JPH06223647A - Manufacture of nbti superconducting billet - Google Patents

Manufacture of nbti superconducting billet

Info

Publication number
JPH06223647A
JPH06223647A JP35420692A JP35420692A JPH06223647A JP H06223647 A JPH06223647 A JP H06223647A JP 35420692 A JP35420692 A JP 35420692A JP 35420692 A JP35420692 A JP 35420692A JP H06223647 A JPH06223647 A JP H06223647A
Authority
JP
Japan
Prior art keywords
nbti
metal layer
metal
billet
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35420692A
Other languages
Japanese (ja)
Inventor
Hideki Ii
秀樹 伊井
Kinya Ogawa
欽也 小川
Itaru Inoue
至 井上
Takuya Suzuki
卓哉 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP35420692A priority Critical patent/JPH06223647A/en
Publication of JPH06223647A publication Critical patent/JPH06223647A/en
Pending legal-status Critical Current

Links

Landscapes

  • Press Drives And Press Lines (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To provide a method of manufacture of an NbTi superconducting billet excellent in machinability. CONSTITUTION:An NbTi alloy rod is packed in a pipe made of a metal serving as a stabilizer, with Nb metal layers each of thickness 10mum or more interposed in one layer, and the end portions of the metallic pipe are vacuum sealed to obtain a composite filler. The composite filler is subjected to HIP process at temperatures in the range of 500 to 1000 deg.C and at pressures of 500atm. or higher for three minutes or longer. Since the HIP process is carried out at high temperatures and at high pressures for a long time, the adhesion property of the different materials in this NbTi superconducting billet is improved so that a subsequent drawing process is good. Since the Nb metal layers are thickly interposed, the Ti does not diffuse into a stabilizing metal layer to deteriorate the machinability and heat and electric conductivity of the stabilizing metal layer. Since the Nb metal layers are interposed in one layer, deterioration of machinability is avoided that could be caused by imperfect bonding between the Nb metal layers.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、加工性に優れたNbT
i超電導ビレットの製造方法に関する。
The present invention relates to NbT having excellent workability.
The present invention relates to a method for manufacturing a superconducting billet.

【0002】[0002]

【従来の技術】NbTi超電導線は、素粒子研究用大型
加速器,産業用小型加速器(SOR,医療用),ウイグ
ラーマグネット,トカマク式核融合炉,発電機,電力貯
蔵装置(SMES)等の導体として利用されている。と
ころで、NbTi超電導線には、通常安定化材となす銅
マトリックス中にNbTiフィラメントを多数本埋込ん
だ多心NbTi超電導線が用いられている。そしてその
製造は、先ず、銅製管内にNbTi合金棒材をNb金属
層を所要層介在させて充填したのち、端部を真空封止し
て複合充填材となし、この複合充填材に25℃×1500atm
程度での冷間静水圧圧縮(CIP)処理、又は 450℃×
1500atm 程度での熱間静水圧圧縮(HIP)処理を施し
て内部の充填密度を高めてNbTi超電導ビレットとな
し、この超電導ビレットに熱間押出及び伸線加工等の延
伸加工を施して単心のNbTi超電導線材を作製する。
次に、この単心のNbTi超電導線材の多数本を、銅製
管内に再び充填し端部を真空封止して多心充填材とな
し、この多心充填材を、前記の単心超電導線の場合と同
じ処理及び加工を施して多心NbTi超電導線に加工し
てなされていた。
2. Description of the Related Art NbTi superconducting wires are used as conductors for large particle research accelerators, industrial small accelerators (SOR, medical), wiggler magnets, tokamak fusion reactors, generators, power storage devices (SMES), etc. It's being used. By the way, as the NbTi superconducting wire, a multi-core NbTi superconducting wire in which a large number of NbTi filaments are embedded in a copper matrix which is usually a stabilizer is used. And, in the manufacturing, first, a NbTi alloy rod is filled in a copper pipe with a required layer of Nb metal layer interposed, and then the end portion is vacuum-sealed to form a composite filler. 1500 atm
Cold isostatic pressing (CIP) treatment at a degree or 450 ℃ ×
Hot isostatic pressing (HIP) treatment at about 1500 atm is performed to increase the packing density inside to form an NbTi superconducting billet. This superconducting billet is subjected to drawing processing such as hot extrusion and wire drawing to obtain a single core. An NbTi superconducting wire is produced.
Next, a large number of this single-core NbTi superconducting wire is refilled in a copper pipe and the end portion is vacuum-sealed to form a multi-core filling material. The same processing and processing as in the above case was performed to form a multi-core NbTi superconducting wire.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前述の
ような方法により製造された多心NbTi超電導線は、
内部のNbTiフィラメントが20μmφ以下にまで細く
加工されると、伸線加工中に前記超電導線が断線し易く
なるという問題があった。この断線部位を観察したとこ
ろ、断線部位には、細い均一な径のフィラメントに混じ
って、図1に示したような所々くびれた太径のソーセー
ジ状フィラメント1が混在している場合が多いこと、そ
してこの所々くびれた太径のソーセージ状フィラメント
1は、超電導線内の異材間の不均一変形に起因して起き
ることを見出した。
However, the multi-core NbTi superconducting wire manufactured by the above-mentioned method has the following problems.
If the internal NbTi filament is thinned to 20 μmφ or less, there is a problem that the superconducting wire is easily broken during wire drawing. Observing this disconnection site, it is often the case that, in the disconnection site, there are many sausage-like filaments 1 with a narrow diameter as shown in FIG. It has been found that the sausage-like filament 1 having a large diameter, which is constricted in places, is caused by uneven deformation between different materials in the superconducting wire.

【0004】[0004]

【課題を解決する為の手段】本発明はこのような状況に
鑑み鋭意研究を行ない、不均一変形が起きる原因はNb
Ti超電導ビレットの中の異材間の接合不良に原因があ
ることを知見し、更に研究を重ねて、本発明を完成する
に至ったものである。即ち、本発明は、安定化材となす
金属製管内にNbTi合金棒材をNb金属層を介在させ
て充填したのち、端部を真空封止して複合充填材とな
し、この複合充填材に熱間静水圧圧縮処理を施すNbT
i超電導ビレットの製造方法において、安定化材となす
金属製管とNbTi合金棒材の間に介在させるNb金属
層を10μm以上の厚さで1層に形成し、熱間静水圧圧縮
処理を 500〜1000℃の温度範囲で、500atm以上の圧力を
3分間以上かけて施すことを特徴とするものである。
The present invention has conducted intensive studies in view of such a situation, and the cause of non-uniform deformation is Nb.
The inventors have found that there is a cause of defective bonding between dissimilar materials in a Ti superconducting billet, and have conducted further research to complete the present invention. That is, according to the present invention, after a NbTi alloy rod is filled in a metal tube serving as a stabilizer with an Nb metal layer interposed, the end is vacuum-sealed to form a composite filler. NbT for hot isostatic pressing
i In the method of manufacturing a superconducting billet, an Nb metal layer to be interposed between a metal tube used as a stabilizing material and an NbTi alloy rod is formed with a thickness of 10 μm or more to form a single layer, and hot isostatic pressing is performed at 500 It is characterized in that a pressure of 500 atm or more is applied for 3 minutes or more in a temperature range of to 1000 ° C.

【0005】本発明方法は、複合充填材のHIP処理を
高温・高圧・長時間施して、複合充填材の、安定化金属
層/Nb金属層/NbTi合金層の各々の界面に十分な
拡散反応を起こして各々の界面の接合性を高めることに
より、後の延伸加工に際してのフィラメントのソーセー
ジング現象を防止し、依って超電導線の断線頻度を低減
させるものである。又高温・高圧・長時間のHIP処理
に備えて、Nb金属層を厚くして、安定化金属層への拡
散を確実に抑えるようにした。又前記Nb金属層を1層
に介在させたのは、Nb金属は高融点の為、Nb金属層
同士は拡散接合せず、Nb金属層間で変形が均一に伝達
されなくなる為である。
According to the method of the present invention, the HIP treatment of the composite filler is carried out at high temperature, high pressure and for a long time so that sufficient diffusion reaction can be achieved at each interface of the stabilizing metal layer / Nb metal layer / NbTi alloy layer of the composite filler. By raising the bondability of each interface by causing the phenomenon, the sausaging phenomenon of the filament during the subsequent drawing process is prevented, and the disconnection frequency of the superconducting wire is reduced accordingly. In addition, in preparation for HIP treatment at high temperature, high pressure, and long time, the Nb metal layer was made thicker so that the diffusion to the stabilizing metal layer was surely suppressed. The reason why the Nb metal layer is provided in one layer is that the Nb metal has a high melting point, so that the Nb metal layers are not diffusion-bonded to each other and the deformation is not uniformly transmitted between the Nb metal layers.

【0006】本発明において、HIP処理の条件を 500
〜1000℃の温度範囲で、500atm以上の圧力を3分間以上
かけるように限定した理由は、HIP処理が 500℃未満
の温度でも又 500atm 未満の圧力でも又3分間未満の時
間でも、NbTi超電導ビレット内の異材間の拡散接合
が十分になされず、又HIP処理温度が1000℃を超える
と得られる超電導線の超電導特性が低下する為である。
In the present invention, the HIP processing condition is set to 500
The reason why the pressure of 500 atm or more is applied for 3 minutes or more in the temperature range of up to 1000 ° C is that the HIP treatment is performed at a temperature of less than 500 ° C, a pressure of less than 500 atm, or a time of less than 3 minutes even if the NbTi superconducting billet is used. This is because the diffusion bonding between dissimilar materials in the inside is not sufficient, and the superconducting property of the obtained superconducting wire is deteriorated when the HIP treatment temperature exceeds 1000 ° C.

【0007】本発明において、Nb金属層を10μm以上
の厚さに限定した理由は、Nb金属層が10μm未満の厚
さでは、異材間の拡散接合を行う際に、Nb金属層を通
して、安定化金属製管にTiが拡散して、例えば(C
u,Nb)Ti等の脆い金属間化合物が生成して加工性
が低下するとともに、安定化金属の熱・電気伝導性が低
下する為である。本発明において、超電導線を、フィラ
メント径が10μm以下となるまで加工する場合は、HI
P処理条件は、 700〜1000℃の温度範囲で、1000atm 以
上の高温・高圧条件が好ましい。又安定化金属には、無
酸素銅を始めとして、銅ニッケル合金、銅マンガン合
金、銅シリコン合金等が好適である。又Nb金属層に
は、Nb金属製パイプを用いるのが一般的であるが、N
b金属箔を一層に巻いて端部を溶接する方法、或いは単
にNb板を巻き付ける方法も適用可能である。
In the present invention, the reason why the Nb metal layer is limited to a thickness of 10 μm or more is that when the Nb metal layer has a thickness of less than 10 μm, it is stabilized through the Nb metal layer during diffusion bonding between different materials. Ti diffuses into the metal pipe, and, for example, (C
This is because a brittle intermetallic compound such as u, Nb) Ti is generated to reduce the workability, and also the thermal / electrical conductivity of the stabilizing metal is reduced. In the present invention, when the superconducting wire is processed until the filament diameter becomes 10 μm or less, HI
P treatment conditions are preferably in the temperature range of 700 to 1000 ° C. and high temperature and high pressure conditions of 1000 atm or more. Suitable stabilizing metals include oxygen-free copper, copper nickel alloys, copper manganese alloys, copper silicon alloys, and the like. Generally, a Nb metal pipe is used for the Nb metal layer.
b A method of winding the metal foil in one layer and welding the ends, or a method of simply winding the Nb plate is also applicable.

【0008】[0008]

【作用】本発明方法では、安定化材となす金属製管内に
NbTi合金棒材を、Nb金属層を介在させて充填した
のち、端部を真空封止して複合充填材となし、この複合
充填材を高温・高圧・長時間の所定の条件でHIP処理
するので、安定化金属層とNb金属層、及びNb金属層
とNbTi合金棒材の各々の界面にNbとCu、及びN
bとTiの合金層が夫々十分な厚さ形成されて異材間の
接合性が向上し、後の延伸加工が均一になされて、Nb
Tiフィラメントが異常変形して超電導線が断線するよ
うなことがない。又前記Nb金属層を10μm以上に厚く
介在させるので安定化金属層にTiが拡散侵入して安定
化金属層の加工性及び熱・電気伝導性を阻害することが
ない。又Nb金属層を1層に介在させるので、Nb金属
層間の接合不良による加工性低下が回避される。
According to the method of the present invention, NbTi alloy rods are filled in a metal tube serving as a stabilizing material with an Nb metal layer interposed, and then the ends are vacuum-sealed to form a composite filler. Since the filler is subjected to HIP treatment under high temperature, high pressure and long time under predetermined conditions, Nb, Cu, and N are formed at the interfaces of the stabilizing metal layer and the Nb metal layer, and the Nb metal layer and the NbTi alloy rod.
The alloy layers of b and Ti are each formed to have a sufficient thickness to improve the bondability between dissimilar materials, and the subsequent stretching process is made uniform.
The Ti filament will not be deformed abnormally and the superconducting wire will not be broken. Further, since the Nb metal layer is thickly formed to have a thickness of 10 μm or more, Ti does not diffuse and penetrate into the stabilizing metal layer and hinder the workability and thermal / electrical conductivity of the stabilizing metal layer. In addition, since the Nb metal layer is interposed in one layer, deterioration of workability due to defective bonding between the Nb metal layers can be avoided.

【0009】[0009]

【実施例】以下に本発明を実施例により詳細に説明す
る。外径 210mmφ,内径 157mmφの無酸素銅製管にNb
Ti合金棒材をNb金属層を1層介在させて充填して複
合充填材となし、この複合充填材にHIP処理を施して
単心のNbTi超電導ビレットを製造した。次にこのビ
レットを熱間押出後伸線加工を施して、対辺長さ2.96mm
φの単心のNbTi六角超電導線となした。上記におい
てNb金属層は厚い時はパイプを被せ、薄い時は箔を溶
接して介在させた。Nb金属層の厚さは、10μm以上の
厚さで種々に変化させた。又HIP処理は、温度を 500
〜1000℃の範囲内で、圧力を 500atm 以上で、処理時間
を3分以上で種々に変化させて施した。HIP処理では
昇温と昇圧を同時に行った。次に、前記単心のNbTi
超電導線の4150本を、外径 294mmφ,内径227.5mmφの
無酸素銅製管の中に充填して多心充填材となし、次いで
この多心充填材にHIP処理、熱間押出、伸線加工を順
次施して、線径0.65mmφ、銅比 1.8、フィラメント径6
μmの多心NbTi超電導線を製造した。
EXAMPLES The present invention will be described in detail below with reference to examples. Oxygen-free copper pipes with an outer diameter of 210 mmφ and an inner diameter of 157 mmφ are made of Nb
A Ti alloy rod was filled with one Nb metal layer interposed to form a composite filler, and the composite filler was subjected to HIP treatment to manufacture a single-core NbTi superconducting billet. Next, this billet is subjected to wire drawing after hot extrusion, and the opposite side length is 2.96 mm.
A single core NbTi hexagonal superconducting wire of φ was used. In the above, when the Nb metal layer was thick, the pipe was covered, and when it was thin, the foil was welded and interposed. The thickness of the Nb metal layer was variously changed at a thickness of 10 μm or more. Also, the HIP process is performed at a temperature of 500
Within the range of up to 1000 ° C., the pressure was 500 atm or more, and the treatment time was 3 minutes or more, and various treatments were performed. In the HIP process, temperature increase and pressure increase were performed simultaneously. Next, the single core NbTi
4150 superconducting wires are filled into an oxygen-free copper pipe with an outer diameter of 294 mmφ and an inner diameter of 227.5 mmφ to form a multi-core filler, and then this multi-core filler is subjected to HIP treatment, hot extrusion and wire drawing. Sequentially applied, wire diameter 0.65mmφ, copper ratio 1.8, filament diameter 6
A multi-core NbTi superconducting wire of μm was manufactured.

【0010】比較の為、本発明の製造条件を外れた条件
にて単心のNbTi超電導ビレットを製造し、このビレ
ットを前記実施例と同じ条件により、多心NbTi超電
導線に加工した。このようにして得られた各々の超電導
線について、断線回数,断線単位条長及びn値を求め
た。n値は、臨界電流値Iとその時の両端電圧Vとの間
に成立するV=AIn の関係式の指数で、n値が大きい
程NbTiフィラメントの断線が少ない。又単心超電導
ビレットを別にもう1本同じ条件で製造して異材間の接
合状態を調査した。異材間の接合状態は、単心超電導ビ
レットを輪切りにして図2に示した円板状体を切出し、
この円板状体から図3に示した、銅安定化材2とNb金
属層3、Nb金属層3とNbTi合金棒材4との夫々の
接合界面を含む長さ約50mm,幅12mm,厚さ3mmの短冊状
サンプルを切出し、これを矢印方向に引張り、その破断
強度をもって判定した。結果を破断箇所を併記して表1
に示した。
For comparison, a single-core NbTi superconducting billet was manufactured under conditions other than the manufacturing conditions of the present invention, and this billet was processed into a multi-core NbTi superconducting wire under the same conditions as in the above-mentioned embodiment. For each of the superconducting wires thus obtained, the number of breaks, the unit length of break and the n value were determined. The n value is an index of the relational expression of V = AI n established between the critical current value I and the voltage V at both ends at that time, and the larger the n value is, the less the NbTi filament is broken. In addition, another single-core superconducting billet was manufactured under the same conditions, and the bonding state between different materials was investigated. For joining the dissimilar materials, the single-core superconducting billet is sliced to cut out the disc-shaped body shown in FIG.
From this disk-shaped body, a length of about 50 mm, a width of 12 mm, and a thickness including the respective bonding interfaces of the copper stabilizing material 2 and the Nb metal layer 3, and the Nb metal layer 3 and the NbTi alloy rod 4 shown in FIG. A strip-shaped sample having a length of 3 mm was cut out, pulled in the direction of the arrow, and judged by its breaking strength. The results are shown in Table 1 along with the fracture points.
It was shown to.

【0011】[0011]

【表1】 引張強度:単位 kg/mm2 、破断形態:A〜銅内破
断,B〜Nb金属層とNbTi合金棒材との接合界面,
C〜Nb層間破断、 *超電導特性低下。
[Table 1] Tensile strength: unit kg / mm 2 , fracture mode: fracture in A to copper, B to joint interface between Nb metal layer and NbTi alloy rod,
C-Nb interlaminar fracture, * Superconducting property deterioration.

【0012】表1より明らかなように、本発明方法品
(No1〜8)は、いずれも断線回数が少なく、断線単位
条長も20km以上あった。これは単心ビレットの引張試験
結果からも判る通り、異材間の接合性が改善された為で
ある。これに対し、比較例品のNo9,10,11は、夫々HI
P処理条件の温度、圧力、時間が本発明の限定値より低
いか短かった為単心のNbTi超電導ビレットの異材間
の接合が十分になされずに断線が多発した。又No12はN
b金属層が薄かった為HIP処理の際に銅安定化材にN
bTi合金棒材のTiが拡散して銅安定化材の伸線加工
性及び超電導特性が低下した。又No13はNb金属層を3
層にして介在させた為Nb金属層間が接合せずに断線が
多発した。又No14は単心ビレットのHIP処理を1100℃
の高温にて施した為超電導特性が低下した。
As is clear from Table 1, in the products of the present invention (Nos. 1 to 8), the number of disconnection was small and the unit length of disconnection was 20 km or more. This is because the bondability between dissimilar materials was improved, as can be seen from the tensile test results of the single core billet. On the other hand, Comparative Examples No. 9, 10 and 11 are HI
Since the temperature, pressure, and time of the P treatment conditions were lower or shorter than the limit values of the present invention, the single core NbTi superconducting billet was not sufficiently bonded between the dissimilar materials, resulting in frequent disconnection. No12 is N
bBecause the metal layer was thin, N was added to the copper stabilizer during HIP processing.
The Ti of the bTi alloy rod was diffused, and the wire drawability and the superconducting property of the copper stabilizer deteriorated. No13 has 3 Nb metal layers
Since the Nb metal layers were intervened as layers, the Nb metal layers were not joined to each other and disconnection frequently occurred. In addition, No. 14 is HIP treatment of single core billet at 1100 ℃
Since it was applied at a high temperature, the superconducting properties deteriorated.

【0013】[0013]

【効果】以上述べたように、本発明方法によれば、Nb
Ti超電導ビレット内の異材間の接合性が改善されるの
で、NbTiフィラメントにソーセージング等の異常変
形が起きず、従ってNbTi超電導線の伸線加工性が向
上して、断線単位条長が増大し、工業上顕著な効果を奏
する。
As described above, according to the method of the present invention, Nb
Since the bondability between dissimilar materials in the Ti superconducting billet is improved, abnormal deformation such as sausage does not occur in the NbTi filament. Therefore, the wire drawing workability of the NbTi superconducting wire is improved and the breaking unit strip length is increased. , Has a remarkable industrial effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】NbTi超電導線の断線部位に見られるソーセ
ージ状フィラメントの説明図である。
FIG. 1 is an explanatory diagram of a sausage filament found in a disconnection portion of a NbTi superconducting wire.

【図2】単心超電導ビレットを輪切りにした円板状体の
平面図である。
FIG. 2 is a plan view of a disk-shaped body obtained by cutting a single-core superconducting billet into slices.

【図3】単心超電導ビレットを輪切りにした円板状体か
ら切り出した短冊状引張試験片の平面図である。
FIG. 3 is a plan view of a strip-shaped tensile test piece cut out from a disk-shaped body obtained by cutting a single-core superconducting billet into a circle.

【符号の説明】[Explanation of symbols]

1 所々くびれた太径のソーセージ状フィラメント 2 銅安定化材 3 Nb金属層 4 NbTi合金棒材 1 Thick sausage filaments that are narrowed in places 2 Copper stabilizer 3 Nb metal layer 4 NbTi alloy rod

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 卓哉 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Takuya Suzuki 2-6-1, Marunouchi, Chiyoda-ku, Tokyo Furukawa Electric Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 安定化材となす金属製管内にNbTi合
金棒材をNb金属層を介在させて充填したのち、端部を
真空封止して複合充填材となし、この複合充填材に熱間
静水圧圧縮処理を施すNbTi超電導ビレットの製造方
法において、安定化材となす金属製管とNbTi合金棒
材の間に介在させるNb金属層を10μm以上の厚さで1
層に形成し、熱管静水圧圧縮処理を 500〜1000℃の温度
範囲で、500atm以上の圧力を3分間以上かけて施すこと
を特徴とするNbTi超電導ビレットの製造方法。
1. A stabilizer is filled with NbTi alloy rods with a Nb metal layer interposed between them, and the ends are vacuum-sealed to form a composite filler. The composite filler is heat-treated. In a method of manufacturing an NbTi superconducting billet that is subjected to hydrostatic compression treatment, an Nb metal layer interposed between a metal tube used as a stabilizer and an NbTi alloy rod is 10 μm or more in thickness.
A method for producing an NbTi superconducting billet, which is characterized in that a hot tube hydrostatic compression treatment is performed in a layer and a pressure of 500 atm or more is applied for 3 minutes or more in a temperature range of 500 to 1000 ° C.
【請求項2】 安定化材となす金属製管の金属材料が無
酸素銅、銅ニッケル合金、銅マンガン合金、銅シリコン
合金のいずれかの銅材料であることを特徴とする請求項
1に記載のNbTi超電導ビレットの製造方法。
2. The metal material of the metal tube used as the stabilizing material is any one of oxygen-free copper, copper-nickel alloy, copper-manganese alloy and copper-silicon alloy. Of NbTi superconducting billet.
JP35420692A 1992-12-14 1992-12-14 Manufacture of nbti superconducting billet Pending JPH06223647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35420692A JPH06223647A (en) 1992-12-14 1992-12-14 Manufacture of nbti superconducting billet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35420692A JPH06223647A (en) 1992-12-14 1992-12-14 Manufacture of nbti superconducting billet

Publications (1)

Publication Number Publication Date
JPH06223647A true JPH06223647A (en) 1994-08-12

Family

ID=18436000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35420692A Pending JPH06223647A (en) 1992-12-14 1992-12-14 Manufacture of nbti superconducting billet

Country Status (1)

Country Link
JP (1) JPH06223647A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004059666A1 (en) * 2002-12-25 2004-07-15 National Institute For Materials Science PROCESS FOR PRODUCING Nb3Al SUPERCONDUCTIVE WIRE ROD AND Nb3Al SUPERCONDUCTIVE WIRE ROD PRODUCED BY THE PROCESS
CN113593766A (en) * 2021-07-28 2021-11-02 西部超导材料科技股份有限公司 Preparation method of NbTi/CuNi superconducting switch wire with high Ni content

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004059666A1 (en) * 2002-12-25 2004-07-15 National Institute For Materials Science PROCESS FOR PRODUCING Nb3Al SUPERCONDUCTIVE WIRE ROD AND Nb3Al SUPERCONDUCTIVE WIRE ROD PRODUCED BY THE PROCESS
US7134181B2 (en) 2002-12-25 2006-11-14 National Institute For Materials Science Method for producing Nb3Al superconductive wire
CN113593766A (en) * 2021-07-28 2021-11-02 西部超导材料科技股份有限公司 Preparation method of NbTi/CuNi superconducting switch wire with high Ni content
CN113593766B (en) * 2021-07-28 2022-12-06 西部超导材料科技股份有限公司 Preparation method of NbTi/CuNi superconducting switch wire with high Ni content

Similar Documents

Publication Publication Date Title
US3465430A (en) Method of making superconductor stock
US7226894B2 (en) Superconducting wire, method of manufacture thereof and the articles derived therefrom
JPH0444365B2 (en)
US3514850A (en) Electrical conductors
US4205119A (en) Wrapped tantalum diffusion barrier
US3570118A (en) Method of producing copper clad superconductors
US20070157450A1 (en) Bonding method of metal surfaces
JPH06338228A (en) Compound superconducting wire and manufacture thereof
US8176620B2 (en) Aluminum oxide particle strengthened niobium-tin superconducting composite wire
JPH06223647A (en) Manufacture of nbti superconducting billet
JP3944573B2 (en) Manufacturing method of Nb3Al superconducting wire and Nb3Al superconducting wire obtained by the method
US4285740A (en) Wrapped tantalum diffusion barrier
US4860431A (en) Fabrication of multifilament intermetallic superconductor using strengthened tin
EP0782752A1 (en) Superconductor with high volume copper and a method of making the same
JPH07114842A (en) Extruding method for nbti superconducting billet
JPH01321034A (en) Manufacture of nb-ti series superconducting wire and nb-ti series superconducting wire
JPS58169712A (en) Method of producing composite superconductive wire
JPH0492316A (en) Manufacture of compound linear material
JP3108496B2 (en) Superconducting wire manufacturing method
JP2599442B2 (en) Method for producing Pt / Mo clad wire
JP2868966B2 (en) Superconducting wire manufacturing method
JP2773801B2 (en) Composite wire for glass sealing
JPH0668725A (en) Manufacture of superconducting alloy wire
JP3445332B2 (en) Manufacturing method of superconducting cable in conduit
JP3106278B2 (en) Method for producing Nb3 Sn-based superconducting wire