JPH06224538A - Manufacture of ceramic circuit board - Google Patents

Manufacture of ceramic circuit board

Info

Publication number
JPH06224538A
JPH06224538A JP891493A JP891493A JPH06224538A JP H06224538 A JPH06224538 A JP H06224538A JP 891493 A JP891493 A JP 891493A JP 891493 A JP891493 A JP 891493A JP H06224538 A JPH06224538 A JP H06224538A
Authority
JP
Japan
Prior art keywords
copper
coating
powder
coating layer
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP891493A
Other languages
Japanese (ja)
Inventor
Yoshikazu Nakada
好和 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP891493A priority Critical patent/JPH06224538A/en
Publication of JPH06224538A publication Critical patent/JPH06224538A/en
Pending legal-status Critical Current

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)

Abstract

PURPOSE:To provide a manufacturing method for a fine copper wiring with advantages in density, adhesiveness, and flatness with easy operation at low cost, by oxidizing copper powder of a coating layer in heat treatment, reducing the oxidized copper, and sintering the copper in a neutral atmosphere. CONSTITUTION:A ceramic board is coated with a photo-damping conductive material that is mainly made of copper powder, glass powder, and a photosensitive resin in a coating step. A coating layer formed in the coating step is exposed and developed to form a given wiring pattern in a development step. Then, the ceramic board is treated by heat in an oxidizing atmosphere at a temperature enough to decompose and scatter an organic material like the photosensitive material in the coating layer. The copper-oxide powder of the coated layer, which is oxidized in a heat treatment step, is reduced in a reduction step and sintered in a neutral atmosphere in a burning step. In this way, a fine copper wiring with advantages in density, adhesiveness, and flatness on the ceramic circuit board can be produced at low cost with easy operation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体LSI、チップ
部品等を実装し、かつそれらを相互配線するためのセラ
ミックス回路基板の製造方法に関し、より詳細には、セ
ラミックス基板上に低コストにて銅微細配線を形成する
セラミックス回路基板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a ceramics circuit board for mounting semiconductor LSIs, chip parts, etc., and interconnecting them, and more particularly, to a method for manufacturing a ceramics circuit board at low cost. The present invention relates to a method of manufacturing a ceramic circuit board for forming copper fine wiring.

【0002】[0002]

【従来の技術】近年、電子機器はますます小型化、高密
度化が進んできており、これらに実装される電子部品の
狭ピッチ多ピン化、マルチチップ化も急速に進められつ
つある。従って、LSI、ICチップのボンディング法
も従来のワイヤボンディング法から、マルチチップや高
密度実装に適したTAB(Tape Automated Bonding) 方
式又はフリップチップ方式等が採用されるようになって
きている。このような電子機器の高密度化に伴い、セラ
ミックス配線基板に対しても線幅が100μm以下の微
細配線が要求されるようになってきている。
2. Description of the Related Art In recent years, electronic devices have become smaller and higher in density, and electronic components mounted on these electronic devices have been rapidly made to have a narrower pitch and a larger number of pins, and have a multi-chip structure. Therefore, as a bonding method for LSIs and IC chips, a TAB (Tape Automated Bonding) method or a flip chip method suitable for multi-chip or high-density mounting has been adopted from the conventional wire bonding method. With the increase in the density of such electronic devices, fine wiring having a line width of 100 μm or less is required for a ceramic wiring board.

【0003】通常、セラミックス基板上への配線法は、
大別して直接描画法、薄膜法、メッキ法及び厚膜印刷法
等に分けられる。
Usually, the wiring method on the ceramic substrate is
It is roughly classified into a direct drawing method, a thin film method, a plating method, a thick film printing method and the like.

【0004】前記直接描画法は、ノズルよりペーストを
セラミックス基板上に直接吐出して描画する方法である
が、この方法は生産性が低く、かつ微細配線の平坦性も
低いという問題点がある。
The above-mentioned direct drawing method is a method for drawing a paste by directly ejecting a paste onto a ceramic substrate from a nozzle, but this method has the problems of low productivity and low flatness of fine wiring.

【0005】また前記薄膜法は、セラミックス基板に真
空蒸着、スパッタリング又はイオンプレーティング等に
より数μmオーダーの導体金属層を形成する方法であ
り、この方法では平坦性の高い薄膜微細配線を形成でき
るものの、セラミックス基板との密着性が低い、通常の
セラミックス基板に薄膜を形成した場合は前記基板の凹
凸に起因して配線の凹凸が大きくなる、薄膜形成装置が
高価である等の問題点がある。
The thin film method is a method of forming a conductor metal layer of the order of several μm on a ceramic substrate by vacuum vapor deposition, sputtering, ion plating or the like. This method can form thin film fine wiring with high flatness. There are problems that the adhesion to the ceramic substrate is low, when a thin film is formed on a normal ceramic substrate, the irregularities of the wiring become large due to the irregularities of the substrate, and the thin film forming apparatus is expensive.

【0006】さらに、セラミックス基板との密着性を高
めるには、セラミックス基板の表面を粗化する余分の工
程が必要となる。また、通常のセラミックス基板が有す
る数十μmオーダーの凹凸を無くして平坦化するために
は、研磨(ラッピング)処理を行わなければならない
が、セラミックス板の研磨は容易ではなく、かなりの手
間がかかる。
Further, in order to improve the adhesion with the ceramic substrate, an extra step of roughening the surface of the ceramic substrate is required. Further, in order to eliminate the unevenness of the order of several tens of μm which a normal ceramics substrate has and to flatten it, polishing (lapping) processing must be performed, but polishing the ceramics plate is not easy and takes a lot of time and effort. .

【0007】また前記メッキ法も前述した薄膜法と同様
の問題点がある。さらに、薄膜法、メッキ法共に、セラ
ミックス基板上に緻密な金属導体層が形成されるため、
熱サイクル試験後には、金属とセラミックスとの大きい
熱膨張差のため前記セラミックス基板表面から金属が一
部剥離し、密着性が著しく低下するという問題点があ
る。
The plating method also has the same problems as the above-mentioned thin film method. Furthermore, since both the thin film method and the plating method form a dense metal conductor layer on the ceramic substrate,
After the heat cycle test, there is a problem that the metal partially peels off from the surface of the ceramic substrate due to a large difference in thermal expansion between the metal and the ceramic, resulting in a marked decrease in adhesion.

【0008】一方前記厚膜印刷法は、導体粒子を有機ビ
ヒクル中に分散させた導体ペーストをメッシュスクリー
ンを通してセラミックス基板に印刷し、焼成することに
よりセラミックス基板に焼き付ける方法である。この方
法ではセラミックス基板との充分な密着強度を有する導
体層を低コストで形成することができるものの、メッシ
ュのワイヤ径に限界があるために100μm未満の微細
配線を形成することが難しいという問題点がある。
On the other hand, the thick film printing method is a method in which a conductor paste in which conductor particles are dispersed in an organic vehicle is printed on a ceramic substrate through a mesh screen and baked to burn the ceramic substrate. This method can form a conductor layer having sufficient adhesion strength with a ceramic substrate at a low cost, but has a problem that it is difficult to form fine wiring of less than 100 μm due to the limit of the wire diameter of the mesh. There is.

【0009】そこで、基本的には前記厚膜印刷法を使用
し、配線パターンの形成には薄膜法の特徴であるフォト
リソグラフィー法を導入した方法が試みられている。そ
の方法を以下に示すと、まず光硬化性モノマー等からな
る感光性樹脂を溶剤に溶解させて形成した感光液中に導
電性粉末を分散させて感光性導体ペーストを調整し、該
感光性導体ペーストを厚膜印刷法によりセラミックス基
板にベタ印刷し、露光、現像処理することにより所定の
パターンを形成する。次に所定パターンが形成されたセ
ラミックス基板を焼成することにより硬化した光硬化性
樹脂を分解、飛散(脱バインダー)させ、同時に導電性
膜をセラミックス基板に焼き付けることにより銅微細配
線の形成を完了する。
Therefore, there has been attempted a method in which the thick film printing method is basically used and a photolithography method, which is a characteristic of the thin film method, is introduced for forming a wiring pattern. The method will be described below. First, a conductive powder is prepared by dispersing a conductive powder in a photosensitive liquid formed by dissolving a photosensitive resin composed of a photocurable monomer in a solvent to prepare a photosensitive conductor paste. The paste is solid-printed on a ceramic substrate by a thick film printing method, and exposed and developed to form a predetermined pattern. Next, the photocurable resin cured by firing the ceramic substrate on which the predetermined pattern is formed is decomposed and scattered (debinding), and at the same time, the conductive film is baked on the ceramic substrate to complete the formation of the copper fine wiring. .

【0010】[0010]

【発明が解決しようとする課題】前記方法において、感
光性導体ペースト中の感光性樹脂の量は、通常の厚膜導
体ペースト中の樹脂の量よりもかなり多い。これは、感
光性導体ペースト中の感光性樹脂の量が少ないと感光性
導体ペースト中の導電性粉末の量が相対的に多くなり、
露光工程で照射される紫外線が導電性粉末により遮断さ
れ、紫外線が塗布された厚膜の厚み方向に充分に透過さ
れないため、感光性樹脂が充分に感光せず、現像するの
が難しくなるためである。
In the above method, the amount of the photosensitive resin in the photosensitive conductor paste is considerably larger than the amount of the resin in the normal thick film conductor paste. This is because when the amount of photosensitive resin in the photosensitive conductor paste is small, the amount of conductive powder in the photosensitive conductor paste is relatively large,
Since the ultraviolet rays irradiated in the exposure step are blocked by the conductive powder and the ultraviolet rays are not sufficiently transmitted in the thickness direction of the thick film applied, the photosensitive resin is not sufficiently exposed and it is difficult to develop. is there.

【0011】しかし、このように感光性導体ペースト中
に多量の感光性樹脂が存在し、しかも現像工程により硬
化した感光性樹脂は燃焼しにくくなるため、前記脱バイ
ンダー工程において硬化した樹脂が充分に分解、飛散せ
ずに残存し、導体粉末の焼結を阻害したり、形成された
配線のセラミックス基板に対する接着強度を低下させる
という課題があった。特に、導電性粉末として銅粉末を
使用する場合、通常、焼成は銅粉末の酸化を防止するた
めに窒素雰囲気等の還元性雰囲気下で行われていたた
め、一層感光性樹脂等の分解、飛散が難しかった。
However, since a large amount of the photosensitive resin is present in the photosensitive conductor paste and the photosensitive resin hardened in the developing step is less likely to burn, the resin hardened in the debinding step is sufficient. There is a problem that they remain without being decomposed and scattered, hindering the sintering of the conductor powder and reducing the adhesive strength of the formed wiring to the ceramic substrate. In particular, when copper powder is used as the conductive powder, usually, since the firing was carried out in a reducing atmosphere such as a nitrogen atmosphere in order to prevent the oxidation of the copper powder, further decomposition and scattering of the photosensitive resin, etc. was difficult.

【0012】さらに、感光性導体ペースト中に多量の感
光性樹脂が存在するために前記感光性導体ペースト中の
導電性粉末の濃度は低くなり、感光性樹脂を除去した後
も配線パターン中の導電性粉末の充填度が低くなり、焼
成により充分緻密化された配線が得られないという課題
もあった。
Furthermore, since a large amount of the photosensitive resin is present in the photosensitive conductor paste, the concentration of the conductive powder in the photosensitive conductor paste becomes low, and even after the photosensitive resin is removed, the conductivity in the wiring pattern is reduced. There is also a problem that the degree of filling of the conductive powder becomes low and a sufficiently densified wiring cannot be obtained by firing.

【0013】本発明は上記課題に鑑みなされたものであ
り、緻密性、密着性に優れ、平坦性の高い微細配線を、
容易な操作及び低コストで形成することができるセラミ
ックス回路基板の製造方法を提供することを目的として
いる。
The present invention has been made in view of the above problems, and provides fine wiring having excellent compactness and adhesiveness and high flatness.
It is an object of the present invention to provide a method for manufacturing a ceramics circuit board that can be formed easily and at low cost.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するため
に本発明に係るセラミックス回路基板の製造方法(以
下、第1のセラミックス回路基板の製造方法と記す)
は、セラミックス基板上に銅粉末、ガラス粉末及び感光
性樹脂を主成分とする感光性導体ペーストを塗布する塗
布工程と、該塗布工程により形成された塗布層を所定の
配線パターンに露光、現像する現像処理工程と、該現像
処理が施されたセラミックス基板を酸化性雰囲気下で前
記塗布層中の感光性樹脂が分解、飛散する温度で熱処理
する工程と、前記熱処理工程で酸化された塗布層中の銅
粉末を還元する還元処理工程と、中性雰囲気下で銅を焼
結させる焼成工程とを含んでいることを特徴としてい
る。
In order to achieve the above object, a method of manufacturing a ceramic circuit board according to the present invention (hereinafter referred to as a first method of manufacturing a ceramic circuit board).
Is a coating step of coating a copper substrate, a glass powder, and a photosensitive conductor paste containing a photosensitive resin as a main component on a ceramic substrate, and the coating layer formed by the coating step is exposed and developed in a predetermined wiring pattern. A development treatment step; a step of heat-treating the ceramic substrate subjected to the development treatment in an oxidizing atmosphere at a temperature at which the photosensitive resin in the coating layer decomposes and scatters; and a coating layer oxidized in the heat treatment step It is characterized in that it includes a reduction treatment step of reducing the copper powder and a firing step of sintering copper in a neutral atmosphere.

【0015】また本発明に係るセラミックス回路基板の
製造方法(以下、第2のセラミックス回路基板の製造方
法と記す)は、セラミックス基板上に銅粉末、ガラス粉
末及び感光性樹脂を主成分とする感光性導体ペーストを
塗布する塗布工程と、該塗布工程により形成された塗布
層を所定の配線パターンに露光、現像する現像処理工程
と、該現像処理が施されたセラミックス基板を酸化性雰
囲気下で前記塗布層中の感光性樹脂が分解、飛散する温
度で熱処理する工程と、前記熱処理工程で酸化された塗
布層中の銅粉末を還元し、かつ焼結させる還元焼成工程
とを含んでいることを特徴としている。
The method of manufacturing a ceramics circuit board according to the present invention (hereinafter referred to as the second method of manufacturing a ceramics circuit board) includes a photosensitive material containing copper powder, glass powder and a photosensitive resin as main components on the ceramics substrate. Of applying a conductive conductor paste, a developing step of exposing and developing the coating layer formed by the applying step to a predetermined wiring pattern, and the ceramic substrate subjected to the developing step under an oxidizing atmosphere. It includes a step of heat treatment at a temperature at which the photosensitive resin in the coating layer decomposes and scatters, and a reduction firing step of reducing and sintering the copper powder in the coating layer oxidized in the heat treatment step. It has a feature.

【0016】まず本発明の第1のセラミックス回路基板
の製造方法についてより詳細に説明する。第1のセラミ
ックス回路基板の製造方法においては、最初に塗布工程
として、セラミックス基板上に銅粉末、ガラス粉末及び
感光性樹脂を主成分とする感光性導体ペーストを塗布す
る工程を実施する。
First, the first ceramic circuit board manufacturing method of the present invention will be described in more detail. In the first method for manufacturing a ceramic circuit board, first, as a coating step, a step of coating a photosensitive conductor paste containing copper powder, glass powder and a photosensitive resin as a main component on the ceramic substrate is carried out.

【0017】前記セラミックス基板としては、アルミナ
基板の他に、例えば窒化アルミニウム基板、ガラス−セ
ラミックス基板等が挙げられる。前記塗布工程で使用す
る前記感光性導体ペーストとしては、銅粉末100重量
部、ガラス粉末1〜5重量部、感光性樹脂等を溶解した
感光液(フォトレジスト)40〜100重量部を主成分
とする導体ペーストが好ましい。前記銅粉末は、粒径が
0.5〜12μm、さらには1〜3μmのものが好まし
い。前記銅粉末の粒径が0.5μm未満の場合は銅粉末
がかさ高くなってペースト化に多量の感光性樹脂を必要
とするためペースト中の銅粉末の量が低下し、また前記
銅粉末の粒径が12μmを超えた場合はペーストの印刷
性や銅粉末の焼結性が低下する。前記ガラス粒子は粒径
が0.5〜5μmのものが好ましく、ガラス粒子の粒径
が0.5μm未満では銅導体層の基板との密着性が低
く、また5μmを超えると銅導体層のハンダに対する濡
れ性が低下する。
As the ceramic substrate, in addition to the alumina substrate, for example, an aluminum nitride substrate, a glass-ceramic substrate and the like can be mentioned. The photosensitive conductor paste used in the coating step contains 100 parts by weight of copper powder, 1 to 5 parts by weight of glass powder, and 40 to 100 parts by weight of a photosensitive liquid (photoresist) in which a photosensitive resin is dissolved. Conductive paste is preferred. The copper powder preferably has a particle size of 0.5 to 12 μm, more preferably 1 to 3 μm. When the particle size of the copper powder is less than 0.5 μm, the copper powder becomes bulky and a large amount of photosensitive resin is required for forming a paste, so that the amount of the copper powder in the paste decreases, and When the particle size exceeds 12 μm, the printability of the paste and the sinterability of the copper powder deteriorate. The glass particles preferably have a particle size of 0.5 to 5 μm. When the particle size of the glass particles is less than 0.5 μm, the adhesion of the copper conductor layer to the substrate is low, and when it exceeds 5 μm, the copper conductor layer is soldered. Wettability with respect to.

【0018】前記ガラス粒子は銅導体層をセラミックス
基板に接着する作用があり、前記ガラス粒子が銅粉末1
00重量部に対し1重量部未満の場合は基板との接着性
が低下し、5重量部を超えた場合は銅導体層のハンダ濡
れ性が低下する。前記ガラス粉末の軟化温度は、銅配線
をセラミックス基板上に良好に接着させるために400
〜600℃の範囲にあることが好ましい。前記フォトレ
ジストとしては、例えばアルコール系、エステル系、ケ
トン系等の溶剤と、例えばアクリル系、イミド系等の感
光性樹脂からなるポジタイプのフォトレジストや、例え
ばアルコール系、エステル系、ケトン系等の溶剤と、例
えばゴム系、アクリル系、フェノール系等の感光性樹脂
からなるネガタイプのフォトレジストが挙げられ、前記
フォトレジストが銅粉末100重量部に対して40重量
部未満の場合はペーストの粉末量が多くなりすぎて現像
が困難になり、100重量部を超えた場合は感光性導体
ペースト中の銅粉末の充填度が低くなりすぎて充分緻密
化された配線が形成されない。
The glass particles have a function of adhering the copper conductor layer to the ceramic substrate, and the glass particles are copper powder 1
When the amount is less than 1 part by weight with respect to 00 parts by weight, the adhesion to the substrate is deteriorated, and when the amount is more than 5 parts by weight, the solder wettability of the copper conductor layer is deteriorated. The softening temperature of the glass powder is 400 in order to make the copper wiring adhere well to the ceramic substrate.
It is preferably in the range of to 600 ° C. As the photoresist, for example, a positive type photoresist made of an alcohol-based, ester-based, or ketone-based solvent and an acrylic-based or imide-based photosensitive resin, for example, an alcohol-based, ester-based, or ketone-based Examples of the negative photoresist include a solvent and a photosensitive resin such as a rubber-based, acrylic-based, or phenol-based photosensitive resin. When the photoresist is less than 40 parts by weight with respect to 100 parts by weight of the copper powder, the amount of the paste powder If the amount exceeds 100 parts by weight, the filling degree of the copper powder in the photosensitive conductor paste becomes too low to form sufficiently densified wiring.

【0019】前記感光性導体ペーストの調製には、前記
銅粉末、前記ガラス粉末及び前記感光性樹脂等を含有す
る感光液を3本ロールを用いて混練するのが好ましく、
3本ロールを用いれば、前記銅粉末等が前記感光液中に
充分に分散した感光性導体ペーストが得られる。なお、
前記感光性導体ペーストの調製は、感光性樹脂の感光を
防止するために黄色光の下で行う必要がある。
In the preparation of the photosensitive conductor paste, it is preferable to knead a photosensitive solution containing the copper powder, the glass powder, the photosensitive resin and the like by using a three-roll.
If three rolls are used, a photosensitive conductor paste in which the copper powder and the like are sufficiently dispersed in the photosensitive liquid can be obtained. In addition,
It is necessary to prepare the photosensitive conductor paste under yellow light in order to prevent the photosensitive resin from being exposed to light.

【0020】前記感光性導体ペーストの前記セラミック
ス基板への塗布方法としては、通常の厚膜印刷用スクリ
ーンによりベタ印刷する方法が用いられる。従って、塗
布操作は極めて容易である。また前記セラミックス基板
へのベタ印刷は、必ずしもセラミックス基板全面に塗布
する必要はなく、バーコート方式により配線部及びその
周辺にベタ印刷すればよい。この他にもセラミックス基
板全面に前記感光性導体ペーストを印刷する必要がある
場合は、ロールコーター法、ディップ法、ホイラー法
(スピンナー法)等の塗布方法を用いることができる。
前記セラミックス基板への前記感光性導体ペーストの塗
布が終了した後は、前記セラミックス基板を適度の時間
放置して塗布面をレベリングさせればよい。ここで、レ
ベリングとは塗布面を水平な状態で放置することにより
平坦化する工程をいい、放置時間は10分程度が好まし
い。前記レベリング終了後は、塗布面を乾燥させること
により、前記銅粉末を前記セラミックス基板上に固定す
る。乾燥条件としては、通常70〜80℃で10分程度
加熱する条件が好ましい。なお、この塗布工程において
塗布面を充分にレベリング処理することにより、配線の
平坦性が向上し、かつ各配線の高さも等しくなるため、
塗布工程の前にセラミックス基板を研磨処理して平滑化
する必要はない。 この塗布工程により形成される塗布
膜の膜厚は、5〜20μmが好ましい。塗布膜の膜厚が
5μm未満の場合は、焼成後の銅配線の組織が粗とな
り、また塗布膜の導体層が20μmを超えた場合は、塗
布膜の底部まで紫外線が達しにくくなり、フォトレジス
トが充分に硬化せず、現像不良が生じやすいので好まし
くない。
As a method of applying the photosensitive conductor paste to the ceramic substrate, a method of solid printing using a normal thick film printing screen is used. Therefore, the coating operation is extremely easy. Further, solid printing on the ceramic substrate does not necessarily need to be applied to the entire surface of the ceramic substrate, and solid printing may be performed on the wiring portion and its periphery by a bar coating method. In addition to this, when it is necessary to print the photosensitive conductor paste on the entire surface of the ceramic substrate, a coating method such as a roll coater method, a dipping method, a Wheeler method (spinner method) can be used.
After the application of the photosensitive conductor paste to the ceramics substrate is completed, the ceramics substrate may be left for an appropriate time to level the coated surface. Here, the leveling means a step of flattening by leaving the coated surface in a horizontal state, and the leaving time is preferably about 10 minutes. After the leveling is completed, the coated surface is dried to fix the copper powder on the ceramic substrate. As a drying condition, it is preferable to usually heat at 70 to 80 ° C. for about 10 minutes. It should be noted that, by sufficiently leveling the coated surface in this coating step, the flatness of the wiring is improved and the height of each wiring becomes equal,
It is not necessary to polish and smooth the ceramic substrate before the coating process. The thickness of the coating film formed by this coating step is preferably 5 to 20 μm. When the thickness of the coating film is less than 5 μm, the texture of the copper wiring after firing becomes rough, and when the conductor layer of the coating film exceeds 20 μm, it becomes difficult for ultraviolet rays to reach the bottom of the coating film, and the photoresist Is not sufficiently cured, and defective development is likely to occur, which is not preferable.

【0021】次に現像処理工程として、前記塗布工程に
より形成された塗布層を所定の配線パターンに露光、現
像する工程を実施する。前記露光工程は、通常の方法を
とることができ、例えばコンタクト方式、プロキシミテ
ィ方式を採用することができる。前記露光後の現像処理
には、通常感光性樹脂を現像する際に使用する現像液を
使用することができ、現像方法は浸漬揺動法又はスプレ
ー法を採用することができる。現像工程終了後は、白色
光の下で取り扱うことができる。
Next, as a developing treatment step, a step of exposing and developing the coating layer formed by the coating step to a predetermined wiring pattern is carried out. The exposure process may be performed by a usual method, for example, a contact method or a proximity method. In the development process after the exposure, a developer which is usually used in developing a photosensitive resin can be used, and the developing method can be an immersion rocking method or a spray method. After completion of the development process, it can be handled under white light.

【0022】次に、前記現像処理が施されたセラミック
ス基板を酸化性雰囲気下で前記塗布層中の感光性樹脂等
の有機物が分解、飛散する温度で熱処理する。
Next, the developed ceramic substrate is heat-treated in an oxidizing atmosphere at a temperature at which organic substances such as the photosensitive resin in the coating layer decompose and scatter.

【0023】通常の樹脂を使用した銅導体ペーストを用
いた場合、銅を酸化させずに樹脂が分解、飛散するよう
に、極微量の酸化性ガスを含む窒素雰囲気下で加熱焼成
を行う。しかし、本発明に用いられる感光性導体ペース
トの場合は、前述したように前記導体ペースト中の感光
性樹脂等の有機物の含有量が高く、かつ前記現像工程で
硬化した分解、飛散のしにくい感光性樹脂を分解、飛散
させなければならないため、銅が酸化しないような条件
で加熱、焼成を行うことは非常に難しい。
When a copper conductor paste using a normal resin is used, heating and firing are performed in a nitrogen atmosphere containing a trace amount of an oxidizing gas so that the resin is decomposed and scattered without oxidizing the copper. However, in the case of the photosensitive conductor paste used in the present invention, as described above, the content of organic substances such as the photosensitive resin in the conductor paste is high, and the photosensitive resin is hard to be decomposed in the developing step and is less susceptible to scattering. Since it is necessary to decompose and scatter the volatile resin, it is very difficult to perform heating and firing under conditions that copper is not oxidized.

【0024】本発明では、大気中等の酸化性雰囲気下で
加熱処理する方法をとっているので、感光性導体ペース
ト中の有機物を短時間で完全に分解、飛散させることが
できる。この工程により銅粉末は一旦酸化されるが、後
の工程で還元処理を行うことにより、金属銅に還元され
る。
In the present invention, since the heat treatment is carried out in an oxidizing atmosphere such as the air, the organic substances in the photosensitive conductor paste can be completely decomposed and scattered in a short time. The copper powder is once oxidized by this step, but is reduced to metallic copper by performing a reduction treatment in a later step.

【0025】前記熱処理工程を大気中で行う場合の条件
としては、熱処理温度を400℃以上で行うのが好まし
い。前記熱処理温度が400℃未満の場合は有機物を完
全に分解、飛散させることができない。ここで、酸化性
雰囲気下において熱処理を行うと、銅が酸化して酸化銅
となるために体積膨張を伴うが、感光性導体ペースト中
の銅粉末の充填状態が低いこと、ガラス粉末が溶融流動
すること等の理由から、前記銅の酸化膨張による配線形
状の変化はほとんど起きない。むしろ、銅の酸化膨張に
より酸化銅粒子の充填度は一旦高くなって、お互いが接
合され、次工程の還元処理によっても接合はなくならな
いので、焼成工程により緻密に焼結した銅配線が得られ
るという利点がある。
As a condition for performing the heat treatment step in the atmosphere, it is preferable that the heat treatment temperature is 400 ° C. or higher. When the heat treatment temperature is lower than 400 ° C., organic substances cannot be completely decomposed and scattered. Here, when heat treatment is performed in an oxidizing atmosphere, copper oxidizes and becomes copper oxide, which causes volume expansion, but the filling state of the copper powder in the photosensitive conductor paste is low, and the glass powder melts and flows. For this reason, the change in the wiring shape due to the oxidative expansion of copper hardly occurs. Rather, the degree of filling of the copper oxide particles once increases due to the oxidative expansion of copper and they are bonded to each other, and the bonding is not lost even by the reduction process in the next step, so a densely sintered copper wiring can be obtained by the firing step. There is an advantage.

【0026】この点について他の方法を実施した場合、
どのようになるかについて考察すると、以下のことが考
えられる。まず、感光性導体ペーストを銅が酸化しない
雰囲気で焼成を行う場合には、焼結後の銅配線の緻密度
が低くなるため、基板への銅配線の密着性が低下した
り、電気抵抗率が高くなる等の問題が生じる。また、通
常の厚膜法に用いられる銅導体ペーストを使用して大気
中で焼成した場合は、銅粉末の充填度が高いために酸化
膨張により配線形状が変化しやすい。さらに、出発原料
として酸化銅粉末を使用し、本発明と同様の方法を実施
した場合は、酸化銅粉末の初期充填度が低いためにお互
いの接合が起こらず、還元工程で酸化銅が金属銅に還元
される際に体積収縮を生じて、極めて緻密性の低い銅配
線となり、基板への密着性も低くなり、電気抵抗率も高
くなる等の問題が生じる。
If another method is performed in this regard,
Considering what happens, the following can be considered. First, when the photosensitive conductor paste is fired in an atmosphere in which copper does not oxidize, the density of the copper wiring after sintering becomes low, so that the adhesion of the copper wiring to the substrate is reduced and the electrical resistivity is reduced. It causes problems such as high cost. Further, when the copper conductor paste used in the normal thick film method is used and fired in the atmosphere, the wiring shape is likely to change due to oxidative expansion due to the high filling degree of the copper powder. Furthermore, when using a copper oxide powder as a starting material and carrying out the same method as the present invention, since the initial filling degree of the copper oxide powder is low, mutual bonding does not occur, and the copper oxide is reduced to metallic copper in the reduction step. When it is reduced to a volume, it causes volume contraction, resulting in a copper wiring having extremely low density, low adhesion to the substrate, and high electrical resistivity.

【0027】次に、還元処理工程として、前記熱処理工
程で酸化された塗布層中の銅粉末を還元する。前記還元
処理は通常、水素を1〜10 vol%含む窒素雰囲気下、
400〜600℃の範囲で熱処理するのが好ましい。水
素の含有量が1 vol%未満の場合は還元が充分に進行せ
ず、また水素の含有量が10 vol%を超えた場合はセラ
ミックス基板、誘電体部、抵抗部等のセラミックス回路
基板の構成材料も還元され易くなる。前記還元処理の温
度が400℃未満の場合は還元が進行しにくくなるため
還元に長時間を要し、また前記還元処理の温度が600
℃を超えた場合はセラミックス基板等の構成材料が還元
され易くなる。
Next, as a reduction treatment step, the copper powder in the coating layer oxidized in the heat treatment step is reduced. The reduction treatment is usually performed in a nitrogen atmosphere containing 1 to 10 vol% of hydrogen,
It is preferable to perform heat treatment in the range of 400 to 600 ° C. If the hydrogen content is less than 1 vol%, the reduction does not proceed sufficiently, and if the hydrogen content exceeds 10 vol%, the structure of the ceramic circuit board such as the ceramic substrate, the dielectric part, and the resistance part. The material is also easily reduced. When the temperature of the reduction treatment is less than 400 ° C., the reduction is difficult to proceed, and thus the reduction requires a long time.
If the temperature exceeds ℃, the constituent materials such as the ceramic substrate are easily reduced.

【0028】前記還元処理工程により、酸化銅は還元さ
れて金属銅となる。
By the reduction treatment step, copper oxide is reduced to metallic copper.

【0029】次に、中性雰囲気下で銅を焼結させる焼成
工程を行う。前記中性雰囲気とは、酸素や水素を含まな
い窒素等の不活性ガス雰囲気をいい、本発明では前記工
程で金属銅に還元された銅を緻密化して基板に接着する
ために、前記中性雰囲気下で焼成する。焼成温度は60
0〜1000℃が好ましい。前記焼成温度が600℃未
満の場合は銅が緻密に焼結せず、また前記焼成温度が1
000℃超えた場合は銅が溶融し易くなる。
Next, a firing step of sintering copper in a neutral atmosphere is performed. The neutral atmosphere refers to an inert gas atmosphere such as nitrogen containing no oxygen or hydrogen, and in the present invention, in order to densify the copper reduced to metallic copper in the above step and adhere to the substrate, the neutral atmosphere Bake in an atmosphere. Firing temperature is 60
0-1000 degreeC is preferable. When the firing temperature is less than 600 ° C., copper does not sinter densely, and the firing temperature is 1
When the temperature exceeds 000 ° C, copper is likely to melt.

【0030】なお、前記方法により形成した銅の微細配
線上に、微細配線のさらなる平坦化やはんだ付け後の高
温エージングによる接着性の低下等を防ぐ目的で、銅、
金又はニッケル等の金属を2〜5μm程度の厚さにメッ
キしてもよい。
On the copper fine wiring formed by the above method, copper is used for the purpose of further flattening the fine wiring and preventing the deterioration of the adhesiveness due to high temperature aging after soldering.
A metal such as gold or nickel may be plated to a thickness of about 2 to 5 μm.

【0031】上記した本発明の第1のセラミックス回路
基板の製造方法により、容易な操作、及び低コストで、
セラミックス回路基板上に平坦性、緻密性、接着性に優
れた銅微細配線を形成することができる。
By the above-mentioned first method for manufacturing a ceramics circuit board of the present invention, easy operation and low cost,
It is possible to form copper fine wiring having excellent flatness, denseness, and adhesiveness on a ceramic circuit board.

【0032】次に、本発明の第2のセラミックス回路基
板の製造方法について説明する。第2のセラミックス回
路基板の製造方法において、セラミックス基板上に銅粉
末、ガラス粉末及び感光性樹脂を主成分とする感光性導
体ペーストを塗布する塗布工程、該塗布工程により形成
された塗布層を所定の配線パターンに露光、現像する現
像処理工程、及び該現像処理が施されたセラミックス基
板を酸化性雰囲気下で前記塗布層中の感光性樹脂が分
解、飛散する温度で熱処理する工程は、第1のセラミッ
クス回路基板の製造方法と全く同様に行う。
Next, a method of manufacturing the second ceramics circuit board of the present invention will be described. In the second method for manufacturing a ceramics circuit board, a coating step of coating a photosensitive conductor paste containing copper powder, glass powder and a photosensitive resin as a main component on the ceramics substrate, and a coating layer formed by the coating step are predetermined. The developing treatment step of exposing and developing the wiring pattern of 1) and the heat treatment of the developed ceramic substrate in an oxidizing atmosphere at a temperature at which the photosensitive resin in the coating layer decomposes and scatters. The manufacturing method is the same as that of the ceramic circuit board.

【0033】従って、用いるセラミックス基板、感光性
導体ペースト等も、第1のセラミックス回路基板の製造
方法と全く同様でよい。
Therefore, the ceramic substrate, the photosensitive conductor paste, etc. used may be exactly the same as in the first ceramic circuit substrate manufacturing method.

【0034】第2のセラミックス回路基板の製造方法に
おいては、前記熱処理工程で酸化された塗布層中の銅粉
末を還元する還元工程と、還元された銅粉末を焼結させ
る焼成工程とを同時に行う点が、前記酸化工程と前記還
元工程とを順次行う第1のセラミックス回路基板の製造
方法と異なる。
In the second method for manufacturing a ceramics circuit board, a reducing step of reducing the copper powder in the coating layer oxidized in the heat treatment step and a firing step of sintering the reduced copper powder are simultaneously performed. This is different from the first ceramic circuit board manufacturing method in which the oxidation step and the reduction step are sequentially performed.

【0035】前の熱処理工程で酸化された塗布層中の銅
粉末を還元し、かつ焼結させる還元焼成工程を行う場合
は、加熱の温度が高いため、前述したセラミックス回路
基板の構成材料であるセラミックス基板、誘電体部、抵
抗部等が容易に還元されない耐還元性の高い材料である
必要がある。この場合の加熱温度は、600〜1000
℃が好ましい。前記焼成温度が600℃未満の場合は銅
が緻密に焼結せず、また前記焼成温度が1000℃超え
た場合は銅が溶融し易くなる。
When the reduction firing step of reducing and sintering the copper powder in the coating layer oxidized in the previous heat treatment step is performed, the heating temperature is high, and therefore it is a constituent material of the ceramic circuit board described above. It is necessary that the ceramic substrate, the dielectric portion, the resistance portion, and the like are made of a material having high reduction resistance that is not easily reduced. The heating temperature in this case is 600 to 1000.
C is preferred. If the firing temperature is lower than 600 ° C., the copper is not densely sintered, and if the firing temperature is higher than 1000 ° C., the copper is easily melted.

【0036】なお、第2のセラミックス基板の製造方法
においても、前記方法により形成した銅の微細配線上
に、微細配線のさらなる平坦化やはんだ付け後の高温エ
ージングによる接着性の低下等を防ぐために、銅、金又
はニッケル等の金属を2〜5μm程度の厚さにメッキし
てもよい。
In the second ceramic substrate manufacturing method as well, on the copper fine wiring formed by the above-mentioned method, in order to further flatten the fine wiring and to prevent deterioration of the adhesiveness due to high temperature aging after soldering, etc. Alternatively, a metal such as copper, gold or nickel may be plated to a thickness of about 2 to 5 μm.

【0037】上記した本発明の第2のセラミックス回路
基板の製造方法により、容易な操作、及び低コストで、
セラミックス回路基板上に平坦性、緻密性、接着性に優
れた銅微細配線を形成することができる。
By the second method for manufacturing a ceramics circuit board according to the present invention, the operation is easy and the cost is low.
It is possible to form copper fine wiring having excellent flatness, denseness, and adhesiveness on a ceramic circuit board.

【0038】[0038]

【作用】本発明に係る第1のセラミックス回路基板の製
造方法によれば、セラミックス基板上に銅粉末、ガラス
粉末及び感光性樹脂を主成分とする感光性導体ペースト
を塗布する塗布工程と、該塗布工程により形成された塗
布層を所定の配線パターンに露光、現像する現像処理工
程と、該現像処理が施されたセラミックス基板を酸化性
雰囲気下で前記塗布層中の感光性樹脂が分解、飛散する
温度で熱処理する工程と、前記熱処理工程で酸化された
塗布層中の銅粉末を還元する還元処理工程と、中性雰囲
気下で銅を焼結させる焼成工程とを含んでいるので、前
記感光性導体ペーストの塗布及び現像工程で微細な銅配
線が形成され、酸化性雰囲気下で熱処理する工程により
感光性樹脂等が完全に除去され、酸化された酸化銅を還
元し、焼成する工程によりセラミックス基板との密着性
に優れた、緻密な銅微細配線が形成される。
According to the first method for manufacturing a ceramic circuit board according to the present invention, a coating step of coating a copper substrate, a glass powder and a photosensitive conductor paste containing a photosensitive resin as a main component on the ceramic substrate; A developing treatment step of exposing and developing the coating layer formed by the coating step to a predetermined wiring pattern, and the photosensitive resin in the coating layer is decomposed and scattered in an oxidizing atmosphere on the ceramic substrate subjected to the developing treatment. Since it includes a heat treatment step at a temperature, a reduction treatment step of reducing the copper powder in the coating layer oxidized in the heat treatment step, and a firing step of sintering copper in a neutral atmosphere, Fine copper wiring is formed in the process of applying and developing the conductive conductor paste, and the photosensitive resin etc. are completely removed by the process of heat treatment in an oxidizing atmosphere, and the oxidized copper oxide is reduced and baked. Excellent adhesion to a ceramic substrate, a dense copper fine wiring is formed.

【0039】また本発明に係る第2のセラミックス回路
基板の製造方法によれば、セラミックス基板上に銅粉
末、ガラス粉末及び感光性樹脂を主成分とする感光性導
体ペーストを塗布する塗布工程と、該塗布工程により形
成された塗布層を所定の配線パターンに露光、現像する
現像処理工程と、該現像処理が施されたセラミックス基
板を酸化性雰囲気下で前記塗布層中の感光性樹脂が分
解、飛散する温度で熱処理する工程と、前記熱処理工程
で酸化された塗布層中の銅粉末を還元し、かつ焼結させ
る還元焼成工程とを含んでいるので、前記感光性導体ペ
ーストの塗布及び現像工程で微細な銅配線が形成され、
酸化性雰囲気下で熱処理する工程により感光性樹脂等が
完全に除去され、酸化された酸化銅を還元し、同時に焼
成する工程によりセラミックス基板との密着性に優れ
た、緻密な銅微細配線が形成される。
Further, according to the second method for manufacturing a ceramics circuit board according to the present invention, a coating step of coating a photosensitive conductor paste containing copper powder, glass powder and a photosensitive resin as main components on the ceramics substrate, A developing treatment step of exposing and developing the coating layer formed by the coating step to a predetermined wiring pattern, and decomposing the photosensitive resin in the coating layer in an oxidizing atmosphere on the ceramic substrate subjected to the developing treatment, Since it includes a step of heat-treating at a temperature that scatters, and a reduction firing step of reducing and sintering the copper powder in the coating layer oxidized in the heat-treating step, the step of applying and developing the photosensitive conductor paste. Fine copper wiring is formed with
Photosensitive resin etc. are completely removed by the process of heat treatment in an oxidizing atmosphere, oxidized copper oxide is reduced, and the process of baking at the same time forms fine copper fine wiring with excellent adhesion to the ceramic substrate. To be done.

【0040】[0040]

【実施例及び比較例】以下、本発明に係るセラミックス
回路基板の製造方法の実施例及び比較例を説明する。
EXAMPLES AND COMPARATIVE EXAMPLES Examples and comparative examples of the method for manufacturing a ceramic circuit board according to the present invention will be described below.

【0041】[実施例1]黄色光の下で、粒径4μmの
銅粉末100重量部、ガラス粉末(PbO-B2O3-SiO2系、軟
化点500 ℃)2重量部、ネガ型フォトレジスト(アクリ
ル系ポリマーを主体としたもの)55重量部を3本ロー
ルにて混練して感光性導体ペーストを調製した。次に該
感光性導体ペーストを用い、そのサイズが60mm×60
mmのアルミナ焼結基板の配線部及びその周辺に、バーコ
ート方式によりステンレスメッシュを通じてスクリーン
印刷(ベタ印刷)した。このときの印刷塗布層の厚さは
6μmとした。次に、印刷後のアルミナ基板を10分間
レベリング処理し、80℃で10分間乾燥させてアルミ
ナ基板に固定した。印刷終了後の配線部の内部構造を、
内部がわかるように切断した後SEM観察したところ、
感光性樹脂樹脂中に銅粒子及びガラス粒子が良好に分散
しており、前記粒子同士の接触は少なく、粒子の充填度
は低かった。
Example 1 Under yellow light, 100 parts by weight of a copper powder having a particle size of 4 μm, 2 parts by weight of a glass powder (PbO—B 2 O 3 —SiO 2 system, softening point 500 ° C.), negative type photo 55 parts by weight of a resist (mainly composed of an acrylic polymer) was kneaded with a three-roll mill to prepare a photosensitive conductor paste. Next, using the photosensitive conductor paste, the size of which is 60 mm × 60
Screen printing (solid printing) was performed on the wiring part of the alumina sintered substrate of mm and its periphery through a stainless mesh by a bar coating method. The thickness of the print coating layer at this time was 6 μm. Next, the printed alumina substrate was leveled for 10 minutes, dried at 80 ° C. for 10 minutes, and fixed on the alumina substrate. The internal structure of the wiring part after printing is
SEM observation after cutting so that the inside can be seen,
Copper particles and glass particles were satisfactorily dispersed in the photosensitive resin resin, the particles were less in contact with each other, and the packing degree of the particles was low.

【0042】次に露光、現像工程を行った。前記工程で
アルミナ基板上に形成した感光性樹脂を含む導体層に、
所定の配線パターンが形成されたフォトマスクを接触さ
せ、上方から紫外線を照射して感光性樹脂を含む導体層
に露光した。露光処理後の基板は、炭酸ソーダ1wt%水
溶液の現像液を用いて浸漬揺動法により現像し、純水を
用いてリンスした。
Next, exposure and development steps were performed. In the conductor layer containing the photosensitive resin formed on the alumina substrate in the above step,
A photomask on which a predetermined wiring pattern was formed was brought into contact, and ultraviolet rays were irradiated from above to expose the conductor layer containing the photosensitive resin. The substrate after the exposure treatment was developed by a dipping and rocking method using a developer of a 1 wt% sodium carbonate aqueous solution, and rinsed with pure water.

【0043】熱処理により感光性樹脂等の有機物を分
解、飛散させる工程は、上記方法により現像処理した基
板を、大気中、500℃で20分間加熱処理することに
より行った。この工程により、配線中の硬化した感光性
樹脂は分解、飛散し、前記感光性樹脂中にあった銅粒子
は酸化して酸化銅となったが、隣接の酸化銅粒子同士が
接合してネックを形成しているために膜状となってい
た。またガラス粒子が溶融、流動することにより、形成
された膜状の酸化銅をアルミナ基板に接着させていた。
この工程以降は白色光の下で実施した。
The step of decomposing and scattering organic substances such as photosensitive resin by heat treatment was carried out by heating the substrate developed by the above method at 500 ° C. for 20 minutes in the atmosphere. By this process, the cured photosensitive resin in the wiring was decomposed and scattered, and the copper particles in the photosensitive resin were oxidized to copper oxide. It was in the form of a film because it was formed. Further, the film-shaped copper oxide formed was adhered to the alumina substrate by melting and flowing of the glass particles.
After this step, it was performed under white light.

【0044】酸化銅の金属銅への還元は、10 vol%の
水素を含有する窒素雰囲気下、500℃で10分間保持
することにより行った。この還元工程で、酸化銅の金属
銅への還元に伴って体積収縮が生じたが、お互いに接合
された銅粒子はそのまま接合されて膜の状態を保ってお
り、また酸化銅膜はガラスによりアルミナ基板に固定さ
れていたので、金属銅の膜になってもアルミナ基板から
剥がれることはなかった。
Reduction of copper oxide to metallic copper was carried out by holding at 500 ° C. for 10 minutes in a nitrogen atmosphere containing 10 vol% hydrogen. In this reduction step, volume contraction occurred due to the reduction of copper oxide to metallic copper, but the copper particles bonded to each other remained bonded as they were, and the copper oxide film was formed by glass. Since it was fixed on the alumina substrate, it did not peel off from the alumina substrate even when it became a metallic copper film.

【0045】最後にアルミナ基板上の還元された銅を、
窒素雰囲気下、900℃で10分間保持することにより
焼結させ、アルミナ基板にしっかり固定した。これによ
り、銅配線は充分緻密に焼結した。
Finally, the reduced copper on the alumina substrate
It was sintered by holding it at 900 ° C. for 10 minutes in a nitrogen atmosphere and firmly fixed to an alumina substrate. As a result, the copper wiring was sintered sufficiently densely.

【0046】上記プロセスにより、線幅30μm、線間
の距離が20μmの銅微細配線を形成できた。形成され
た銅微細配線の導電性、接着強度及びハンダ濡れ性は以
下の手順で評価した。
By the above process, copper fine wiring having a line width of 30 μm and a distance between the lines of 20 μm could be formed. The conductivity, adhesive strength and solder wettability of the formed copper fine wiring were evaluated by the following procedures.

【0047】導電性について 導体特性値の測定により評価する。具体的には、4端子
抵抗測定及び銅配線の線幅と膜の厚さより、膜厚20μ
m換算のシート抵抗値を求める。
Conductivity is evaluated by measuring conductor characteristic values. Specifically, from the four-terminal resistance measurement and the line width and film thickness of the copper wiring, the film thickness of 20 μ
Obtain the sheet resistance value in m.

【0048】接着強度について アルミナ基板上にタテヨコ2mm×2mm□の形状に銅導体
層を上記プロセスにより形成し、230±3℃の温度に
維持した63%Sn−37%Pbハンダ槽に3±0.5
秒間浸漬した後、その上に0.6mmφスズメッキ銅線を
ハンダゴテにてハンダ付けする。次に、スズメッキ銅線
を被膜端部より1mmの位置で90°曲げて基板と垂直な
状態にし、前記基板を固定した状態で引っ張り試験機に
より10cm/min の速度でスズメッキ銅線を引っ張り、
スズメッキ銅線が前記基板から剥れたときの接着強度を
測定し、接着強度の値とする。前記接着強度の測定は、
ハンダ付け直後(初期接着強度)、および150℃で1
000時間エージングした後(エージング後の接着強
度)の二種類の条件を設定して行う。
Bonding Strength A copper conductor layer having a size of 2 mm × 2 mm square was formed on the alumina substrate by the above process, and 3 ± 0 in a 63% Sn-37% Pb solder bath maintained at a temperature of 230 ± 3 ° C. .5
After dipping for a second, a 0.6 mmφ tin-plated copper wire is soldered on it with a soldering iron. Next, the tin-plated copper wire is bent 90 ° at a position 1 mm from the end of the coating to be perpendicular to the substrate, and with the substrate fixed, the tin-plated copper wire is pulled at a speed of 10 cm / min by a tensile tester,
The adhesive strength when the tin-plated copper wire is peeled off from the substrate is measured and used as the adhesive strength value. The measurement of the adhesive strength,
Immediately after soldering (initial adhesive strength) and at 150 ° C 1
After aging for 000 hours (adhesive strength after aging), two types of conditions are set.

【0049】ハンダ濡れ性について アルミナ基板上にタテヨコ4mm×4mm□の形状に銅導体
層を上記プロセスにより形成し、230±3℃の温度に
維持した63%Sn−37%Pbハンダ槽に3±0.5
秒間浸漬し、被着したハンダの被覆率を目視で測定す
る。
Solder wettability A copper conductor layer having a size of 4 mm × 4 mm square was formed on the alumina substrate by the above process, and 3% was put in a 63% Sn-37% Pb solder bath maintained at a temperature of 230 ± 3 ° C. 0.5
Immerse for 2 seconds and measure the coverage of the deposited solder visually.

【0050】以上の評価方法により、前記プロセスによ
り形成した銅微細配線の特性値を測定したところ、シー
ト抵抗値は1.5mΩ/□、初期接着強度は3.0kg/
4mm2 、エージング後の接着強度は2.6kg/4mm2
ハンダ濡れ性は100%と優れた特性を示した。また配
線表面の平坦度を東京精密製の表面荒さ計で測定したと
ころ、±2μmであった。
When the characteristic values of the copper fine wiring formed by the above process were measured by the above evaluation method, the sheet resistance value was 1.5 mΩ / □ and the initial adhesive strength was 3.0 kg /
4 mm 2 , the adhesive strength after aging is 2.6 kg / 4 mm 2 ,
The solder wettability was 100%, which was an excellent characteristic. When the flatness of the wiring surface was measured with a surface roughness meter manufactured by Tokyo Seimitsu Co., Ltd., it was ± 2 μm.

【0051】次に該銅微細配線上に新たな銅導体層を電
解メッキ法にて2μmの厚さに形成した。前記電解メッ
キの条件は、メッキ液(CuSO4・5H2O:75g/L, 濃硫酸:17
0g/L,Cl-:60ppm, 光沢剤:極微量)中にて、陽極として
リンを0.3 %含有する銅を用い、電流密度1.5A/dm2、通
電時間30分であった。
Next, a new copper conductor layer was formed on the copper fine wiring by electrolytic plating to a thickness of 2 μm. The conditions of the electroplating are as follows: plating solution (CuSO 4 , 5H 2 O: 75 g / L, concentrated sulfuric acid: 17
0g / L, Cl -: 60ppm , brighteners: at trace amounts) in, using copper containing 0.3% phosphorus as anode, the current density of 1.5A / dm 2, was 30 minutes conduction time.

【0052】このメッキ処理の施された銅導体層よりな
る銅微細配線表面の平坦度は±0.5μm以下と極めて
平坦性の高いものとなり、初期接着強度は3.0kg/4
mm2、エージング後の接着強度は3.0kg/4mm2 、ハ
ンダ濡れ性は100%とさらに優れた特性を示した。
The flatness of the surface of the copper fine wiring made of the plated copper conductor layer is as high as ± 0.5 μm or less, and the initial adhesive strength is 3.0 kg / 4.
mm 2 , the adhesive strength after aging was 3.0 kg / 4 mm 2 , and the solder wettability was 100%.

【0053】[実施例2]実施例1と同様のアルミナ焼
結基板を用い、前記基板に実施例1と同様に感光性導体
ペーストをスクリーン印刷し、露光、現像、有機物の分
解、飛散処理を行った。次に、10 vol%の水素を含有
する窒素雰囲気下、ピーク温度900℃で10分間保持
することにより、還元、焼成を行い、線幅30μm、線
間20μmの銅微細配線を形成した。
[Example 2] The same alumina sintered substrate as in Example 1 was used, and a photosensitive conductor paste was screen-printed on the substrate in the same manner as in Example 1 to carry out exposure, development, decomposition of organic substances and scattering treatment. went. Next, in a nitrogen atmosphere containing 10 vol% hydrogen, reduction and firing were carried out by holding at a peak temperature of 900 ° C. for 10 minutes to form a copper fine wiring having a line width of 30 μm and a line spacing of 20 μm.

【0054】前記プロセスにより形成した銅微細配線の
特性値を測定したところ、シート抵抗値は1.4mΩ/
□、初期接着強度は3.1kg/4mm2 、エージング後の
接着強度は2.2kg/4mm2 、ハンダ濡れ性は100%
と優れた特性を示した。また配線表面の平坦度は±2μ
mであった。
When the characteristic value of the copper fine wiring formed by the above process was measured, the sheet resistance value was 1.4 mΩ /
□, initial adhesive strength is 3.1 kg / 4 mm 2 , adhesive strength after aging is 2.2 kg / 4 mm 2 , solder wettability is 100%
And showed excellent characteristics. The flatness of the wiring surface is ± 2μ
It was m.

【0055】次に、実施例1と同様に該銅微細配線上に
新たな銅導体層を電解メッキ法にて2μmの厚さに形成
したところ、このメッキ処理の施された銅導体層よりな
る銅微細配線表面の平坦度は±0.5μm以下と極めて
平坦性の高いものとなり、初期接着強度は3.1kg/4
mm2 、エージング後の接着強度は3.0kg/4mm2 、ハ
ンダ濡れ性は100%とさらに優れた特性を示した。
Next, a new copper conductor layer was formed on the copper fine wiring to a thickness of 2 μm by the electrolytic plating method as in Example 1, and the copper conductor layer was plated. The flatness of the copper fine wiring surface is ± 0.5 μm or less, which is extremely high, and the initial adhesive strength is 3.1 kg / 4.
mm 2 , the adhesive strength after aging was 3.0 kg / 4 mm 2 , and the solder wettability was 100%.

【0056】[実施例3]粒径6μmの銅粉末100重
量部、ガラス粉末(PbO-B2O3-SiO2系、軟化点500℃)2
重量部、ネガ型フォトレジスト(アクリル系ポリマーを
主体としたもの)50重量部を3本ロールにて混練して
感光性導体ペーストを調製した以外は、実施例1と同様
にして、線幅20μm、線間15μmの銅微細配線を形
成した。
Example 3 100 parts by weight of copper powder having a particle size of 6 μm, glass powder (PbO—B 2 O 3 —SiO 2 system, softening point 500 ° C.) 2
20 parts by weight in the same manner as in Example 1 except that a photosensitive conductor paste was prepared by kneading 50 parts by weight of a negative photoresist (mainly composed of an acrylic polymer) with 3 rolls. Then, copper fine wiring having a space of 15 μm was formed.

【0057】前記プロセスにより形成した銅微細配線の
特性値を測定したところ、シート抵抗値は1.6mΩ/
□、初期接着強度は2.7kg/4mm2 、エージング後の
接着強度は2.0kg/4mm2 、ハンダ濡れ性は100%
と優れた特性を示した。また配線表面の平坦度は±2μ
mであった。
When the characteristic value of the copper fine wiring formed by the above process was measured, the sheet resistance value was 1.6 mΩ /
□, initial adhesive strength is 2.7 kg / 4 mm 2 , adhesive strength after aging is 2.0 kg / 4 mm 2 , solder wettability is 100%
And showed excellent characteristics. The flatness of the wiring surface is ± 2μ
It was m.

【0058】次に、実施例1と同様に該銅微細配線上に
新たな銅導体層を電解メッキ法にて2μmの厚さに形成
したところ、このメッキ処理の施された銅導体層よりな
る銅微細配線表面の平坦度は±0.5μm以下と極めて
平坦性の高いものとなり、初期接着強度は2.7kg/4
mm2 、エージング後の接着強度は2.5kg/4mm2 、ハ
ンダ濡れ性は100%とさらに優れた特性を示した。
Next, a new copper conductor layer having a thickness of 2 μm was formed on the copper fine wiring by electrolytic plating in the same manner as in Example 1. The copper conductor layer was plated. The flatness of the copper fine wiring surface is ± 0.5 μm or less, which is extremely high, and the initial adhesive strength is 2.7 kg / 4.
mm 2 , the adhesive strength after aging was 2.5 kg / 4 mm 2 , and the solder wettability was 100%.

【0059】[実施例4]粒径4μmの銅粉末100重
量部、ガラス粉末(PbO-B2O3-SiO2系、軟化点500℃)5
重量部、ネガ型フォトレジスト(アクリル系ポリマーを
主体としたもの)55重量部を3本ロールにて混練して
感光性導体ペーストを調製した以外は、実施例1と同様
にして、線幅30μm、線間20μmの銅微細配線を形
成した。
Example 4 100 parts by weight of copper powder having a particle size of 4 μm, glass powder (PbO—B 2 O 3 —SiO 2 system, softening point 500 ° C.) 5
30 parts by weight in the same manner as in Example 1 except that a photosensitive conductor paste was prepared by kneading parts by weight and 55 parts by weight of a negative photoresist (mainly composed of an acrylic polymer) with a three-roll mill. A copper fine wiring having a line spacing of 20 μm was formed.

【0060】前記プロセスにより形成した銅微細配線の
特性値を測定したところ、シート抵抗値は1.7mΩ/
□、初期接着強度は3.2kg/4mm2 、エージング後の
接着強度は2.7kg/4mm2 、ハンダ濡れ性は90%と
優れた特性を示した。また配線表面の平坦度は±2μm
であった。
When the characteristic value of the copper fine wiring formed by the above process was measured, the sheet resistance value was 1.7 mΩ /
□, the initial adhesive strength was 3.2 kg / 4 mm 2 , the adhesive strength after aging was 2.7 kg / 4 mm 2 , and the solder wettability was 90%, which were excellent characteristics. The flatness of the wiring surface is ± 2 μm
Met.

【0061】次に、実施例1と同様に該銅微細配線上に
新たな銅導体層を電解メッキ法にて2μmの厚さに形成
したところ、このメッキ処理の施された銅導体層よりな
る銅微細配線表面の平坦度は±0.5μm以下と極めて
平坦性の高いものとなり、初期接着強度は3.2kg/4
mm2 、エージング後の接着強度は2.9kg/4mm2 、ハ
ンダ濡れ性は100%とさらに優れた特性を示した。
Next, a new copper conductor layer having a thickness of 2 μm was formed on the copper fine wiring by electrolytic plating in the same manner as in Example 1. The copper conductor layer was plated. The flatness of the copper fine wiring surface is ± 0.5 μm or less, which is extremely high, and the initial adhesive strength is 3.2 kg / 4.
mm 2 , the adhesive strength after aging was 2.9 kg / 4 mm 2 , and the solder wettability was 100%.

【0062】[実施例5]粒径4μmの銅粉末100重
量部、ガラス粉末(PbO-B2O3-SiO2系、軟化点500℃)2
重量部、ポジ型フォトレジスト(アクリル系ポリマーを
主体としたもの)60重量部を3本ロールにて混練して
感光性導体ペーストを調製した以外は、実施例1と同様
にして、線幅60μm、線間30μmの銅微細配線を形
成した。
Example 5 100 parts by weight of copper powder having a particle size of 4 μm, glass powder (PbO—B 2 O 3 —SiO 2 system, softening point 500 ° C.) 2
A line width of 60 μm was obtained in the same manner as in Example 1 except that a photosensitive conductor paste was prepared by kneading 60 parts by weight of a positive photoresist (mainly composed of an acrylic polymer) with 3 rolls. A copper fine wiring having a line spacing of 30 μm was formed.

【0063】前記プロセスにより形成した銅微細配線の
特性値を測定したところ、シート抵抗値は1.7mΩ/
□、初期接着強度は2.9kg/4mm2 、エージング後の
接着強度は2.4kg/4mm2 、ハンダ濡れ性は100%
と優れた特性を示した。また配線表面の平坦度は±2μ
mであった。
When the characteristic value of the copper fine wiring formed by the above process was measured, the sheet resistance value was 1.7 mΩ /
□, initial adhesive strength is 2.9 kg / 4 mm 2 , adhesive strength after aging is 2.4 kg / 4 mm 2 , solder wettability is 100%.
And showed excellent characteristics. The flatness of the wiring surface is ± 2μ
It was m.

【0064】次に、実施例1と同様に該銅微細配線上に
新たな銅導体層を電解メッキ法にて2μmの厚さに形成
したところ、このメッキ処理の施された銅導体層よりな
る銅微細配線表面の平坦度は±0.5μm以下と極めて
平坦性の高いものとなり、初期接着強度は2.9kg/4
mm2 、エージング後の接着強度は2.8kg/4mm2 、ハ
ンダ濡れ性は100%とさらに優れた特性を示した。
Next, as in Example 1, a new copper conductor layer was formed on the copper fine wiring to a thickness of 2 μm by electroplating, and the copper conductor layer was plated. The flatness of the copper fine wiring surface is ± 0.5 μm or less, which is extremely high, and the initial adhesive strength is 2.9 kg / 4.
mm 2 , the adhesive strength after aging was 2.8 kg / 4 mm 2 , and the solder wettability was 100%.

【0065】[比較例1]実施例1と同様のアルミナ焼
結基板を用い、前記基板に実施例1と同様に感光性導体
ペーストをスクリーン印刷し、露光、現像処理を行っ
た。次に、酸素30ppmを含有する窒素雰囲気下、3
0分で900℃まで昇温し、900℃で10分間保持し
たのち、30分で室温まで冷却する条件で焼成したとこ
ろ、配線内の樹脂が分解、飛散せず、残留炭素として残
存し、銅粉末の焼結はほとんど進行せず、シート抵抗値
は20mΩ/□であり、アルミナ基板上に銅微細配線を
形成することはできなかった。
[Comparative Example 1] The same alumina sintered substrate as in Example 1 was used, and a photosensitive conductor paste was screen-printed on the substrate in the same manner as in Example 1, and the substrate was exposed and developed. Next, under a nitrogen atmosphere containing 30 ppm of oxygen, 3
When the temperature was raised to 900 ° C. in 0 minutes, held at 900 ° C. for 10 minutes, and then baked in a condition that it was cooled to room temperature in 30 minutes, the resin in the wiring did not decompose and scatter, and remained as residual carbon, Sintering of the powder hardly proceeded, the sheet resistance value was 20 mΩ / □, and the copper fine wiring could not be formed on the alumina substrate.

【0066】[0066]

【発明の効果】以上詳述したように本発明に係る第1の
セラミックス回路基板の製造方法にあっては、セラミッ
クス基板上に銅粉末、ガラス粉末及び感光性樹脂を主成
分とする感光性導体ペーストを塗布する塗布工程と、該
塗布工程により形成された塗布層を所定の配線パターン
に露光、現像する現像処理工程と、該現像処理が施され
たセラミックス基板を酸化性雰囲気下で前記塗布層中の
感光性樹脂が分解、飛散する温度で熱処理する工程と、
前記熱処理工程で酸化された塗布層中の銅粉末を還元す
る還元処理工程と、中性雰囲気下で銅を焼結させる焼成
工程とを含んでいるので、容易な操作、及び低コスト
で、セラミックス回路基板上に平坦性、緻密性、接着性
に優れた銅微細配線を形成することができる。
As described in detail above, in the first method for manufacturing a ceramic circuit board according to the present invention, a photosensitive conductor containing copper powder, glass powder and a photosensitive resin as main components is provided on the ceramic substrate. A coating step of coating a paste, a developing treatment step of exposing and developing the coating layer formed by the coating step to a predetermined wiring pattern, and a coating process of the ceramic substrate subjected to the developing treatment under an oxidizing atmosphere. Heat treatment at a temperature at which the photosensitive resin inside decomposes and scatters,
Since it includes a reduction treatment step of reducing the copper powder in the coating layer oxidized in the heat treatment step and a firing step of sintering copper in a neutral atmosphere, the ceramics can be easily operated and at low cost. It is possible to form copper fine wiring having excellent flatness, denseness, and adhesiveness on a circuit board.

【0067】また本発明に係る第2のセラミックス回路
基板の製造方法にあっては、セラミックス基板上に銅粉
末、ガラス粉末及び感光性樹脂を主成分とする感光性導
体ペーストを塗布する塗布工程と、該塗布工程により形
成された塗布層を所定の配線パターンに露光、現像する
現像処理工程と、該現像処理が施されたセラミックス基
板を酸化性雰囲気下で前記塗布層中の感光性樹脂が分
解、飛散する温度で熱処理する工程と、前記熱処理工程
で酸化された塗布層中の銅粉末を還元し、かつ焼結させ
る還元焼成工程とを含んでいるので、第1のセラミック
ス基板の製造方法と同様に容易な操作、及び低コスト
で、セラミックス回路基板上に平坦性、緻密性、接着性
に優れた銅微細配線を形成することができる。
Further, in the second method for manufacturing a ceramic circuit board according to the present invention, a coating step of coating a photosensitive conductor paste containing copper powder, glass powder and a photosensitive resin as a main component on the ceramic substrate. A developing treatment step of exposing and developing the coating layer formed by the coating step to a predetermined wiring pattern, and decomposing the photosensitive resin in the coating layer in the oxidizing atmosphere of the ceramic substrate subjected to the developing treatment. Since the method includes a heat treatment step at a scattering temperature and a reduction firing step of reducing and sintering the copper powder in the coating layer oxidized in the heat treatment step, Similarly, the copper fine wiring excellent in flatness, denseness, and adhesiveness can be formed on the ceramic circuit board with easy operation and low cost.

【0068】従って、本発明に係る上記二つの製造方法
により得られたセラミックス回路基板は、セラミックス
回路基板のマルチチップ化、高密度実装化に好適な回路
基板として極めて有用である。
Therefore, the ceramic circuit board obtained by the above two manufacturing methods according to the present invention is extremely useful as a circuit board suitable for multi-chip and high-density mounting of the ceramic circuit board.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 セラミックス基板上に銅粉末、ガラス粉
末及び感光性樹脂を主成分とする感光性導体ペーストを
塗布する塗布工程と、 該塗布工程により形成された塗布層を所定の配線パター
ンに露光、現像する現像処理工程と、 該現像処理が施されたセラミックス基板を酸化性雰囲気
下で前記塗布層中の感光性樹脂が分解、飛散する温度で
熱処理する工程と、 前記熱処理工程で酸化された塗布層中の銅粉末を還元す
る還元処理工程と、 中性雰囲気下で銅を焼結させる焼成工程とを含んでいる
ことを特徴とするセラミックス回路基板の製造方法。
1. A coating step of coating a copper substrate, a glass powder and a photosensitive conductor paste containing a photosensitive resin as a main component on a ceramic substrate, and a coating layer formed by the coating step is exposed to a predetermined wiring pattern. A developing treatment step of developing, a step of heat treating the ceramic substrate subjected to the developing treatment in an oxidizing atmosphere at a temperature at which the photosensitive resin in the coating layer is decomposed and scattered, A method of manufacturing a ceramic circuit board, comprising: a reduction treatment step of reducing copper powder in a coating layer; and a firing step of sintering copper in a neutral atmosphere.
【請求項2】 セラミックス基板上に銅粉末、ガラス粉
末及び感光性樹脂を主成分とする感光性導体ペーストを
塗布する塗布工程と、 該塗布工程により形成された塗布層を所定の配線パター
ンに露光、現像する現像処理工程と、 該現像処理が施されたセラミックス基板を酸化性雰囲気
下で前記塗布層中の感光性樹脂が分解、飛散する温度で
熱処理する工程と、 前記熱処理工程で酸化された塗布層中の銅粉末を還元
し、かつ焼結させる還元焼成工程とを含んでいることを
特徴とするセラミックス回路基板の製造方法。
2. A coating step of coating a copper substrate, a glass powder and a photosensitive conductor paste containing a photosensitive resin as a main component on a ceramic substrate, and a coating layer formed by the coating step is exposed to a predetermined wiring pattern. A developing treatment step of developing, a step of heat treating the ceramic substrate subjected to the developing treatment in an oxidizing atmosphere at a temperature at which the photosensitive resin in the coating layer is decomposed and scattered, And a reduction firing step of reducing and sintering the copper powder in the coating layer.
JP891493A 1993-01-22 1993-01-22 Manufacture of ceramic circuit board Pending JPH06224538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP891493A JPH06224538A (en) 1993-01-22 1993-01-22 Manufacture of ceramic circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP891493A JPH06224538A (en) 1993-01-22 1993-01-22 Manufacture of ceramic circuit board

Publications (1)

Publication Number Publication Date
JPH06224538A true JPH06224538A (en) 1994-08-12

Family

ID=11705931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP891493A Pending JPH06224538A (en) 1993-01-22 1993-01-22 Manufacture of ceramic circuit board

Country Status (1)

Country Link
JP (1) JPH06224538A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6156237A (en) * 1999-03-25 2000-12-05 Murata Manufacturing Co., Ltd. Conductive paste and circuit substrate formed by use of the paste
US6531257B2 (en) 2000-11-30 2003-03-11 Murata Manufacturing Co. Ltd Photosensitive copper paste and method of forming copper pattern using the same
GB2380198A (en) * 2001-08-07 2003-04-02 Murata Manufacturing Co Photosensitive conductive paste
WO2004103043A1 (en) * 2003-05-16 2004-11-25 Harima Chemicals, Inc. Method for forming fine copper particle sintered product type of electric conductor having fine shape, method for forming fine copper wiring and thin copper film using said method
US6885276B2 (en) 2000-03-15 2005-04-26 Murata Manufacturing Co., Ltd. Photosensitive thick film composition and electronic device using the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6156237A (en) * 1999-03-25 2000-12-05 Murata Manufacturing Co., Ltd. Conductive paste and circuit substrate formed by use of the paste
US6885276B2 (en) 2000-03-15 2005-04-26 Murata Manufacturing Co., Ltd. Photosensitive thick film composition and electronic device using the same
US6531257B2 (en) 2000-11-30 2003-03-11 Murata Manufacturing Co. Ltd Photosensitive copper paste and method of forming copper pattern using the same
GB2380198A (en) * 2001-08-07 2003-04-02 Murata Manufacturing Co Photosensitive conductive paste
GB2380198B (en) * 2001-08-07 2003-11-19 Murata Manufacturing Co Photosensitive conductive paste,method for forming conductive pattern using the same,and method for manufacturing ceramic multilayer element
US6806028B2 (en) 2001-08-07 2004-10-19 Murata Manufacturing Co., Ltd. Photosensitive conductive paste, method for forming conductive pattern using the same, and method for manufacturing ceramic multilayer element
WO2004103043A1 (en) * 2003-05-16 2004-11-25 Harima Chemicals, Inc. Method for forming fine copper particle sintered product type of electric conductor having fine shape, method for forming fine copper wiring and thin copper film using said method
KR100841665B1 (en) * 2003-05-16 2008-06-26 하리마 카세이 가부시키가이샤 Method for forming fine copper particle sintered product type of electric conductor having fine shape, method for forming fine copper wiring and thin copper film using said method
US7820232B2 (en) 2003-05-16 2010-10-26 Harima Chemicals, Inc. Method for forming fine copper particle sintered product type of electric conductor having fine shape, and process for forming copper fine wiring and thin copper film by applying said method

Similar Documents

Publication Publication Date Title
TWI571182B (en) Metallized substrate, method for manufacture thereof, and metal paste composition
KR20060100792A (en) Mathod for manufacturing wiring board using ag-pd alloy nanoparticles
KR900003152B1 (en) Method for forming capacitive circuit on circuit board
JP4388611B2 (en) Printed wiring board having wiring made of copper coating, manufacturing method thereof, and circuit board having circuit made of copper coating
KR900003158B1 (en) Method for producing electric circuits an a base board
KR19980081191A (en) Conductive paste, manufacturing method thereof and printed wiring board using the same
JPH06224538A (en) Manufacture of ceramic circuit board
JPH06204645A (en) Manufacture of ceramic circuit board
JPH0722737A (en) Method for forming wiring pattern
TW201505498A (en) Hole-filling substrate with surface conductive film and production method thereof, and method for preventing expansion and peeling
JP2769598B2 (en) Conductor paste
JPH0575255A (en) Hybrid substrate and circuit module on which the substrate is mounted, and manufacture thereof
JP4264091B2 (en) Wiring board manufacturing method
JP4090151B2 (en) Package substrate
JPH0745931A (en) Formation of fine wiring and conductor paste used in formation thereof
JPH0722732A (en) Forming method for microwiring
JPH08250859A (en) Ceramic multilayer wiring board and manufacture thereof
JPH06244534A (en) Copper-fine-interconnection formation method and copper fine interconnection
JPH06164110A (en) Method for forming au conductor on ceramic wiring board
JP2673825B2 (en) Method for manufacturing multilayer circuit board
JPS63164450A (en) Electronic circuit component
JP3857219B2 (en) Wiring board and manufacturing method thereof
JPS63275196A (en) Manufacture of circuit substrate
JPH0465010A (en) Copper conductive paste
JPH09321411A (en) Manufacture of ceramic wiring board