JPS5922403A - Electromagnetic lens for horn antenna - Google Patents

Electromagnetic lens for horn antenna

Info

Publication number
JPS5922403A
JPS5922403A JP13154582A JP13154582A JPS5922403A JP S5922403 A JPS5922403 A JP S5922403A JP 13154582 A JP13154582 A JP 13154582A JP 13154582 A JP13154582 A JP 13154582A JP S5922403 A JPS5922403 A JP S5922403A
Authority
JP
Japan
Prior art keywords
radio wave
lens
axial line
curved surface
horn antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13154582A
Other languages
Japanese (ja)
Inventor
Jun Ebihara
蛯原 潤
Akira Egawa
明 江川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP13154582A priority Critical patent/JPS5922403A/en
Publication of JPS5922403A publication Critical patent/JPS5922403A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • H01Q19/08Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens for modifying the radiation pattern of a radiating horn in which it is located

Landscapes

  • Aerials With Secondary Devices (AREA)

Abstract

PURPOSE:To reduce possibly a reflecting loss, by forming concentrically many recessed grooves having a depth being 1/4 of the operating wavelength to the center axial line of a curved surface. CONSTITUTION:Many recessed grooves 111-11n are formed concentrically to the center axial line (l) of the curved surface of an electromagnetic lens 10 so that side face is provided along the axial line (l) and the other side face is placed with an angle of 45 deg. to said axial line (l), and the depth (d) in the direction of said axial line (l) is set to lambda/4 (where; lambda is the operating wavelength). When a ratio wave is made incident to the lens 10, the radio wave reflected at the bottom of the recessed grooves 111-11n is cancelled by a radio wave incident to the top.

Description

【発明の詳細な説明】 本発明は、ホーンアンテナ用の電波レンズに関するO 開口面アンテナの一種であるホーンアンテナは、この0
点より輻射された電波は球面波としてホーン1の内部を
進行するので、ホーン開口面における電波の位相にズレ
を生じる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a radio wave lens for a horn antenna.
Since the radio waves radiated from the point travel inside the horn 1 as spherical waves, the phase of the radio waves at the horn aperture is shifted.

そこで従来、同図に示すようにホーン1の開口部にテフ
ロン等の誘電体からなる電波レンズ2を配置し、これに
よって上記位相ズレを補正するようにしている。すなわ
ちこの電波レンズ2は、たとえば経路OAA’と経路O
BB’を通過した電波を開口面4(レンズ平坦面)に同
一時間で到達させる作用をなすので、それらの電波の開
口面4における位相を合わせることができる。
Conventionally, as shown in the figure, a radio wave lens 2 made of a dielectric material such as Teflon is placed in the opening of the horn 1, thereby correcting the phase shift. In other words, this radio wave lens 2 is connected to the path OAA' and the path O, for example.
Since the radio waves passing through BB' reach the aperture surface 4 (lens flat surface) at the same time, the phases of the radio waves at the aperture surface 4 can be matched.

ところで、かかる電波レンズ2を備えたホーンアンテナ
において、電波の放射に寄与する有効開口面をホーン長
を変えることなく大きくするためには、レンズ2の厚み
を増せばよいが、かくすると下記する理由によりアンテ
ナの能率が低下する。
By the way, in a horn antenna equipped with such a radio wave lens 2, in order to increase the effective aperture surface that contributes to radio wave radiation without changing the horn length, it is sufficient to increase the thickness of the lens 2. This reduces the efficiency of the antenna.

すなわち、上記レンズ20表面では、電力の反射を生じ
、該電波の入射面に電界ベクトルが平行および垂直な場
合の各電力反射係数I′1′およびF2′は、電波入射
時点での法線と空気中における電波の進行方向とのなす
角(入射角)をφとすると、 と表わされる。そして17”II、+7’!+は、たと
上記レンズ2の厚みを増すと、該レンズの曲面の曲率が
太きく外シ、それに伴って上記入射角φも大きくなる。
That is, on the surface of the lens 20, power is reflected, and when the electric field vector is parallel and perpendicular to the plane of incidence of the radio wave, the power reflection coefficients I'1' and F2' are equal to the normal line at the time of incidence of the radio wave. If the angle (incident angle) between the radio wave in the air and the direction of travel is φ, it is expressed as follows. 17''II, +7'!+, as the thickness of the lens 2 increases, the curvature of the curved surface of the lens becomes thicker, and the incident angle φ also increases accordingly.

第2図、に示したグラフから明らかなとおシ、入射角φ
が大きくなると上記電力反射係数が大きくなシ、その結
果いわゆる電力反射損が増大する。
It is clear from the graph shown in Figure 2 that the incident angle φ
When the power reflection coefficient becomes large, the power reflection coefficient becomes large, and as a result, the so-called power reflection loss increases.

本発明の目的は、上記反射損を可及的に低減しうる電波
レンズを提供することにある。
An object of the present invention is to provide a radio wave lens that can reduce the reflection loss as much as possible.

そのため本発明においては、曲面に使用波長の1/4の
深さを有する多数の凹溝を該曲面の中心軸線に対し同心
状に形成している。
Therefore, in the present invention, a large number of grooves having a depth of 1/4 of the wavelength used are formed in the curved surface concentrically with respect to the central axis of the curved surface.

を詳細に説明する。will be explained in detail.

第3図、第4図および第5図は、本発明に係るホーンア
ンテナ用電波レンズの一実施例を示した平面図、側面図
および第4図のA−A線による断面図である。
3, 4, and 5 are a plan view, a side view, and a sectional view taken along the line A--A in FIG. 4, showing an embodiment of a radio wave lens for a horn antenna according to the present invention.

同各図に示す如くこの電波レンズ10は、その曲面に該
レンズ10の中心軸@lに対し同心状となる態様で多数
の凹溝IIl、 11* 、・・・lln を形成しで
ある。
As shown in the figures, this radio wave lens 10 has a large number of concave grooves IIl, 11*, .

上記凹溝1b〜llnは、その−側面が上記軸線lに沿
い、他側面が該軸線lに対し45°Iの角度をなすよう
に形成され、かつ上記軸線l方向の深さdがλ/4(λ
は使用波長)K設定されている。
The concave grooves 1b to lln are formed such that one side surface thereof is along the axis l, the other side is at an angle of 45°I with respect to the axis l, and the depth d in the direction of the axis l is λ/ 4(λ
is the used wavelength) K is set.

なお、このレンズ10は、上記各凹溝11+〜llnの
底部を結ぶプロフィールが通常使用されている電波レン
ズの曲面形状と合致するように形成されている。
The lens 10 is formed so that the profile connecting the bottoms of the grooves 11+ to lln matches the curved shape of a commonly used radio wave lens.

上記構成を有する本発明に係る電波レンイは、第1図に
示したレンズ2と同様の態様で同図に示すホーンlの開
口部に配設固定される。
The radio wave lens according to the present invention having the above configuration is arranged and fixed in the opening of the horn l shown in FIG. 1 in the same manner as the lens 2 shown in FIG.

いまこのレンズ10に第1図に示した仮想波源0より電
波が入射されると、上記凹溝11+〜llnの底部で反
射された電波が頂部に入射した電波によりて打消されろ
。すなわち、上記反射された電波は、上記凹溝の深さが
1/4λに設定されていることから上記頂部部分におい
て該頂部に入射した電波とλ/2だけ位相が異なること
になり、その結果打消される。
Now, when radio waves are incident on this lens 10 from the virtual wave source 0 shown in FIG. 1, the radio waves reflected at the bottoms of the grooves 11+ to lln are canceled by the radio waves incident on the tops. That is, since the depth of the groove is set to 1/4λ, the reflected radio wave has a phase difference of λ/2 at the top portion from the radio wave incident on the top. be canceled out.

このように上記各凹溝11!〜llnは、いわゆる整合
層とに作用するので、つまシ屈折率九で厚さ1/4λの
レンズブルーミングに相当するので、レンズ10の表面
にお秒る電力の反射損を低減させる。
In this way, each of the above grooves 11! Since ~lln acts on the so-called matching layer, it corresponds to lens blooming with a refractive index of 9 and a thickness of 1/4λ, thereby reducing the reflection loss of the electric power transmitted to the surface of the lens 10.

上記実施例では凹溝を断面三角状に形成しているが、断
面四角形に形成してもよく、また実施例とは異なる三角
形状を有する凹溝としてもよい。
In the above embodiment, the groove is formed to have a triangular cross section, but it may be formed to have a square cross section, or it may be formed to have a triangular shape different from that in the embodiment.

また凹溝111〜llnはその数を増す程反射撰の低減
効果が高い。
Further, as the number of grooves 111 to lln increases, the effect of reducing reflection becomes higher.

なお、上記実施例に示した形状の凹溝は、刃先45’の
1本のバイトを用いて形成しうるので、加工がきわめて
容易である。
Note that the groove having the shape shown in the above embodiment can be formed using a single cutting tool with the cutting edge 45', so that machining is extremely easy.

上記したように本発明に係る電波レンズによれば、その
曲面における電力反射損を軽減することができるので、
小型でかつ大きな有効開口面を要求されるホーンアンテ
ナ用電波レンズとして最適である。
As described above, according to the radio wave lens according to the present invention, the power reflection loss on the curved surface can be reduced.
It is ideal as a radio wave lens for horn antennas, which require a small size and a large effective aperture.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は電波レンズを付設した従来のホーンアンテナを
概念的に示した断面図、第2図は電波レンズの反射特性
を例示したグラフ、第3図および第4図は各々本発明に
係る電波レンズの一実施例を示した平面図および側面図
、第5図は第4図のA−A線による断面図である。 10・・・電波レンズ、−111〜lln・・凹溝。 第1図 第2図 IF7 入島寸自ダ 第4図 A 第5図
Fig. 1 is a cross-sectional view conceptually showing a conventional horn antenna equipped with a radio wave lens, Fig. 2 is a graph illustrating the reflection characteristics of the radio wave lens, and Figs. A plan view and a side view showing one embodiment of the lens, and FIG. 5 is a sectional view taken along line A--A in FIG. 4. 10...Radio wave lens, -111~lln...Concave groove. Figure 1 Figure 2 IF7 Irishima Sunjida Figure 4 A Figure 5

Claims (1)

【特許請求の範囲】 α)曲面に使用波長の1/4の深さを有する多数の凹溝
を該曲面の中心軸線に対し同心状に形成したことを特徴
とするホーンアンテナ用電波レンズ。 (2)上記凹溝を断面三角状に形成した特許請求の範囲
第(12項記載のホーンアンテナ用電波レンズ。
[Scope of Claims] α) A radio wave lens for a horn antenna, characterized in that a large number of concave grooves having a depth of 1/4 of the wavelength used are formed on a curved surface concentrically with respect to the central axis of the curved surface. (2) A radio wave lens for a horn antenna according to claim 12, wherein the groove is formed to have a triangular cross section.
JP13154582A 1982-07-28 1982-07-28 Electromagnetic lens for horn antenna Pending JPS5922403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13154582A JPS5922403A (en) 1982-07-28 1982-07-28 Electromagnetic lens for horn antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13154582A JPS5922403A (en) 1982-07-28 1982-07-28 Electromagnetic lens for horn antenna

Publications (1)

Publication Number Publication Date
JPS5922403A true JPS5922403A (en) 1984-02-04

Family

ID=15060579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13154582A Pending JPS5922403A (en) 1982-07-28 1982-07-28 Electromagnetic lens for horn antenna

Country Status (1)

Country Link
JP (1) JPS5922403A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4716360A (en) * 1985-08-16 1987-12-29 Advanced Moisture Technology, Inc. Moisture detector apparatus and method
US5606334A (en) * 1995-03-27 1997-02-25 Amarillas; Sal G. Integrated antenna for satellite and terrestrial broadcast reception
EP0810686A2 (en) * 1996-05-30 1997-12-03 Nec Corporation Lens antenna having an improved dielectric lens for reducing disturbances caused by internally reflected waves
JP2000022438A (en) * 1998-06-16 2000-01-21 Acer Inc Receiving having plural feeds and microwave correction lens
WO2004019443A1 (en) 2002-08-20 2004-03-04 Aerosat Corporation Communication system with broadband antenna
EP2515376A1 (en) * 2011-04-18 2012-10-24 VEGA Grieshaber KG Filling level measuring device antenna cover
US8427384B2 (en) 2007-09-13 2013-04-23 Aerosat Corporation Communication system with broadband antenna
US8797207B2 (en) 2011-04-18 2014-08-05 Vega Grieshaber Kg Filling level measuring device antenna cover

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4716360A (en) * 1985-08-16 1987-12-29 Advanced Moisture Technology, Inc. Moisture detector apparatus and method
US5606334A (en) * 1995-03-27 1997-02-25 Amarillas; Sal G. Integrated antenna for satellite and terrestrial broadcast reception
EP0810686A2 (en) * 1996-05-30 1997-12-03 Nec Corporation Lens antenna having an improved dielectric lens for reducing disturbances caused by internally reflected waves
EP0810686A3 (en) * 1996-05-30 2000-02-23 Nec Corporation Lens antenna having an improved dielectric lens for reducing disturbances caused by internally reflected waves
JP2000022438A (en) * 1998-06-16 2000-01-21 Acer Inc Receiving having plural feeds and microwave correction lens
EP1543579A1 (en) * 2002-08-20 2005-06-22 Aerosat Corporation Communication system with broadband antenna
WO2004019443A1 (en) 2002-08-20 2004-03-04 Aerosat Corporation Communication system with broadband antenna
US6950073B2 (en) 2002-08-20 2005-09-27 Aerosat Corporation Communication system with broadband antenna
US7403166B2 (en) 2002-08-20 2008-07-22 Aerosat Corporation Communication system with broadband antenna
US7791549B2 (en) 2002-08-20 2010-09-07 Aerosat Corporation Communication system with broadband antenna
US8427384B2 (en) 2007-09-13 2013-04-23 Aerosat Corporation Communication system with broadband antenna
EP2515376A1 (en) * 2011-04-18 2012-10-24 VEGA Grieshaber KG Filling level measuring device antenna cover
US8797207B2 (en) 2011-04-18 2014-08-05 Vega Grieshaber Kg Filling level measuring device antenna cover

Similar Documents

Publication Publication Date Title
US5952984A (en) Lens antenna having an improved dielectric lens for reducing disturbances caused by internally reflected waves
US4825216A (en) High efficiency optical limited scan antenna
US4021812A (en) Layered dielectric filter for sidelobe suppression
JPS5922403A (en) Electromagnetic lens for horn antenna
US4495506A (en) Image spatial filter
JPH0444843B2 (en)
JPS58219802A (en) Horn antenna
US4189731A (en) Radome with tilted dielectric strips
JP2002530911A (en) Stacked dielectric reflector for parabolic antenna
JPS6247361B2 (en)
US4847628A (en) Frequency independent constant beamwidth directional lens antenna for very wideband and multi-channel electromagnetic communications
US5075692A (en) Antenna system
US3576577A (en) Aerial radiating with different beamwidth in two perpendicular planes
US4176358A (en) Reflector antenna with matched feed system
JPH0680975B2 (en) Dielectric loaded array antenna
JPS5934163Y2 (en) Primary radiator for parabolic antenna
JP2592539B2 (en) Small antenna device
JPS62265Y2 (en)
JPS61117906A (en) Antenna system
JPH0248804A (en) Cassegrainian antenna
JPH04100302A (en) Multi-beam antenna
JPS59114906A (en) Antenna device
JPS5921202B2 (en) Linear antenna device for circularly polarized waves
JPS59169206A (en) Antenna device
JPS562704A (en) Fan-shaped beam antenna