JPH06222307A - Branched interference type optical waveguide - Google Patents

Branched interference type optical waveguide

Info

Publication number
JPH06222307A
JPH06222307A JP1220793A JP1220793A JPH06222307A JP H06222307 A JPH06222307 A JP H06222307A JP 1220793 A JP1220793 A JP 1220793A JP 1220793 A JP1220793 A JP 1220793A JP H06222307 A JPH06222307 A JP H06222307A
Authority
JP
Japan
Prior art keywords
optical waveguide
branched
optical
interference type
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1220793A
Other languages
Japanese (ja)
Other versions
JP3430340B2 (en
Inventor
Yuichi Togano
祐一 戸叶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP01220793A priority Critical patent/JP3430340B2/en
Publication of JPH06222307A publication Critical patent/JPH06222307A/en
Application granted granted Critical
Publication of JP3430340B2 publication Critical patent/JP3430340B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide the branched interference type optical waveguide which eliminates antenna parts and electrode parts for an electric field sensor by a branched interference type optical modulator and can be constituted of only the pure optical parts without including metals. CONSTITUTION:This branched interference type optical waveguide consists of a first Y-branched optical waveguide which is formed on a ferroelectric substance substrate having an electrooptical effect and branches incident light to two, two phase shifts optical waveguides 1 which are connected to the branched two optical waveguides and a second Y-branched-optical waveguide for joining these two phase shift optical waveguides. A part 2 of at least one phase shift optical waveguide of the two phase shift optical waveguides is subjected to polarization inversion.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光導波路により入射光
を制御する光制御デバイスに関し、特に電気回路から発
生する電波ノイズ及び測定環境内の電波ノイズの計測
や、大電力装置及び送電線に発生する電界の計測等に使
用する分岐干渉形光導波路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical control device for controlling incident light by means of an optical waveguide, and particularly to measurement of radio wave noise generated from an electric circuit and radio wave noise in a measurement environment, high power equipment and power transmission line. The present invention relates to a branch interference type optical waveguide used for measurement of an electric field generated.

【0002】[0002]

【従来の技術】現在、最も多く用いられているEMC用
電界センサは、アンテナを利用し、このアンテナで感知
した電波強度を測定してノイズ測定を行なっている。し
かし、この方法を用いると、アンテナから測定装置まで
の間を同軸ケーブルで繋がなければならない。この同軸
ケーブルは、それ自体が数dBのノイズを発生するた
め、測定誤差を生む原因となっている。
2. Description of the Related Art At present, the most frequently used electric field sensor for EMC uses an antenna and measures the intensity of radio waves sensed by the antenna to measure noise. However, when this method is used, a coaxial cable must be connected between the antenna and the measuring device. This coaxial cable itself causes noise of several dB, which causes a measurement error.

【0003】このような同軸ケーブルからのノイズの発
生を防止する方法として、アンテナからの電界情報伝搬
の手段に光ファイバーケーブルを用いて、測定中に発生
する測定ノイズによる誤差を低減させる方法が考えられ
る。
As a method of preventing the generation of noise from such a coaxial cable, a method of using an optical fiber cable as a means for propagating electric field information from an antenna and reducing an error due to measurement noise generated during measurement can be considered. .

【0004】その具体的な手法として用いられる光導波
路を図1に示す。この導波路1としては、入射されたレ
ーザ光を2本のレーザ光に等分に分岐し、その後に2本
のレーザ光を合波する、分岐干渉形光導波路(スイッ
チ)が使用される。
FIG. 1 shows an optical waveguide used as a concrete method thereof. As the waveguide 1, a branching interference type optical waveguide (switch) is used, which splits the incident laser light into two laser lights equally and then multiplexes the two laser lights.

【0005】通常、分岐干渉形光変調器は、分岐された
光導波路のそれぞれに相反する電界をかけ、2本の光導
波路を通るレーザ光の位相をπ/2だけずらして合波す
るとき、互いのレーザ光を位相差によって打ち消させ、
出射光導波路上のレーザ光強度を“0”にする構造を有
している。
Normally, a branching interferometer type optical modulator applies reciprocal electric fields to the branched optical waveguides and shifts the phase of laser light passing through the two optical waveguides by π / 2 to combine them. Cancel each other's laser light by the phase difference,
It has a structure in which the laser light intensity on the emission optical waveguide is set to "0".

【0006】従って、アンテナからの電界情報(電圧)
を、この分岐干渉形光変調器の電極部分に与えることに
より、その電界強度によって分岐干渉形光変調器から出
射されるレーザ光の強度が、その印加電界によって直線
的に変動するため、アンテナでの電界強度を光ファイバ
ーによって伝達することが可能となる。
Therefore, electric field information (voltage) from the antenna
Is given to the electrode part of this branching interferometric optical modulator, the intensity of the laser light emitted from the branching interferometric optical modulator changes linearly with the applied electric field, so that the antenna It becomes possible to transmit the electric field strength of the above by the optical fiber.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、前述し
た方法では、アンテナとのインピーダンスマッチングが
難しく、分岐干渉形光変調器の電極の特性劣化が発生し
たり、電界が存在することにより電場の乱れを生じる。
However, in the above-described method, impedance matching with the antenna is difficult, and the characteristics of the electrodes of the branching interferometric optical modulator are deteriorated or the electric field is disturbed by the presence of an electric field. Occurs.

【0008】また、この方法では、大電力装置の電場を
測定する場合にも、上述と同様に電極の存在が問題とな
る場合が多い。
Further, in this method, the presence of the electrodes often poses a problem in the same manner as described above even when the electric field of the high power device is measured.

【0009】本発明の課題は、上述のような分岐干渉形
光変調器による電界センサ用のアンテナ部及び電極部を
削除し、金属を含まない純粋な光学部品だけで構成でき
る分岐干渉形光導波路を提供することにある。
An object of the present invention is to eliminate the antenna part and electrode part for the electric field sensor by the branch interferometer type optical modulator as described above, and to construct the branch interferometer type optical waveguide which can be constituted by only pure optical parts containing no metal. To provide.

【0010】[0010]

【課題を解決するための手段】本発明によれば、電気光
学効果を有する強誘電体基板上に形成され入射される光
を2つに分岐する第1のY分岐光導波路と、この分岐さ
れた2つの光導波路に接続された2つの位相シフト光導
波路と、これら2つの位相シフト光導波路を合流させる
ための第2のY分岐光導波路とからなり、かつ、上記2
つの位相シフト光導波路の少なくとも一方の位相シフト
光導波路の一部分を分極反転させてなることを特徴とす
る分岐干渉形光導波路が得られる。
According to the present invention, there is provided a first Y-branch optical waveguide which is formed on a ferroelectric substrate having an electro-optical effect and which splits incident light into two. Two phase shift optical waveguides connected to the two optical waveguides and a second Y-branch optical waveguide for merging the two phase shift optical waveguides.
A branching interference type optical waveguide is obtained in which a part of at least one of the two phase shifting optical waveguides is polarization-inverted.

【0011】[0011]

【作用】分岐干渉形光変調器に印加する電界は、使用す
るLiNbO3 結晶の結晶軸方向に印加される。
The electric field applied to the branched interferometric optical modulator is applied in the crystal axis direction of the LiNbO 3 crystal used.

【0012】この結晶軸に印加される電界方向は変動さ
せる位相の方向を決定するため、通常の分岐干渉形光変
調器では、2本に分岐された光導波路のそれぞれに、光
導波路近くに設置した電極によって、相反する電界を印
加して電気光学効果により互いに逆方向の屈折率変化を
生じさせて、位相差をπ/2にしている。
Since the direction of the electric field applied to this crystal axis determines the direction of the phase to be changed, in the ordinary branching interferometer type optical modulator, it is installed in the vicinity of the optical waveguide in each of the optical waveguides branched into two. With the electrodes, opposite electric fields are applied to cause changes in the refractive index in opposite directions due to the electro-optic effect, and the phase difference is set to π / 2.

【0013】従って、通常使用されている分岐干渉形光
変調器の電極部分を単に取り外した場合には、分岐され
た2本の光導波路にかかる電界が結晶軸に対して同方向
にあるため、同相で位相シフトした光が合流されて、出
力光として単に位相変調されたレーザ光が出射されてし
まい、位相のずれを判断するしか、電界強度を測定する
ことができなくなる。すなわち、この場合には、電界に
よって光強度を変動させることができなくなる。
Therefore, when the electrode portion of the commonly used branch interferometric optical modulator is simply removed, the electric fields applied to the two branched optical waveguides are in the same direction with respect to the crystal axis. Lights that are phase-shifted in the same phase are combined and laser light that is simply phase-modulated is emitted as output light, and the electric field strength can only be measured by determining the phase shift. That is, in this case, the light intensity cannot be changed by the electric field.

【0014】これに対し、本発明の分岐干渉形光導波路
を用いた場合には、2本に分岐された光導波路にかかる
電界が、一方は結晶軸に対して同方向に、他方はそれと
逆方向に印加されることになるので、これら両者間に互
いに逆方向の屈折率変化が生じ、位相のずれが生じる。
すなわち、この場合には、分岐干渉形光導波路にかかる
電界によって、この光導波路を通過するレーザ光強度を
変動させることが可能となる。
On the other hand, when the branched interference type optical waveguide of the present invention is used, the electric field applied to the two branched optical waveguides is one in the same direction with respect to the crystal axis, and the other has the opposite electric field. Since they are applied in the opposite directions, a refractive index change in the opposite direction occurs between them and a phase shift occurs.
That is, in this case, the electric field applied to the branch interference type optical waveguide makes it possible to change the intensity of the laser beam passing through this optical waveguide.

【0015】[0015]

【実施例】以下、本発明の実施例を図によって詳細に説
明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

【0016】本発明の実施例としては、ZカットのLi
NbO3 結晶基板を用い、表面に、幅8μm、深さ6μ
mの光導波路1を、分岐干渉形にTi熱拡散によって形
成した。ここで、光導波路1と分極反転させた光導波路
部分2との、分岐直線部の長さは25mm、分岐直線部
の間隔は20μm、とした。
As an example of the present invention, Z-cut Li
Using NbO 3 crystal substrate, the width is 8μm and the depth is 6μ
The m optical waveguide 1 was formed by Ti thermal diffusion in a branch interference form. Here, the length of the branch straight line portion between the optical waveguide 1 and the polarization-inverted optical waveguide portion 2 was 25 mm, and the distance between the branch straight line portions was 20 μm.

【0017】また、この分岐干渉形光変調器に、SiO
2 を約0.5μm堆積し、フォトレジストパターニング
とSiO2 エッチングで、2本に分岐された光導波路の
1本の部分を露出させた。
Further, the branch interferometer type optical modulator is
2 was deposited to about 0.5 μm, and one portion of the optical waveguide branched into two was exposed by photoresist patterning and SiO 2 etching.

【0018】次ぎに、WET酸素雰囲気中で、1000
℃、2時間の熱処理を行ない、加熱終了後、電気炉内で
自然冷却させた。これにより、光導波路の分極反転部を
作成した。なお、結晶表面に残ったSiO2 は、バッフ
ァエッチング液で除去した。
Next, in a WET oxygen atmosphere, 1000
After heat treatment was performed at 2 ° C. for 2 hours and after heating was completed, the mixture was naturally cooled in an electric furnace. In this way, the polarization inversion part of the optical waveguide was created. The SiO 2 remaining on the crystal surface was removed with a buffer etching solution.

【0019】このようにして製造した分岐干渉形光導波
路に、光ファイバー(入射側は偏波面保持ファイバー、
出射側はシングルモードファイバーとし、伝搬レーザ光
波長は1.31μmとした)を接続し、測定環境外で出
射レーザ光強度を測定した。また、この測定は50MH
zで行なった。更に、レベルメータバンド幅は、7.5
kHzとした。
The branch interference type optical waveguide manufactured in this manner is provided with an optical fiber (polarization plane holding fiber on the incident side,
The emission side was a single mode fiber and the wavelength of the propagating laser light was 1.31 μm), and the intensity of the emitted laser light was measured outside the measurement environment. In addition, this measurement is 50 MH
z. Furthermore, the level meter bandwidth is 7.5.
It was set to kHz.

【0020】このようにして本実施例における電界セン
サの電界強度を測定したところ、150dBμV/m〜
60dBμV/mまで、直線性を示すことが確認され
た。
When the electric field strength of the electric field sensor in this embodiment was measured in this manner, it was 150 dBμV / m
It was confirmed that the linearity was exhibited up to 60 dBμV / m.

【0021】また、この電界センサで検出可能な電界強
度は、約60dBμV/m(約1mV/m)であること
がわかった。この値は、従来のバルクLiNbO3 を用
いた電界センサに比べて、10倍以上、感度が改善され
たことになる。
It was also found that the electric field intensity detectable by this electric field sensor was about 60 dBμV / m (about 1 mV / m). This value is 10 times or more improved in sensitivity as compared with the conventional electric field sensor using bulk LiNbO 3 .

【0022】また、この電界センサは、電極やアンテナ
等を用いないので、非常に小型で、伝達ノイズの少ない
素子となっている。
Further, since this electric field sensor does not use an electrode, an antenna or the like, it is a very small element with little transmission noise.

【0023】[0023]

【発明の効果】上述したように、本発明によれば、分岐
干渉形光変調器による電界センサ用のアンテナ部及び電
極部を削除して、金属を含まない純粋な光学部品だけで
分岐干渉形光導波路を構成できるので、従来の光導波路
に比べて、その感度を大幅に向上させることができ、か
つ、素子の小型化、及び伝達ノイズの低減化を図ること
ができる。
As described above, according to the present invention, the antenna section and the electrode section for the electric field sensor by the branch interference type optical modulator are deleted, and the branch interference type is formed only by the pure optical parts containing no metal. Since the optical waveguide can be configured, its sensitivity can be significantly improved as compared with the conventional optical waveguide, and the size of the element and the transmission noise can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の分岐干渉形光変調器を示す概
略構成図である。
FIG. 1 is a schematic configuration diagram showing a branching interference type optical modulator of an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 光導波路 2 分極反転させた光導波路部分 1 Optical waveguide 2 Optical waveguide part with polarization reversed

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】電気光学効果を有する強誘電体基板上に形
成され入射される光を2つに分岐する第1のY分岐光導
波路と、この分岐された2つの光導波路に接続された2
つの位相シフト光導波路と、これら2つの位相シフト光
導波路を合流させるための第2のY分岐光導波路とから
なり、かつ、上記2つの位相シフト光導波路の少なくと
も一方の位相シフト光導波路の一部分を分極反転させて
なることを特徴とする分岐干渉形光導波路。
1. A first Y-branch optical waveguide which is formed on a ferroelectric substrate having an electro-optical effect and which splits incident light into two, and a second Y-branch optical waveguide connected to the two branched optical waveguides.
One phase shift optical waveguide and a second Y-branch optical waveguide for merging these two phase shift optical waveguides, and a part of at least one of the two phase shift optical waveguides. A branched interference type optical waveguide characterized by being polarization-inverted.
【請求項2】請求項1記載の分岐干渉形光導波路を用い
た電界センサ。
2. An electric field sensor using the branch interference type optical waveguide according to claim 1.
JP01220793A 1993-01-28 1993-01-28 Electric field sensor Expired - Fee Related JP3430340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01220793A JP3430340B2 (en) 1993-01-28 1993-01-28 Electric field sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01220793A JP3430340B2 (en) 1993-01-28 1993-01-28 Electric field sensor

Publications (2)

Publication Number Publication Date
JPH06222307A true JPH06222307A (en) 1994-08-12
JP3430340B2 JP3430340B2 (en) 2003-07-28

Family

ID=11798947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01220793A Expired - Fee Related JP3430340B2 (en) 1993-01-28 1993-01-28 Electric field sensor

Country Status (1)

Country Link
JP (1) JP3430340B2 (en)

Also Published As

Publication number Publication date
JP3430340B2 (en) 2003-07-28

Similar Documents

Publication Publication Date Title
US7088875B2 (en) Optical modulator
JP3957217B2 (en) Light modulator
JP2001209018A (en) Optical modulator with monitor
Sueta et al. High speed guided-wave optical modulators
JPH07318986A (en) Waveguide type optical switch
Lee et al. Integrated optical high-voltage sensor using a Z-cut LiNbO/sub 3/cutoff modulator
JPH0422246B2 (en)
JPH10260328A (en) Optical modulating element
JP3573180B2 (en) Polling method for Mach-Zehnder interferometer arm
JPH10293223A (en) Light guide element
JPH06222307A (en) Branched interference type optical waveguide
JP4793550B2 (en) Optical carrier suppressed double sideband (DSB-SC) modulation system capable of high extinction ratio modulation
US5815609A (en) Waveguide type optical external modulator
JPH1068915A (en) Branch interference type optical waveguide and electric field sensor formed by using the same
JPWO2004086126A1 (en) Waveguide type optical modulator
JP2005077987A (en) Optical modulator
JP2000230955A (en) Waveguide-type electric field sensor head, and electric field sensor
JPH06281897A (en) Light intensity modulator
JP3355502B2 (en) Electric field sensor
JPH06222403A (en) Directional coupling type optical waveguide
JPH09171035A (en) Optical waveguide type voltage sensor and manufacture thereof
JPH05333296A (en) Optical control element
JP2002268026A (en) Optical waveguide element
JP3627204B2 (en) Electric field sensor
JPH06308439A (en) Polarization modulating device and polarization modulating method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20021127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030409

LAPS Cancellation because of no payment of annual fees