JP3445332B2 - Manufacturing method of superconducting cable in conduit - Google Patents
Manufacturing method of superconducting cable in conduitInfo
- Publication number
- JP3445332B2 JP3445332B2 JP28780793A JP28780793A JP3445332B2 JP 3445332 B2 JP3445332 B2 JP 3445332B2 JP 28780793 A JP28780793 A JP 28780793A JP 28780793 A JP28780793 A JP 28780793A JP 3445332 B2 JP3445332 B2 JP 3445332B2
- Authority
- JP
- Japan
- Prior art keywords
- superconducting
- stranded wire
- conduit
- welding
- wire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Superconductors And Manufacturing Methods Therefor (AREA)
Description
【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、品質・性能に優れた超
電導ケーブルインコンジットを効率よく製造する方法に
関する。
【0002】
【従来の技術】超電導ケーブルインコンジットとは、超
電導撚線を金属管内に所定のボイド率で収容し、この金
属管内に冷媒を圧送して超電導撚線を強制冷却する構造
のものである。この超電導ケーブルインコンジットは、
コンパクトで、冷却能に優れ、且つ高強度で電磁力に耐
えるので、核融合炉、MHD発電機、超電導エネルギー
貯蔵器等の大型超電導マグネットに用いられている。こ
のような超電導ケーブルインコンジットは、例えば、長
尺金属管内に超電導撚線を内包させ、この長尺金属管を
圧縮成形して製造される。超電導撚線を長尺金属管内に
内包するには、長尺金属管の一端から超電導撚線を引込
んでいく方法と、フォーミング途中の金属板内に超電導
撚線を連続的に導入しつつ前記金属板の縁端部を突合わ
せ溶接するフォーミング法とがあった。
【0003】
【発明が解決しようとする課題】前記の引込み法では、
金属管の長さが 130mを超えたあたりから、金属管と超
電導撚線との間の摺動摩擦により、超電導撚線に過大な
張力が掛かるようになり、超電導撚線の品質や特性が劣
化し、時には超電導撚線が断線した。又フォーミング法
では、溶接長さが長い為に溶接不良箇所が多くなり、補
修に手間が掛かり、又気密性保持の上で信頼性に劣っ
た。
【0004】
【課題を解決するための手段】本発明は、このような状
況に鑑み鋭意研究を重ねてなされたもので、その目的と
するところは、品質及び特性に優れた超電導ケーブルイ
ンコンジットを効率よく製造する方法を提供することに
ある。即ち、本発明は、長尺の金属管内に超電導撚線を
収容した超電導ケーブルインコンジットの製造方法にお
いて、少なくとも、超電導撚線又は超電導撚線となし得
る素撚線に、同一材料からなる複数の短尺金属管を遊嵌
させ、前記短尺金属管の端面同士を突合わせ溶接する工
程、前記突合わせ溶接した短尺金属管を圧縮成形する工
程とを有することを特徴とするものである。
【0005】本発明において、超電導撚線とはNbTi
超電導線やNb3 Sn超電導線等の撚線である。超電導
撚線となし得る素撚線とは、Nb金属、Cu−Sn合金
(Cu金属とSn金属の複合材を含む)、安定化銅、拡
散防止用のTaやNbバリヤ等からなる線材を撚合わせ
た撚線、又はNb金属やAl合金(Al−Mg系等)か
らなる線材を撚合わせた撚線等である。前記超電導撚線
等に遊嵌させる短尺金属管の長さは、遊嵌させ易い10〜
30mの範囲内で、できるだけ長い方が溶接長さが短かく
なり好ましい。短尺金属管の材料には、低温で充分な強
度を有し且つ溶接性に優れた任意の材料が適用できる
が、特にSUS、キュプロニッケル等の銅合金、インコ
ロイ、チタン等が好ましい。突合わせ溶接して一体化し
た短尺金属管を圧縮成形するのは、金属管内部の超電導
撚線等の占積率を高める為である。圧縮成形にはスエー
ジャーやダイス引抜き等が適用される。超電導撚線や超
電導撚線となし得る素撚線には、それぞれの撚線を多重
に撚合わせた撚々線も含まれる。短尺金属管同士の溶接
は、超電導撚線等に短尺金属管を所要数遊嵌したのち纏
めて行っても、又短尺金属管を1本遊嵌する毎に溶接し
ても良い。1本遊嵌毎に溶接する場合は、溶接箇所が金
属管の端部から近い為、溶接箇所の内側に保護管を挿入
することが可能で、溶接熱を超電導撚線から遮断でき
る。
【0006】
【作用】本発明では、超電導ケーブルインコンジットを
製造するに際し、超電導撚線又は超電導撚線となし得る
素撚線に短尺金属管を遊嵌させるので、超電導撚線又は
超電導撚線となし得る素撚線に掛かる張力が小さく、超
電導撚線又は超電導撚線となし得る素撚線の品質、性能
が劣化しない。又短尺金属管の端面同士を突合わせ溶接
するので溶接長さが短く、従って溶接不良箇所の補修の
手間が少なく、又気密性保持の信頼性が高い。
【0007】
【実施例】以下に本発明を実施例により詳細に説明す
る。
実施例1
Nb金属とCu−Sn合金(ブロンズ)からなるNb3
Snとなるべき超電導素線を3本撚りし、この撚線を3
本撚りし、更に3本撚りを2回行い、最後に4本撚りし
た超電導撚線となし得る素撚線(総線数 324本、平均径
22.6mmφ)の外側にステンレステープを巻き、この超電
導撚線となし得る素撚線(以下超電導素撚線と称す)の
所定位置に、外径33.3mmφ内径27.7mmφ長さ20mのSU
S管Aを遊嵌し、次に2本目のSUS管Bを前記SUS
管Aに隣接させて遊嵌し、前記SUS管AとSUS管B
との突合わせ端面を溶接し、次いでSUS管A又はSU
S管BにSUS管Cを隣接させ溶接するという工程を順
次繰り返して、超電導素撚線の外周に8本のSUS管を
一体に遊嵌した。この超電導素撚線を内包したSUS管
をスエージャーにて16mm角に圧縮成形して、超電導ケー
ブルインコンジットを製造した。圧縮成形によりSUS
管内のボイド率は76%から36%に減少した。
【0008】実施例2
実施例1において、SUS管同士を突き合わせ溶接する
にあたり、SUS管の開口端から保護管を差し込み超電
導素撚線を溶接熱から保護した他は、実施例1と同じ方
法により超電導ケーブルインコンジットを製造した。
【0009】比較例1
実施例1で用いたのと同じ超電導素撚線を、水平に配置
した外径33.3mmφ内径27.7mmφ長さ 160mのSUS管内
に引込んだ。引込みは、超電導素撚線の先端に鋼線を銀
ろー付けしてウインチを用いて行った。超電導素撚線が
130m引込まれたところで銀ろー付け部分が破断した。
【0010】比較例2
厚さ2.8 mm、幅100 mm、長さ 160mのSUS板を断面半
円状にフォーミングした中に、実施例1で用いたのと同
じ超電導素撚線を連続的に導入し、導入後SUS板を断
面円形にフォーミングし縁端部を突合わせ溶接した。次
にこれをスエージャーにて16mm角に圧縮成形した。
【0011】前記の超電導素撚線を収容したSUS圧縮
成形管の気密試験を行った。気密試験はヘリウムリーク
ディテクター法により行った。結果を表1に示した。
【0012】
【表1】【0013】表1より明らかなように、本発明方法品
(実施例1,2)は漏れの箇所が殆ど無く良好な気密性
を示した。これに対しフォーミング法(比較例2)によ
るものは、15箇所で漏れが認められた。これは溶接長さ
が長かった為である。比較例1で超電導素撚線を引込め
なかったのは、管内面と超電導素撚線との間の摺動摩擦
が原因である。この方法では、例え、引込めても、超電
導素撚線に張力が掛かるので品質・性能上好ましくな
い。
【0014】本発明方法品(実施例1)を直径 1.9mの
コイル状に成形し、 650℃のアルゴン雰囲気中で72時間
加熱して超電導素撚線のNb金属とブロンズ中のSnと
を反応させてNb3 Sn超電導体を生成させて超電導ケ
ーブルインコンジットとなした。この超電導ケーブルイ
ンコンジットのSUS管内に液体Heを圧送し、通電し
たところ、設計通りの高い臨界電流が得られた。
【0015】上記実施例では、超電導素撚線に短尺SU
S管を一体に遊嵌させるのに、短尺SUS管の遊嵌と溶
接を交互に行ったが、SUS管を全数遊嵌したのち、纏
めて溶接しても差し支えない。
【0016】
【効果】以上述べたように、本発明では、長尺の金属管
に超電導撚線を内包するのに、超電導撚線又は超電導素
撚線に複数本の短尺金属管を遊嵌し、この金属管の端面
同士を突合わせ溶接して行うので、超電導撚線に張力が
掛からず、又金属管の溶接長さが短く溶接不良が起き難
く、従って品質と性能に優れた超電導ケーブルインコン
ジットを効率よく製造することができ、工業上顕著な効
果を奏する。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for efficiently producing a superconducting cable in conduit having excellent quality and performance. 2. Description of the Related Art A superconducting cable in conduit has a structure in which a superconducting stranded wire is housed in a metal tube at a predetermined void ratio, and a refrigerant is pumped into the metal tube to forcibly cool the superconducting stranded wire. is there. This superconducting cable in conduit is
Since it is compact, has excellent cooling capacity, and has high strength and withstands electromagnetic force, it is used for large superconducting magnets such as fusion reactors, MHD generators, and superconducting energy storages. Such a superconducting cable-in-conduit is manufactured by, for example, including a superconducting stranded wire in a long metal tube and compression-molding the long metal tube. In order to enclose the superconducting stranded wire in the long metal tube, a method of drawing the superconducting stranded wire from one end of the long metal tube and a method of continuously introducing the superconducting stranded wire into the metal plate in the middle of forming the metal There has been a forming method in which the edges of a plate are butt-welded. [0003] In the above-mentioned retraction method,
When the length of the metal tube exceeds 130 m, the sliding friction between the metal tube and the superconducting stranded wire causes excessive tension to be applied to the superconducting stranded wire, deteriorating the quality and characteristics of the superconducting stranded wire. Sometimes, the superconducting stranded wire broke. Further, in the forming method, the welding length is long, so the number of defective spots is increased, so that it takes time to repair, and the reliability is poor in maintaining the airtightness. SUMMARY OF THE INVENTION The present invention has been made intensively in view of such circumstances, and has as its object to provide a superconducting cable in-conduit excellent in quality and characteristics. An object of the present invention is to provide a method for efficiently manufacturing. That is, the present invention relates to a method for manufacturing a superconducting cable in a conduit in which a superconducting stranded wire is accommodated in a long metal tube, at least, a superconducting stranded wire or a bare stranded wire that can be a superconducting stranded wire, a plurality of the same material , The method further comprises a step of loosely fitting the short metal tube, butt-welding the end faces of the short metal tube, and a step of compression-molding the butt-welded short metal tube. [0005] In the present invention, the superconducting stranded wire is NbTi
It is a stranded wire such as a superconducting wire or an Nb 3 Sn superconducting wire. A strand that can be a superconducting strand is a strand consisting of Nb metal, Cu-Sn alloy (including a composite of Cu metal and Sn metal), stabilized copper, Ta or Nb barrier for diffusion prevention, etc. The stranded wire is a combined stranded wire or a stranded wire obtained by twisting a wire made of Nb metal or an Al alloy (such as an Al-Mg type). The length of the short metal tube to be loosely fitted to the superconducting stranded wire or the like is 10 to 10 for easy loose fitting.
Within the range of 30 m, it is preferable that the length is as long as possible because the welding length becomes short. As the material for the short metal tube, any material having sufficient strength at low temperature and excellent in weldability can be applied, and particularly, copper alloys such as SUS and cupronickel, incoloy, and titanium are preferable. The reason why the short metal tube integrated by butt welding is compression-molded is to increase the space factor of the superconducting stranded wire and the like inside the metal tube. Swager, die drawing, or the like is applied to compression molding. The superconducting stranded wire and the elementary stranded wire that can be a superconducting stranded wire include a twisted and twisted wire in which each stranded wire is multiplexed. The welding of the short metal tubes may be performed after a required number of short metal tubes are loosely fitted to the superconducting stranded wire or the like, or may be welded each time one short metal tube is loosely fitted. In the case of welding each single loose fit, since the welding location is near the end of the metal pipe, a protective tube can be inserted inside the welding location, and the welding heat can be cut off from the superconducting stranded wire. According to the present invention, in manufacturing a superconducting cable in conduit, a short metal tube is loosely fitted to a superconducting stranded wire or a superconducting stranded wire which can be formed as a superconducting stranded wire. The tension applied to the stranded wire that can be formed is small, and the quality and performance of the superconducting stranded wire or the stranded wire that can be formed as the superconducting stranded wire do not deteriorate. Also, since the end faces of the short metal pipes are butt-welded to each other, the welding length is short, so that the trouble of repairing a defective welding portion is reduced, and the reliability of maintaining airtightness is high. Hereinafter, the present invention will be described in detail with reference to examples. Example 1 Nb 3 composed of Nb metal and Cu—Sn alloy (bronze)
Twist three superconducting element wires to be Sn, and
Twisted, further twisted three times, and finally twisted four superconducting twisted strands (total number of wires 324, average diameter
A stainless steel tape is wrapped around the outer surface of a 22.6 mmφ), and a SU with an outer diameter of 33.3 mmφ and an inner diameter of 27.7 mmφ with a length of 20 m is placed at a predetermined position of the superconducting stranded wire (hereinafter referred to as superconducting stranded wire).
The S tube A is loosely fitted, and then the second SUS tube B is
The SUS pipe A and the SUS pipe B are loosely fitted adjacent to the pipe A.
And then weld the SUS pipe A or SU
The process of welding the SUS tube C adjacent to the S tube B was sequentially repeated, and eight SUS tubes were loosely fitted integrally on the outer periphery of the superconducting stranded wire. The SUS tube containing the superconducting element stranded wire was compression-molded into a 16 mm square with a swager to produce a superconducting cable in conduit. SUS by compression molding
The void fraction in the tube was reduced from 76% to 36%. Example 2 In Example 1, butt welding of SUS pipes was performed in the same manner as in Example 1 except that a protective tube was inserted from the open end of the SUS pipe to protect the superconducting element stranded wire from welding heat. A superconducting cable in conduit was manufactured. Comparative Example 1 The same superconducting stranded wire as used in Example 1 was drawn into a horizontally arranged SUS pipe having an outer diameter of 33.3 mm, an inner diameter of 27.7 mm, and a length of 160 m. The pull-in was performed by using a winch by attaching a steel wire to the tip of the superconducting twisted wire and silvering it. Superconducting stranded wire
The silver soldering part broke when it was retracted 130m. Comparative Example 2 The same superconducting stranded wires as used in Example 1 were continuously introduced into a SUS plate having a thickness of 2.8 mm, a width of 100 mm and a length of 160 m formed into a semicircular cross section. After the introduction, the SUS plate was formed into a circular cross section, and the edges were butt-welded. Next, this was compression-molded into a 16 mm square using a swager. [0011] An airtightness test was performed on the SUS compression molded tube containing the superconducting element twisted wire. The airtight test was performed by a helium leak detector method. The results are shown in Table 1. [Table 1] As is clear from Table 1, the method product of the present invention (Examples 1 and 2) showed good airtightness with almost no leakage. In contrast, in the case of the forming method (Comparative Example 2), leakage was observed at 15 points. This is because the welding length was long. The reason why the superconducting stranded wire was not drawn in Comparative Example 1 was due to sliding friction between the inner surface of the tube and the superconducting stranded wire. In this method, even if the wire is retracted, tension is applied to the superconducting stranded wire, which is not preferable in terms of quality and performance. The method product of the present invention (Example 1) was formed into a coil shape having a diameter of 1.9 m, and heated in an argon atmosphere at 650 ° C. for 72 hours to react the Nb metal of the superconducting twisted wire with Sn in bronze. As a result, an Nb 3 Sn superconductor was generated to form a superconducting cable in conduit. When liquid He was pumped into the SUS pipe of the superconducting cable in conduit and energized, a high critical current as designed was obtained. In the above embodiment, a short SU
In order to allow the S pipes to be loosely fitted together, the short SUS pipes were loosely fitted and welded alternately. However, after all the SUS pipes were loosely fitted, they could be welded together. As described above, according to the present invention, in order to enclose a superconducting stranded wire in a long metal tube, a plurality of short metal tubes are loosely fitted in the superconducting stranded wire or superconducting element stranded wire. However, since the end faces of the metal pipes are butt-welded to each other, no tension is applied to the superconducting stranded wires, and the welding length of the metal pipes is short, so that poor welding hardly occurs. The conduit can be manufactured efficiently, and an industrially remarkable effect is exhibited.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−96629(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01B 12/00 - 13/00 ────────────────────────────────────────────────── (5) References JP-A-6-96629 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01B 12/00-13/00
Claims (1)
超電導ケーブルインコンジットの製造方法において、少
なくとも、超電導撚線又は超電導撚線となし得る素撚線
に、同一材料からなる複数の短尺金属管を遊嵌させ、前
記短尺金属管の端面同士を突合わせ溶接する工程、前記
突合わせ溶接した短尺金属管を圧縮成形する工程とを有
することを特徴とする超電導ケーブルインコンジットの
製造方法。(57) [Claims 1] In a method of manufacturing a superconducting cable in a conduit in which a superconducting stranded wire is accommodated in a long metal tube, at least a superconducting stranded wire or an elementary stranded wire that can be formed as a superconducting stranded wire A step of loosely fitting a plurality of short metal tubes made of the same material , butt-welding the end faces of the short metal tubes, and a step of compression-molding the butt-welded short metal tubes. Of manufacturing superconducting cable in conduit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28780793A JP3445332B2 (en) | 1993-10-21 | 1993-10-21 | Manufacturing method of superconducting cable in conduit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28780793A JP3445332B2 (en) | 1993-10-21 | 1993-10-21 | Manufacturing method of superconducting cable in conduit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07122137A JPH07122137A (en) | 1995-05-12 |
JP3445332B2 true JP3445332B2 (en) | 2003-09-08 |
Family
ID=17722014
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28780793A Expired - Fee Related JP3445332B2 (en) | 1993-10-21 | 1993-10-21 | Manufacturing method of superconducting cable in conduit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3445332B2 (en) |
-
1993
- 1993-10-21 JP JP28780793A patent/JP3445332B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH07122137A (en) | 1995-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4377032A (en) | Superconducting cable | |
US4973365A (en) | Process for producing monocore precursor Nb3 Sn superconductor wire | |
US4195199A (en) | Superconducting composite conductor and method of manufacturing same | |
JP2016195100A (en) | SEMI-COMPLETE WIRE MATERIAL HAVING PIT ELEMENT FOR SUPERCONDUCTING WIRE MATERIAL CONTAINING Nb3Sn AND METHOD FOR MANUFACTURING SEMI-COMPLETE WIRE MATERIAL | |
JPH0444365B2 (en) | ||
US3514850A (en) | Electrical conductors | |
US4857675A (en) | Forced flow superconducting cable and method of manufacture | |
US6313409B1 (en) | Electrical conductors and methods of making same | |
US3570118A (en) | Method of producing copper clad superconductors | |
JPS6356648B2 (en) | ||
US3502789A (en) | Superconductor cable | |
US7089647B2 (en) | Increasing the copper to superconductor ratio of a superconductor wire by cladding with copper-based strip | |
JP3445332B2 (en) | Manufacturing method of superconducting cable in conduit | |
CN115579184A (en) | Superconducting conductor | |
JP3063025B2 (en) | Nb3Sn superconducting wire and method of manufacturing the same | |
GB1569983A (en) | Super conductor | |
JPS58169712A (en) | Method of producing composite superconductive wire | |
JP2593549B2 (en) | Forced cooling type superconducting cable and method of manufacturing the same | |
JP3272017B2 (en) | AC superconducting wire and method of manufacturing the same | |
JPS6381709A (en) | Superconductor | |
JP4275262B2 (en) | Superconducting coil | |
JPH0462767A (en) | Connection of nb3sn superconductive wire | |
JPS627671B2 (en) | ||
CN115798812A (en) | Forming method of superconducting conductor | |
WO1999049475A1 (en) | Electrical conductors and methods of making same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080627 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090627 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090627 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100627 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100627 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110627 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |