JPS63123204A - Manufacture of antenna - Google Patents

Manufacture of antenna

Info

Publication number
JPS63123204A
JPS63123204A JP26923186A JP26923186A JPS63123204A JP S63123204 A JPS63123204 A JP S63123204A JP 26923186 A JP26923186 A JP 26923186A JP 26923186 A JP26923186 A JP 26923186A JP S63123204 A JPS63123204 A JP S63123204A
Authority
JP
Japan
Prior art keywords
face
paraboloid
resin
grid
metal grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26923186A
Other languages
Japanese (ja)
Other versions
JPH047122B2 (en
Inventor
Osami Yoshizawa
吉澤 修身
Shigeo Kawasaki
川崎 繁男
Minoru Tajima
実 田島
Hiroaki Mori
森 浩晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Mitsubishi Electric Corp
Technical Research and Development Institute of Japan Defence Agency
Original Assignee
Japan Steel Works Ltd
Mitsubishi Electric Corp
Technical Research and Development Institute of Japan Defence Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd, Mitsubishi Electric Corp, Technical Research and Development Institute of Japan Defence Agency filed Critical Japan Steel Works Ltd
Priority to JP26923186A priority Critical patent/JPS63123204A/en
Publication of JPS63123204A publication Critical patent/JPS63123204A/en
Publication of JPH047122B2 publication Critical patent/JPH047122B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Aerials With Secondary Devices (AREA)

Abstract

PURPOSE:To obtain an antenna having a large mechanical strength by forming an FRP mirror surface so as to be made sufficiently thinner than a prescribed and required thickness finally, providing a metallic grid and forming the entire curved face incorporatedly including a parabolic face provided with the metallic grid thereby facilitating the manufacture of the metallic grid. CONSTITUTION:The FRP is formed by impregnating a resin to many layers of fiber layers. The thin layer parabolic face 6 is formed by impregnating the resin to the two-layer of fiber layers. The metallic grid 4 is made to the concaved face of the parabolic face 6 by means of the etching processing. Finally, the resin is covered from the convexed face of the thin parabolic face 6 provided with the grid 4 and the remaining light-layer of fiber layers are formed incorporatedly by the resin to form the entire curved face made of the parabolic face 1 and the cylindrical face 2. Thus, the manufacture of the grid 4 is facilitated and the antenna having a large mechanical strength is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は通信、レーダ等に利用するアンテナク製造法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing an antennae used in communications, radar, and the like.

〔従来の技術〕[Conventional technology]

第2囚は通信、レーダ等の分野で用いられるカセグレン
アンテナの一例を示すもので、断面側面図である。図中
(11は放物面、(2)は円筒面、(3)は偏波変換反
射鏡、C4)は金属グリッド、(5)は−次放射器をそ
れぞれ示しており、放物面(11および円筒面(21F
i誘電体で作られる。
The second figure shows an example of a Cassegrain antenna used in fields such as communications and radar, and is a cross-sectional side view. In the figure, (11 is a paraboloid, (2) is a cylindrical surface, (3) is a polarization conversion reflector, C4) is a metal grid, (5) is a -order radiator, and the paraboloid ( 11 and cylindrical surface (21F
iMade of dielectric material.

本アンテナが動作するためには、放物面(1)の厚さは
電気的に約172波長もしくはこれの整数倍の値である
ことが必要である。例えば放物面(1)の材料の比誘電
率が4で・使用周波数が30 GHzであるならば約L
Ssnもしくはこれの整数倍である。
In order for this antenna to operate, the thickness of the paraboloid (1) must be approximately 172 electrical wavelengths or an integral multiple thereof. For example, if the dielectric constant of the material of paraboloid (1) is 4 and the operating frequency is 30 GHz, then approximately L
Ssn or an integral multiple thereof.

偏波変換反射鏡(3)の回転によってビーム走査を行っ
た場合を考慮すれば9円筒面(2)の厚さと比誘電率も
放物面(1)同程度にする必要があり0通常放物面(1
)と円筒面(2)は同一材料で一体成形される。
Considering the case where beam scanning is performed by rotating the polarization converting reflector (3), the thickness and relative dielectric constant of the cylindrical surface (2) need to be about the same as that of the paraboloid (1). Object surface (1
) and the cylindrical surface (2) are integrally molded from the same material.

誘電体材料には電気特性のほかに実用上機械的強度が大
きいことも要求される。これらの要求により誘電体材料
には繊維強化プラスチック(以下参FRPと略す)がよ
く用いられる。
In addition to electrical properties, dielectric materials are also required to have high mechanical strength for practical purposes. Due to these requirements, fiber reinforced plastics (hereinafter referred to as FRP) are often used as dielectric materials.

また放物面(1)の凹面側には・原理上−次放射器(5
)から放射される電波の偏波面と平行な金属グリッド(
4)を設ける必要があり、これは金属膜を蒸着したのち
にエツチング加工で作製するのが一般的である。
In addition, on the concave side of the paraboloid (1), in principle there is a -order radiator (5
) is a metal grid parallel to the polarization plane of radio waves emitted from (
4), which is generally produced by etching after depositing a metal film.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記のようなアンテナを製造する場合、放物面(1)と
円筒面(2)ヲ一体成形したのちに金属グリッド(4)
の作製を行おりとすると、エツチング加工の工程すなわ
ち、フォトマスクのセットやa光などの作業に円筒部(
2)が物理的に大きな支障をきたし。
When manufacturing the above antenna, the parabolic surface (1) and the cylindrical surface (2) are integrally formed, and then the metal grid (4) is formed.
If the fabrication is carried out as planned, the cylindrical part (
2) caused major physical problems.

作業困難となつ之り金属グリッド(4)の加工精度が悪
くなるという問題点があった。これを避けるため放物面
(1)と円筒面(2)全別個に成形し・エツチング加工
ののちに両者を接着剤で一体化する方法も考えられるが
、接着箇所において繊維層が完全に切断される上に接着
面積が小さいtめ一体成形のものに比べ・機械的強度が
小さくなるという問題点がある。この発明はかかる問題
点を解決するためになされたもので曲面成形品の機械的
強度を低下させることなく、放物面への金属グリッド作
製が容易に行えることを目的とする。
There were problems in that the work was difficult and the processing accuracy of the metal grid (4) deteriorated. To avoid this, it is possible to form the parabolic surface (1) and the cylindrical surface (2) separately and then integrate them with adhesive after etching, but the fiber layer would be completely cut off at the bonding point. Moreover, there is a problem that the mechanical strength is lower than that of the one-piece molded one, which has a small bonding area. The present invention was made to solve this problem, and an object of the present invention is to facilitate the fabrication of a metal grid onto a paraboloid without reducing the mechanical strength of the curved molded product.

〔問題点を解決するための手段〕[Means for solving problems]

この発明におけるアンテナL:lj5製造法では、金属
グリッドを設ける必要のある部分だけでFRP 鏡面を
最終的に必要な所定の厚さより十分薄く作製し、エツチ
ング加工等が容易に行うことができる段階で金属グリッ
ドを設け、しかるのちに金属グリッドを設けた放物面を
含めて曲面全体?−一体成形るものである。
In the manufacturing method of antenna L:lj5 in this invention, the FRP mirror surface is made sufficiently thinner than the final required thickness only in the part where the metal grid is required, and at a stage where etching processing etc. can be easily performed. The entire curved surface, including the paraboloid with a metal grid and then a metal grid? -It is integrally molded.

〔作用〕[Effect]

この発明におけるアンテナ−製造法では、金属グリッド
を設けるためのエツチング加工が容易でまた成形品の機
械的強度を小さくすることもない。
In the antenna manufacturing method of the present invention, the etching process for providing the metal grid is easy and does not reduce the mechanical strength of the molded product.

〔実施例〕〔Example〕

第1図はこの発明の一実施例を示すものであり1(1)
は放物面、(2)は円筒面、(4)は金属グリッド、(
6)は薄層放物面である。なお放物面(1)・円筒面(
2)。
FIG. 1 shows an embodiment of the present invention.1(1)
is a paraboloid, (2) is a cylindrical surface, (4) is a metal grid, (
6) is a thin layer paraboloid. Note that paraboloid (1) and cylindrical surface (
2).

薄層放物面(6)はすべて同一材料からなるFRPとす
る。
The thin layer paraboloids (6) are all made of FRP made of the same material.

FRPは通常何層もの繊維層に樹脂を含浸させることに
より成形される。ここでは、放物面の厚さが2.5層m
必要で膠これt−10層の繊維層で作製するものとする
。まず薄層放物面(6)yFr:2層の繊維層に樹脂を
含浸させることにより成形する。このとき薄層放物面(
6)の厚さは約0.5皿となるが一金属グリッド(4)
t−設けるための加工取扱い上の強度は十分である。
FRP is usually formed by impregnating many fiber layers with resin. Here, the thickness of the paraboloid is 2.5 layers m
The glue shall be made of T-10 fiber layers. First, thin layer paraboloid (6) yFr: is formed by impregnating two fiber layers with resin. In this case, the thin-layer paraboloid (
6) The thickness of the metal grid (4) is approximately 0.5 plate.
The processing and handling strength for providing T- is sufficient.

次に金属グリッド(4)全薄層放物面(6)の凹面側に
エツチング加工等により作製する。
Next, a metal grid (4) is fabricated by etching or the like on the concave side of the thin layer paraboloid (6).

最後に金属グリッド(4)ヲ設けた薄い放物面(6)の
凸面側から覆うようにして残り8層の繊m層と樹脂によ
り一体成形を行い放物面(1)と円筒面(2)からなる
曲面全体を作る。円筒面(2)の厚さを放物面(11と
同じ厚さにする必要があれば・円筒面(2)の部分だけ
に繊維層を2層あらかじめ増しておいて5 しかるのち
に樹脂成形を行えばよい。厚さの調節または表面仕上げ
のための機械加工は一樹脂成形ののちに行5゜ この実施例では放物面(1)と円筒面(2)の境界部分
は実質的に繊維層の厚さ2罪分の強度を有することにな
り9放物面(11と円筒面(2)を全く別個に成形し接
着する方法のように機械的強度七人きく低下させること
なく成形できる。また完全な一体成形品のように金3グ
リッド(4)の作製が困難とならない。
Finally, the metal grid (4) is integrally molded with the remaining 8 fiber layers and resin so as to cover the thin paraboloid (6) from the convex side. ) to create an entire curved surface. If it is necessary to make the thickness of the cylindrical surface (2) the same as that of the parabolic surface (11), add two layers of fiber only to the cylindrical surface (2) in advance.5 Then, resin molding. Machining for thickness adjustment or surface finishing is performed after resin molding. In this example, the boundary between the paraboloid (1) and the cylindrical surface (2) is substantially It has a strength equivalent to the thickness of the fiber layer, so it can be formed without significantly reducing the mechanical strength, unlike the method of molding the parabolic surface (11) and the cylindrical surface (2) completely separately and bonding them. In addition, it is not difficult to produce the gold 3 grid (4) unlike a complete integrally molded product.

上記実施例では曲面を放物面と円筒面の組合せとしたが
放物面と円錐面の組合せや放物面のみで金属グリッドが
部分的に設けられる場合でもよい。
In the above embodiment, the curved surface is a combination of a paraboloid and a cylindrical surface, but it may be a combination of a paraboloid and a conical surface, or only a paraboloid with a metal grid partially provided.

金属グリッドはエツチング加工に限らず金属ワイヤを埋
め込むよりな方法でもよく、また金属グリッドは薄層放
物面の凸面側に設けてもよい。さらに放物面8円筒面、
薄層放物面に使用する繊維層はそれぞれ必要に応じて異
なったものを使ってもよい。
The metal grid is not limited to etching, and may be formed by a method other than embedding a metal wire, and the metal grid may be provided on the convex side of the thin layer paraboloid. In addition, a paraboloid, 8 cylindrical surfaces,
Different fiber layers may be used for the thin-layer paraboloid, depending on the needs.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば畢金属グリッドの作製が
容易であるため?作業性に優れ、金属グリッドの加工精
度が高くかつ機械的強度の大きいアンテナを製造できる
という効果がある。
As described above, according to the present invention, it is easy to produce a thin metal grid. This method has the advantage that it is possible to manufacture an antenna with excellent workability, high processing precision of the metal grid, and high mechanical strength.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示すカセグレンアンテナ
の断面側面図、第2図は従来のカセグレンアンテナを示
す断面側面図である。 図中(1)は放物面++21ti円筒面+(3)は偏波
変換反射鏡、(4)は金属グリッド、(5)は−次放射
器、(6)は薄層放物面である。 なお図中同一あるいは相当部分には同一符号を付して示
しである。
FIG. 1 is a cross-sectional side view of a Cassegrain antenna according to an embodiment of the present invention, and FIG. 2 is a cross-sectional side view of a conventional Cassegrain antenna. In the figure, (1) is a paraboloid ++21ti cylindrical surface + (3) is a polarization conversion reflector, (4) is a metal grid, (5) is a -order radiator, and (6) is a thin layer paraboloid. . In the drawings, the same or corresponding parts are designated by the same reference numerals.

Claims (1)

【特許請求の範囲】[Claims] 金属グリッドを設けた繊維強化プラスチック製の放物面
を反射鏡として用いるアンテナ製造法において、上記金
属グリッドを設ける部分だけで鏡面を最終的に必要な所
定の厚さより薄く作製し、この鏡面に上記金属グリッド
を設けたのちに上記鏡面を含めて曲面全体を所定の形状
、厚さに一体成形することを特徴とするアンテナ製造法
In an antenna manufacturing method that uses a paraboloid made of fiber-reinforced plastic provided with a metal grid as a reflector, the mirror surface is made thinner than the final required thickness only in the area where the metal grid is provided, and the mirror surface is coated with the An antenna manufacturing method characterized in that after providing a metal grid, the entire curved surface including the mirror surface is integrally molded into a predetermined shape and thickness.
JP26923186A 1986-11-12 1986-11-12 Manufacture of antenna Granted JPS63123204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26923186A JPS63123204A (en) 1986-11-12 1986-11-12 Manufacture of antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26923186A JPS63123204A (en) 1986-11-12 1986-11-12 Manufacture of antenna

Publications (2)

Publication Number Publication Date
JPS63123204A true JPS63123204A (en) 1988-05-27
JPH047122B2 JPH047122B2 (en) 1992-02-10

Family

ID=17469485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26923186A Granted JPS63123204A (en) 1986-11-12 1986-11-12 Manufacture of antenna

Country Status (1)

Country Link
JP (1) JPS63123204A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004035083A1 (en) * 2004-07-20 2006-02-16 Vega Grieshaber Kg Level gauge parabolic antenna and level gauge with a parabolic antenna

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004035083A1 (en) * 2004-07-20 2006-02-16 Vega Grieshaber Kg Level gauge parabolic antenna and level gauge with a parabolic antenna
US7245265B2 (en) 2004-07-20 2007-07-17 Vega Grieshaber Kg Parabolic antenna of a level measuring instrument and level measuring instrument with a parabolic antenna

Also Published As

Publication number Publication date
JPH047122B2 (en) 1992-02-10

Similar Documents

Publication Publication Date Title
JP4079171B2 (en) Dielectric lens, dielectric lens device, dielectric lens design method, dielectric lens manufacturing method, and transmission / reception device
CN108183327B (en) Antenna housing for expanding deflection angle of phase array antenna
US20170179596A1 (en) Wideband reflectarray antenna for dual polarization applications
ES2160698T3 (en) A PROCEDURE FOR MANUFACTURING AN ANTENNA.
WO2000048270A1 (en) Lens antenna and lens antenna array
RU2099834C1 (en) Variable-index spherical dielectric lens
Zhang 3D printed dielectric Fresnel lens
KR102087385B1 (en) Streamline-shaped Radome and Method for Manufacturing The same
JPS63123204A (en) Manufacture of antenna
CN112038766B (en) Wave beam convergence design method of high-gain eight-mode vortex electromagnetic wave reflecting surface antenna
US4154788A (en) Process for making a plastic antenna reflector
JPS5922403A (en) Electromagnetic lens for horn antenna
US3574258A (en) Method of making a transreflector for an antenna
JP3402033B2 (en) Luneberg lens
Yoon et al. Conductivity evaluation of a newly proposed material for a SAR reflector antenna
JPH08148922A (en) Composite material for radome, radome for millimeter wave and manufacture thereof
JPH03104402A (en) Dielectric lens antenna
JPH04185105A (en) Lens antenna
US4319250A (en) Offset dual-reflector aerial having tapered reflector segments in main reflector
JPS60180205A (en) Waveguide slot array antenna
RU2071157C1 (en) Process for manufacturing antenna reflector
Rahima et al. Investigation of Pencil and Bifurcated Beam Fed Cylindrical Dielectric Lens Antenna for 5G Mobile Base Stations
CN108511917A (en) A kind of large-scale curved double-deck layered transducer elements forming method
FR2592395A1 (en) Process for producing an ultrahigh frequency wave reflector by ionic deposition on an injection-moulded plastic
Bach et al. Comparison of three cross-polarisation prediction methods for reflector antennas

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term