 A JPH06224614 A JP H06224614A
Authority
JP
Japan
Prior art keywords
radome
thickness
radio waves
relative dielectric
dielectric constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP899993A
Other languages
Japanese (ja)
Other versions
JP3246025B2 (en
Inventor
Kiyohiro Haga
清浩 芳賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP00899993A priority Critical patent/JP3246025B2/en
Publication of JPH06224614A publication Critical patent/JPH06224614A/en
Application granted granted Critical
Publication of JP3246025B2 publication Critical patent/JP3246025B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Details Of Aerials (AREA)

Abstract

PURPOSE:To propagate radio waves in-phase by varying the relative dielectric constant of each part so that the product of the square root of the relative dielectric constant and the thickness in the radio wave passing direction in each part is made constant so as to give the thickness of the radome to be easily processed. CONSTITUTION:Let thickness in the normal direction at incident points 5a, 5b of radio waves 3a, 3b of a radome 10 be 11a, 11b, thickness of the radome 10 in the passing direction of the radio waves 3a, 3b be 12a, 12b, and relative dielectric constants of the radome at the thickness of 12a, 12b, be 13, 14 respectively. Then the electric length of the radome 10 when the radio waves 3a, 3b pass therethrough is proportional to lambda/sq. rt. epsilon, where epsilon is the relative dielectric constant of the material and lambda is the wavelength of the radio wave. Thus, when the thickness 11a, 11b of the radome 10 in the normal direction is the same and the thickness 12a, 12b in the passing direction of a radio of a wave differs, the electric length is made equal by selecting the relative dielectric constants 13, 14 to be the relation of thickness 12a X square root of the relative dielectric constant 13 = thickness 12b X square root of the relative dielectric constant 14.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】セラミックス製のレドーム、特に
高速で飛翔するミサイル等に用いられるレドームおよび
その製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radome made of ceramics, particularly a radome used for missiles flying at high speed, and a method for manufacturing the radome.

【0002】[0002]

【従来の技術】図3は従来のレドームを示す断面図であ
る。図において、1はセラミックス製のレドームで、ア
ンテナ2の前面を覆うように、ドーム形に形成されてい
る。3a、3bはアンテナ2から出た同じ位相を持つ電
波、4a、4bはレドーム1の各部分における法線方向
に対する電波3a、3bの入射角度、5a、5bは電波
3a、3bがレドーム1と会合する入射点、6a、6b
は入射点5a、5bにおけるレドーム1の法線方向の厚
み、7a、7bはレドーム1内の電波3a、3bの通過
方向の厚み、8a、8bはレドーム1から出た電波、9
はレドーム1を出た後の位相面、15は中心軸である。
2. Description of the Related Art FIG. 3 is a sectional view showing a conventional radome. In the figure, reference numeral 1 denotes a ceramic radome, which is formed in a dome shape so as to cover the front surface of the antenna 2. 3a and 3b are radio waves having the same phase emitted from the antenna 2, 4a and 4b are incident angles of the radio waves 3a and 3b with respect to the normal direction in each part of the radome 1, and 5a and 5b are radio waves 3a and 3b which are associated with the radome 1. Incident point, 6a, 6b
Is the thickness of the radome 1 in the normal direction at the incident points 5a and 5b, 7a and 7b are the thicknesses of the radio waves 3a and 3b in the radome 1 in the passing direction, 8a and 8b are the radio waves emitted from the radome 1, and
Is the phase plane after leaving the radome 1, and 15 is the central axis.

【0003】次に動作について説明する。上記レドーム
1の材料(セラミック)の比誘電率εは一定であり、電
波3a、3b、8a、8bはレドーム1の通過前後と
も、図3において左から右に進行する。一般に電波3
a、3bがレドーム材料を通過する時の位相は、レドー
ム1の厚みに比例し、かつ1/(εの平方根)に比例す
るので、位相を変えるためには、厚みか誘電率のいずれ
かをコントロールする必要がある。
Next, the operation will be described. The relative permittivity ε of the material (ceramic) of the radome 1 is constant, and the radio waves 3a, 3b, 8a, 8b proceed from left to right in FIG. 3 before and after passing through the radome 1. Generally radio wave 3
Since the phase when a and 3b pass through the radome material is proportional to the thickness of the radome 1 and is proportional to 1 / (square root of ε), in order to change the phase, either the thickness or the dielectric constant should be set. Need to control.

【0004】図3において、アンテナ2から出た電波3
a、3bがレドーム1を通過する際、スネルの法則によ
り入射点5a、5bにおいて屈折が生じる。この時、電
波3a、3bの入射角度4a、4bが異なるため、レド
ーム1内の電波の通過方向の厚み7a、7bおよびその
角度も異なる。仮にレドーム1の法線方向の厚み6a、
6bを同じにすると、レドーム1の通過方向の厚み7
a、7bが異なることになり、誘電率は同じであるた
め、レドーム1を通過した後の電波8a、8bに位相の
ずれが生じ、所望の方向(この場合左から右)に電波が
進行しない。このため従来は図3に示すように、法線方
向の厚み6a、6bの厚みを変えて、電波の通過方向の
厚み7a、7bが同じになるように、レドーム1に機械
加工等の加工を施し、電波3a、3bと電波8a、8b
の向きが同じになる面、すなわち位相面9を得ている。
In FIG. 3, the radio wave 3 emitted from the antenna 2
When a and 3b pass through the radome 1, refraction occurs at the incident points 5a and 5b according to Snell's law. At this time, since the incident angles 4a and 4b of the radio waves 3a and 3b are different, the thicknesses 7a and 7b in the passage direction of the radio waves in the radome 1 and the angles thereof are also different. If the radome 1 has a thickness 6a in the normal direction,
If 6b is the same, the thickness of the radome 1 in the passing direction is 7
Since a and 7b are different and the dielectric constants are the same, a phase shift occurs in the radio waves 8a and 8b after passing through the radome 1, and the radio waves do not travel in the desired direction (left to right in this case). . For this reason, conventionally, as shown in FIG. 3, the radome 1 is machined such that the thicknesses 6a and 6b in the normal direction are changed so that the thicknesses 7a and 7b in the radio wave passing direction are the same. Giving, radio waves 3a, 3b and radio waves 8a, 8b
A surface having the same direction, that is, a phase surface 9 is obtained.

【0005】[0005]

【発明が解決しようとする課題】従来のレドームは以上
のように構成されているので、所望の方向に電波を進行
させるためには、レドームの法線方向の厚みを各部分で
変化させなければならず、部分毎に厚みを変化させる加
工には、高度な機械加工技術、高価な加工設備が必要で
あり、検査も難しくなるなどの問題点があった。この発
明は上記のような問題点を解消するためになされたもの
で、レドームの法線方向の厚みを同一にして、機械加工
等の製造を容易にすることが可能なレドームおよびその
製造方法を得ることを目的とする。
Since the conventional radome is constructed as described above, in order to propagate the radio wave in the desired direction, the thickness of the radome in the normal direction should be changed in each part. However, there is a problem in that the machining for changing the thickness for each part requires advanced machining technology and expensive machining equipment, which makes the inspection difficult. The present invention has been made to solve the above problems, and provides a radome and a method for manufacturing the radome which have the same thickness in the normal direction of the radome and can be easily manufactured by machining or the like. The purpose is to get.

【0006】[0006]

【課題を解決するための手段】本発明は次のレドームお
よびその製造方法である。 (1)アンテナの前面を覆うように構成されたセラミッ
クス製のレドームにおいて、各部における電波の通過方
向の厚みと比誘電率の平方根との積が一定となるよう
に、各部の比誘電率を変化させたレドーム。 (2)各部における法線方向の厚みをほぼ一定にした上
記(1)記載のレドーム。 (3)上記(1)または(2)記載のレドームの製造方
法において、セラミックス原料からなる成形体の各部の
焼結温度を変化させて焼結することにより、各部の比誘
電率を変化させるレドームの製造方法。
The present invention is the following radome and method for manufacturing the same. (1) In a ceramic radome configured to cover the front surface of the antenna, the relative permittivity of each part is changed so that the product of the thickness in the radio wave passing direction of each part and the square root of the relative permittivity becomes constant. The radome that made me. (2) The radome according to (1), wherein the thickness of each part in the normal direction is substantially constant. (3) In the method for producing a radome described in (1) or (2) above, a radome in which the relative dielectric constant of each part is changed by changing the sintering temperature of each part of a molded body made of a ceramics raw material and sintering. Manufacturing method.

【0007】[0007]

【作用】この発明の請求項1のレドームは、各部におけ
る電波の通過方向の厚みと比誘電率の平方根との積が一
定となっているため、各部における電気的な長さが一定
となり、所望の方向に同位相で電波が進行する。
In the radome according to claim 1 of the present invention, the product of the thickness of the radio wave passing direction and the square root of the relative permittivity in each part is constant, so that the electric length in each part is constant and the desired value is obtained. Radio waves travel in the same phase in the direction of.

【0008】この発明の請求項2のレドームは、各部に
おける法線方向の厚みがほぼ一定であるため、上記に加
え加工が容易になる。すなわちこの発明に係るレドーム
は、セラミックスを製造する際、焼結させる温度を変化
させて比誘電率の分布を変えることにより、レドームの
法線方向の厚みが同一になる。
In addition to the above, the radome according to the second aspect of the present invention has a substantially constant thickness in the direction of the normal line at each portion, so that the processing becomes easy. That is, in the radome according to the present invention, the thickness in the normal direction of the radome becomes the same by changing the sintering temperature and changing the distribution of the relative dielectric constant when manufacturing the ceramics.

【0009】この発明の請求項3のレドームの製造方法
においては、焼結温度を変化させることにより、各部の
比誘電率が変化し、簡単な操作により効率よく、目的と
するレドームが製造される。すなわちこの発明における
レドームは、セラミックスを焼結させる温度により比誘
電率が変わる特性を利用して、比誘電率の分布を与える
ことにより、見かけ上、電波がレドーム内を通る機械的
寸法が異なっても、位相の長さ(電気的な長さ(厚
み))が同じになる。
In the method for manufacturing a radome according to claim 3 of the present invention, the relative dielectric constant of each part is changed by changing the sintering temperature, and the desired radome can be manufactured efficiently by a simple operation. . That is, the radome according to the present invention utilizes the characteristic that the relative permittivity changes depending on the temperature at which the ceramics are sintered to give a distribution of the relative permittivity, so that the mechanical dimensions of radio waves passing through the radome are apparently different. Also, the phase length (electrical length (thickness)) is the same.

【0010】[0010]

【実施例】以下、本発明の実施例を図について説明す
る。図1は実施例のレドームを示す断面図であり、図に
おいて、図3と同符号は同一または相当部分を示す。1
0はレドーム、11a、11bは電波3a、3bの入射
点5a、5bにおける法線方向の厚み、12a、12b
は電波3a、3bの通過方向の厚み、13は厚み12a
が含まれる部分の比誘電率、14は厚み12bが含まれ
る部分の比誘電率である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view showing a radome of an embodiment. In the figure, the same symbols as in FIG. 3 indicate the same or corresponding parts. 1
0 is a radome, 11a and 11b are thicknesses in the normal direction at the incident points 5a and 5b of the radio waves 3a and 3b, and 12a and 12b.
Is the thickness of the radio waves 3a and 3b in the passing direction, and 13 is the thickness 12a.
Is the relative permittivity of the portion including, and 14 is the relative permittivity of the portion including the thickness 12b.

【0011】レドーム10を電波3a、3bが通過する
時の電気的な長さは、材料の比誘電率をεと電波の波長
をλとしたとき、λ/(εの平方根)に比例する。この
ためレドーム10のように法線方向の厚み11a、11
bが同じで、電波の通過方向の厚み12a、12bに違
いがある場合、比誘電率13と比誘電率14を次式
〔1〕のような関係を持つ値にすれば、電気的な長さは
同じになる。 厚み12a×比誘電率13の平方根=厚み12b×比誘
電率14の平方根………〔1〕
The electrical length when the radio waves 3a and 3b pass through the radome 10 is proportional to λ / (square root of ε) where ε is the relative permittivity of the material and λ is the wavelength of the radio wave. Therefore, like the radome 10, the thickness 11a, 11
When b is the same and the thicknesses 12a and 12b in the radio wave passing direction are different, if the relative permittivity 13 and the relative permittivity 14 are set to values having a relationship as in the following expression [1], the electrical length is increased. Will be the same. Thickness 12a × square root of relative permittivity 13 = thickness 12b × square root of relative permittivity 14 ... [1]

【0012】式〔1〕において、電波3a、3bの通過
方向の厚み12a、12bは既知であり、これにより比
誘電率13、14を導けばよい。以上のようにすれば、
電波3と電波8の向きが同じになる面、すなわち位相面
9を得ることができる。この比誘電率に分布を持たせる
には、セラミックスを焼き固める工程である焼結を行う
際、例えばフューズドシリカ(SiO2)のセラミック
スの場合、図2に示すように、焼結温度が高くなると比
誘電率が大きくなり、焼結温度が低くなると比誘電率が
小さくなる特性を利用すれば可能である。
In the formula [1], the thicknesses 12a and 12b in the passage direction of the radio waves 3a and 3b are known, and the relative permittivities 13 and 14 may be derived from them. With the above,
A plane in which the directions of the radio waves 3 and 8 are the same, that is, the phase plane 9 can be obtained. In order to make the relative permittivity have a distribution, when performing sintering, which is a step of baking and hardening ceramics, for example, in the case of fused silica (SiO 2 ) ceramics, the sintering temperature is high as shown in FIG. This can be achieved by utilizing the characteristic that the relative dielectric constant increases and the relative dielectric constant decreases as the sintering temperature decreases.

【0013】図2はフューズドシリカのセラミックスに
ついて、焼結温度と比誘電率の関係を示すグラフの一例
であり、焼結温度が高いほど、比誘電率が高くなること
を示している。図1において(厚み12a)>(厚み1
2b)であるから、式〔1〕より(比誘電率13)<
(比誘電率14)となり、レドーム10の中心軸15に
近いほど比誘電率を高くする必要がある。
FIG. 2 is an example of a graph showing the relationship between the sintering temperature and the relative permittivity for the fused silica ceramics, and shows that the higher the sintering temperature, the higher the relative permittivity. In FIG. 1, (thickness 12a)> (thickness 1
Since it is 2b), from the formula [1] (relative permittivity 13) <
(Relative permittivity 14), and the closer to the central axis 15 of the radome 10, it is necessary to increase the relative permittivity.

【0014】このためレドーム10の中心軸15に近い
部分ほど焼結温度を高くし、周辺部に近い部分ほど焼結
温度を低くすることにより、上記のように比誘電率を変
化させることができる。例えば図1のレドーム10に図
2のセラミックスを用いる場合、中心軸15付近の焼結
温度を1280℃、周辺部の焼結温度を1220℃、両
者の中間部における焼結温度を1250℃にすると、法
線方向の厚み11a、11bが同じ場合に、(電波通過
方向の厚み12a、12b)×(比誘電率13、14の
平方根)が等しくなり、レドーム10の各部における電
気的な長さが同じになり、位相面9が得られる。
Therefore, the relative dielectric constant can be changed as described above by increasing the sintering temperature closer to the central axis 15 of the radome 10 and lowering the sintering temperature closer to the peripheral portion. . For example, when the ceramic of FIG. 2 is used for the radome 10 of FIG. 1, the sintering temperature near the central axis 15 is 1280 ° C., the sintering temperature of the peripheral portion is 1220 ° C., and the sintering temperature of the intermediate portion between them is 1250 ° C. , When the thicknesses 11a and 11b in the normal direction are the same, (the thicknesses 12a and 12b in the radio wave passing direction) × (the square root of the relative permittivity 13 and 14) are equal, and the electrical length in each part of the radome 10 is equal. It becomes the same, and the phase plane 9 is obtained.

【0015】上記のようなレドーム10は、セラミック
スの粉末原料を法線方向の厚み11a、11bが一定と
なるように成形後、前記の温度分布、すなわち中心軸1
5付近が高く、周辺部に行くほど低くなるような温度分
布に制御された焼結炉で焼結することにより製造され
る。上記のような温度分布に制御するには、中心軸15
付近の加熱源を密に配置したり、あるいは中心軸15側
から周辺部に向けて高温ガスが流れるように焼結炉を構
成することにより、焼結温度を正確に制御することが可
能である。
The radome 10 as described above is formed by molding a ceramic powder raw material so that the thicknesses 11a and 11b in the normal direction are constant, and then the temperature distribution, that is, the central axis 1 is formed.
It is manufactured by sintering in a sintering furnace whose temperature distribution is controlled such that the temperature is high around 5 and decreases toward the periphery. To control the temperature distribution as described above, the central axis 15
It is possible to precisely control the sintering temperature by disposing the heating sources in the vicinity densely or by configuring the sintering furnace so that the high temperature gas flows from the central shaft 15 side toward the peripheral portion. .

【0016】こうして製造されたレドーム10は、図1
のように配置して、図3の場合とほぼ同様に使用され
る。このときアンテナ2から出る電波3a、3bは、図
1の経路を通って、左から右に同じ位相で進行する。
The radome 10 thus manufactured is shown in FIG.
Are used in the same manner as in the case of FIG. At this time, the radio waves 3a and 3b emitted from the antenna 2 travel in the same phase from left to right through the route of FIG.

【0017】上記のレドーム10は法線方向の厚み11
a、11bが同じであるため、機械加工が容易であり、
高度の機械加工技術、あるいは高価な加工設備は要求さ
れず、検査も容易である。そしてこのような場合でも、
簡単な操作により、各部の電気的長さが同じになり、同
位相で電波を進行させることができる。
The radome 10 has a thickness 11 in the normal direction.
Since a and 11b are the same, machining is easy,
No advanced machining technology or expensive processing equipment is required, and inspection is easy. And even in this case,
With a simple operation, the electric lengths of the respective parts become the same, and the radio waves can travel in the same phase.

【0018】ところでレドーム10を加工する際、各部
を完全に同じ厚みにすることは非常に困難であり、実際
には、例えば±0.5mm程度の寸法公差で加工するこ
とになる。このため図1のレドーム10のような曲面形
状の加工においては、通常加工位置によって公差にバラ
ツキが生じることがあり、例えば曲率の大小により、公
差がプラス側またはマイナス側に変化する。従ってこの
公差を事前に把握し、前記式〔1〕を用いて、その厚み
に合わせて比誘電率を変化させることができ、これによ
り上記実施例と同様の効果を奏する。
By the way, when the radome 10 is processed, it is very difficult to make each part to have the same thickness, and in practice, it is processed with a dimensional tolerance of, for example, about ± 0.5 mm. Therefore, in the processing of a curved surface such as the radome 10 in FIG. 1, the tolerance may vary depending on the normal processing position. For example, the tolerance changes to the plus side or the minus side depending on the size of the curvature. Therefore, this tolerance can be grasped in advance, and the relative permittivity can be changed according to the thickness by using the above formula [1], and the same effect as that of the above-mentioned embodiment can be obtained.

【0019】[0019]

【発明の効果】この発明の請求項1のレドームは、各部
の比誘電率に分布を与えたので、レドームの厚みを加工
しやすい形状にすることができ、その場合でも同位相で
電波を進行させることが可能なレドームを得ることがで
きる。
In the radome according to claim 1 of the present invention, since the relative permittivity of each part is distributed, it is possible to make the thickness of the radome easy to process, and even in that case, the radio waves travel in the same phase. A radome capable of being obtained can be obtained.

【0020】この発明な請求項2のレドームは、各部に
おける法線方向の厚みをほぼ一定にしたので、特に加工
が容易であり、安価な装置と簡単な操作により、レドー
ムを得ることができる。
In the radome according to the second aspect of the present invention, the thickness of each part in the direction of the normal line is substantially constant, so that the radome can be obtained particularly easily by processing and with an inexpensive device and a simple operation.

【0021】この発明の請求項3のレドームの製造方法
によれば、焼結温度を変化させることにより、各部の比
誘電率を変化させるようにしたので、簡単な操作によ
り、効率よく目的とするレドームを製造することができ
る。
According to the radome manufacturing method of the third aspect of the present invention, the relative permittivity of each part is changed by changing the sintering temperature. A radome can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例のレドームの断面図である。FIG. 1 is a sectional view of a radome of an embodiment.

【図2】フューズドシリカの焼結温度と比誘電率の関係
を示すグラフである。
FIG. 2 is a graph showing the relationship between the sintering temperature of fused silica and the relative dielectric constant.

【図3】従来のレドームの断面図である。FIG. 3 is a sectional view of a conventional radome.

【符号の説明】[Explanation of symbols]

1、10 レドーム 2 アンテナ 3a、3b、8a、8b 電波 4a、4b 入射角度 5a、5b 入射点 6a、6b、11a、11b 法線方向の厚み 7a、7b、12a、12b 電波の通過方向の厚み 9 位相面 13、14 比誘電率 15 中心軸 1, 10 Radome 2 Antennas 3a, 3b, 8a, 8b Radio waves 4a, 4b Incident angles 5a, 5b Incident points 6a, 6b, 11a, 11b Thickness in normal direction 7a, 7b, 12a, 12b Thickness in radio wave passage direction 9 Phase plane 13, 14 Relative permittivity 15 Central axis

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 アンテナの前面を覆うように構成された
セラミックス製のレドームにおいて、各部における電波
の通過方向の厚みと比誘電率の平方根との積が一定とな
るように、各部の比誘電率を変化させたことを特徴とす
るレドーム。
1. In a ceramic radome configured to cover the front surface of an antenna, the relative permittivity of each part is set so that the product of the thickness of the radio wave passing direction in each part and the square root of the relative permittivity is constant. A radome that is characterized by changing.
【請求項2】 各部における法線方向の厚みをほぼ一定
にしたことを特徴とする請求項1記載のレドーム。
2. The radome according to claim 1, wherein the thickness of each part in the normal direction is substantially constant.
【請求項3】 請求項1または2記載のレドームの製造
方法において、セラミックス原料からなる成形体の各部
の焼結温度を変化させて焼結することにより、各部の比
誘電率を変化させることを特徴とするレドームの製造方
法。
3. The method for manufacturing a radome according to claim 1 or 2, wherein the relative dielectric constant of each part is changed by changing the sintering temperature of each part of the molded body made of a ceramic raw material and sintering. Characteristic radome manufacturing method.
JP00899993A 1993-01-22 1993-01-22 Radome and method of manufacturing the same Expired - Fee Related JP3246025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00899993A JP3246025B2 (en) 1993-01-22 1993-01-22 Radome and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00899993A JP3246025B2 (en) 1993-01-22 1993-01-22 Radome and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH06224614A true JPH06224614A (en) 1994-08-12
JP3246025B2 JP3246025B2 (en) 2002-01-15

Family

ID=11708387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00899993A Expired - Fee Related JP3246025B2 (en) 1993-01-22 1993-01-22 Radome and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3246025B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008061192A (en) * 2006-09-04 2008-03-13 Toyota Motor Corp Antenna system
JP2009156705A (en) * 2007-12-26 2009-07-16 Toyota Motor Corp Covering structure of in-vehicle radar device
JP2009218993A (en) * 2008-03-12 2009-09-24 Nippon Dengyo Kosaku Co Ltd Antenna device and array antenna
EP2151888A1 (en) * 2008-08-01 2010-02-10 Audi AG Radome for a radar sensor in a motor vehicle
WO2012133210A1 (en) * 2011-03-31 2012-10-04 古河電気工業株式会社 Wide-coverage radar device
EP2717381A1 (en) * 2012-10-02 2014-04-09 Delphi Technologies, Inc. Radome for a radar sensor assembly
JP2018152635A (en) * 2017-03-09 2018-09-27 三菱電機株式会社 Radome for flying body and design method of the same
WO2024053229A1 (en) * 2022-09-06 2024-03-14 日立Astemo株式会社 Cover for radar device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008061192A (en) * 2006-09-04 2008-03-13 Toyota Motor Corp Antenna system
JP4557177B2 (en) * 2006-09-04 2010-10-06 トヨタ自動車株式会社 Antenna device
US8044870B2 (en) 2006-09-04 2011-10-25 Toyota Jidosha Kabushiki Kaisha Antenna apparatus
JP2009156705A (en) * 2007-12-26 2009-07-16 Toyota Motor Corp Covering structure of in-vehicle radar device
JP2009218993A (en) * 2008-03-12 2009-09-24 Nippon Dengyo Kosaku Co Ltd Antenna device and array antenna
EP2151888A1 (en) * 2008-08-01 2010-02-10 Audi AG Radome for a radar sensor in a motor vehicle
WO2012133210A1 (en) * 2011-03-31 2012-10-04 古河電気工業株式会社 Wide-coverage radar device
EP2717381A1 (en) * 2012-10-02 2014-04-09 Delphi Technologies, Inc. Radome for a radar sensor assembly
JP2018152635A (en) * 2017-03-09 2018-09-27 三菱電機株式会社 Radome for flying body and design method of the same
WO2024053229A1 (en) * 2022-09-06 2024-03-14 日立Astemo株式会社 Cover for radar device

Also Published As

Publication number Publication date
JP3246025B2 (en) 2002-01-15

Similar Documents

Publication Publication Date Title
JPH06224614A (en) Radome and its manufacture
KR20020041336A (en) Ablative method for forming RF ceramic block filters
Teniente et al. 3-D printed horn antennas and components performance for space and telecommunications
JPH0211163B2 (en)
US4154788A (en) Process for making a plastic antenna reflector
JPH04221812A (en) Thin film transformer for high frequency
Kokkonen et al. An ultralow-loss and lightweight cellulose-coated silica foam for planar fresnel zone plate lens applications in future 6G devices
JPS5922403A (en) Electromagnetic lens for horn antenna
JPH03104402A (en) Dielectric lens antenna
CN211208672U (en) Radiation component, waveguide antenna subarray and waveguide array antenna
TR201921786A1 (en) A METHOD FOR MANUFACTURING MULTILAYER CERAMIC STRUCTURES BY HEAT SPRAY
WO2001048856A1 (en) Multi-layer microwave resonator
JP3122025B2 (en) Plate type dielectric lens structure and manufacturing method thereof
JPH02260803A (en) Log periodic dipole antenna
JPH09181523A (en) Luneberg lens
Mikhailov Radiation of a flat waveguide closed by molted heat protection
Zhang et al. 3D-printed Fresnel zone plate lens
CN108461957A (en) Millimeter wave connector structure
JP7303063B2 (en) Resonator and manufacturing method
Arya et al. 3D-printed millimeter wave lens antenna
JPS6143287Y2 (en)
JPS63123204A (en) Manufacture of antenna
JP4038169B2 (en) Method for manufacturing dielectric resonator
CA1098182A (en) Method for forming a drive hole in arc plasma spray fabricated ferrite phasors
JPH02186807A (en) Heat resistant spiral antenna

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees