JPH06221940A - Magnetostrictive torque sensor - Google Patents

Magnetostrictive torque sensor

Info

Publication number
JPH06221940A
JPH06221940A JP4429593A JP4429593A JPH06221940A JP H06221940 A JPH06221940 A JP H06221940A JP 4429593 A JP4429593 A JP 4429593A JP 4429593 A JP4429593 A JP 4429593A JP H06221940 A JPH06221940 A JP H06221940A
Authority
JP
Japan
Prior art keywords
coil
torque
torque sensor
excitation
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4429593A
Other languages
Japanese (ja)
Other versions
JP3252004B2 (en
Inventor
Ichiro Sasada
一郎 笹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP04429593A priority Critical patent/JP3252004B2/en
Publication of JPH06221940A publication Critical patent/JPH06221940A/en
Application granted granted Critical
Publication of JP3252004B2 publication Critical patent/JP3252004B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

PURPOSE:To achieve a smaller size and a less thickness of a magnetorstrictive torque sensor. CONSTITUTION:A coil so arranged to laminate a 8-shaped exciting coil 1 and a detection coil 2 concentrically is arranged as opposed near a shaft 3 having a magnetostrictive effect. The magnetic permeability of a surface portion of the axis changes differentially in the direction of + or -45 deg. by an applied torque. Therefore, two cases appear depending on the direction of torque. In one case, a magnetic flux turns to (c) to (b) with the rising of an excitation current and in the other, it turns from (d) to (a). (the direction may be opposite to that in this combination) An axial circumference component of a magnetic flux proportional to the torque interlinks with the detection coil to generate an induced voltage and the phase thereof depends on the polarity of the torque. The induced voltage is rectified in synchronization to obtain an output.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁歪式トルクセンサに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetostrictive torque sensor.

【0002】[0002]

【従来の技術】磁歪式トルクセンサには、トルク伝達軸
にアモルファス磁歪薄帯を接着材で固定しその応力に伴
う透磁率変化を利用するいわゆるソレノイドコイル型の
ものと、鋼軸の磁歪効果を直接利用するいわゆる磁気ヘ
ッド型のものとがある。前者は感度が高く高精度トルク
センサに向くが、装着容易性、耐久性の点で問題があ
り、後者は軸の磁気特性に直接依存するため精度上の問
題と、磁気ヘッドがU字形もしくはコの字形鉄心を必要
とするため構造、サイズの点で問題があった。後者の磁
気ヘッド型トルクセンサの問題を解決しようとして、一
対の8の字形コイルを直交配置して重ねて構成したコイ
ルを用いるトルクセンサが発表されている。(笹田、古
賀、原田:「磁心を用いない磁気ヘッド形トルクセン
サ」、第16回日本応用磁気学会学術講演会概要集、7
pD−9、p75、1992年)これは、8の字コイル
の直線部分が鋼軸の軸方向に対し約±45°になるよう
軸近傍に対向配置された一対のコイルの自己インダクタ
ンスが、トルク印加により一方では増加、他方では減少
することを利用して、ブリッジ回路によって電圧出力を
得るものである。小型、薄形化の点で大きく進歩した
が、自己インダクタンスの変化を見るため励磁、検出が
同一のコイルでなされ、電圧、電流レベルが相対的に大
きい励磁側回路と、5V程度の電圧で動作する検出側回
路間の電気的絶縁を取って同期整流等信号処理を容易に
するためにはブリッジ出力を更にトランスで分離する必
要があった。また、互いに重ねられた一対のコイル双方
に同時に60kHz前後の高周波励磁電流を流すため、
表皮効果と近接効果のため銅損が大きくなる問題があっ
た。
2. Description of the Related Art Magnetostrictive torque sensors include a so-called solenoid coil type in which an amorphous magnetostrictive ribbon is fixed to a torque transmission shaft with an adhesive and a change in permeability due to the stress is utilized, and a magnetostrictive effect of a steel shaft. There is a so-called magnetic head type that is used directly. The former is suitable for high-precision torque sensors with high sensitivity, but has problems in terms of ease of mounting and durability, while the latter directly depends on the magnetic characteristics of the shaft, which causes accuracy problems and the U-shaped or U-shaped magnetic head. There was a problem in terms of structure and size because it required a V-shaped iron core. In order to solve the problem of the latter magnetic head type torque sensor, a torque sensor using a coil formed by stacking a pair of 8-shaped coils in a perpendicular arrangement has been announced. (Sasada, Koga, Harada: "Magnetic head type torque sensor without magnetic core", Proc. Of the 16th Annual Meeting of the Japan Society for Applied Magnetics, 7
pD-9, p75, 1992) This is because the self-inductance of a pair of coils arranged near each other in the vicinity of the axis so that the straight part of the figure 8 coil is approximately ± 45 ° with respect to the axial direction of the steel axis is the torque. The voltage output is obtained by the bridge circuit by utilizing the increase on the one hand and the decrease on the other hand by the application. Although it has made great progress in terms of downsizing and thinning, excitation and detection are performed by the same coil in order to see changes in self-inductance, and the excitation side circuit with a relatively large voltage and current level and operation at a voltage of about 5V In order to facilitate electrical signal processing such as synchronous rectification by taking electrical insulation between the detection side circuits, it is necessary to further separate the bridge output with a transformer. Further, since a high frequency exciting current of about 60 kHz is simultaneously applied to both of the pair of coils which are overlapped with each other,
There is a problem that copper loss increases due to the skin effect and the proximity effect.

【0003】[0003]

【発明が解決しようとする課題】本発明は、上記磁気ヘ
ッド形トルクセンサの課題を解決するためのもので、一
対の8の字形コイルを直交配置し重ねて構成したコイル
を用いるトルクセンサの励磁側と検出側回路の電気的絶
縁を取ることを可能とすると共に、励磁電力を半減する
ことのできるトルクセンサを提供しようとするものであ
る。
SUMMARY OF THE INVENTION The present invention is intended to solve the problems of the magnetic head type torque sensor described above, and excites a torque sensor using a coil formed by arranging a pair of 8-shaped coils orthogonally and overlapping each other. The present invention aims to provide a torque sensor that can electrically isolate the detection side circuit from the detection side circuit and can reduce the excitation power to half.

【0004】[0004]

【課題を解決するための手段】本発明の磁歪式トルクセ
ンサは、一対の8の字形コイルを直交配置し重ねて構成
したコイルを磁歪効果を有する軸表面近傍に対向配置
し、同コイルの一方を軸を交流磁化する励磁コイルとし
て、他方をトルクが引き起こす軸表面部位での±45°
方向の透磁率差に対応した磁束を誘起電圧として検出す
るための検出コイルとして用いることを特徴とする。
In the magnetostrictive torque sensor of the present invention, a coil formed by stacking a pair of 8-shaped coils at right angles and overlapping each other is disposed so as to face each other near the shaft surface having a magnetostrictive effect. Is an exciting coil for alternating-current magnetizing the shaft, and the other is ± 45 ° at the shaft surface part caused by the torque.
It is characterized in that it is used as a detection coil for detecting a magnetic flux corresponding to a magnetic permeability difference in a direction as an induced voltage.

【0005】[0005]

【作用】本発明は、トルクによる軸表面部位の±45°
方向の透磁率差を励磁コイルと検出コイル双方ヘ共通に
鎖交する交番磁束を介して検出するため、励磁コイル、
検出コイル間は電気的に結線する必要はなく、絶縁を取
ることができる。また、励磁電流は8の字コイルの一方
にしか流さないため、一対の8の字コイルの両方に励磁
電流を流してその自己インダクタンスの差を検出するよ
うにした従来の方式に対し、半分の電流で良い。このた
め励磁電力は半減する。
The function of the present invention is ± 45 ° of the shaft surface portion due to the torque.
Since the magnetic permeability difference in the direction is detected through the alternating magnetic flux that is commonly linked to both the exciting coil and the detecting coil, the exciting coil,
It is not necessary to electrically connect the detection coils, and insulation can be provided. In addition, since the exciting current flows through only one of the figure-eight coils, the exciting current flows through both of the pair of figure-eight coils to detect the difference in the self-inductance. Good with current. Therefore, the exciting power is halved.

【0006】[0006]

【実施例】図1(A)は、本発明のトルクセンサの主要
部分の構成を示す図、図1(B)は、8の字コイルが1
ターンと仮定した時励磁及び検出コイルを平行移動によ
り分離して示した図、図1(C)は、一対の各8の字コ
イルが複数ターンの時の重ね形を示す図、図2は、実施
例の動作原理を説明するための図、図3は励磁周波数を
パラメータとする感度の励磁電流依存性を実験した結果
の図、図4は、トルクセンサの入出力特性の実験結果を
示した図である。図中、1は励磁コイル2は検出コイ
ル、3は磁歪特性を持つトルク伝達軸(鋼軸)、4は励
磁電源である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 (A) is a diagram showing the construction of the main part of a torque sensor of the present invention, and FIG.
FIG. 1C is a diagram showing the excitation and detection coils separated by parallel movement when it is assumed to be a turn, FIG. FIG. 3 is a diagram for explaining the operation principle of the embodiment, FIG. 3 is a diagram showing a result of an experiment on the dependency of sensitivity on an excitation current with an excitation frequency as a parameter, and FIG. 4 is an experiment result of an input / output characteristic of a torque sensor. It is a figure. In the figure, 1 is an excitation coil 2, 2 is a detection coil, 3 is a torque transmission shaft (steel shaft) having a magnetostrictive characteristic, and 4 is an excitation power supply.

【0007】まず、本発明のトルクセンサの構造につい
て説明する。図1(A)には簡単のため巻数1の8の字
コイルを使用した場合を示している。重ね方は2つの8
の字コイルがほぼ同心になるようにし、一方は、他方に
対しほぼ90°回転した配置とする。ここで、(a、
b) 、(c、d)がそれぞれ8の字形励磁コイルの同
一コイル領域に属し、(a、c)、(b、d)がそれぞ
れ8の字形検出コイルの同一コイル領域に属する。2つ
のコイルを横に平行にずらして示したのが図1(B)で
ある。図1(A)のように、励磁コイルとして用いられ
る8の字コイルの直線部分が軸周方向にほぼ平行となる
ように対向配置する。あるいは、逆にその直線部分を軸
方向にほば平行となるよう対向位置してもよい。この場
合、当然検出コイルとして用いられる8の字コイルの直
線部分が軸周方向となる。
First, the structure of the torque sensor of the present invention will be described. For simplification, FIG. 1 (A) shows a case where an eight-shaped coil having one turn is used. How to stack two 8
The C-shaped coils are arranged to be substantially concentric, and one coil is arranged so as to be rotated approximately 90 ° with respect to the other coil. Where (a,
b) and (c, d) belong to the same coil area of the 8-shaped excitation coil, and (a, c) and (b, d) belong to the same coil area of the 8-shaped detection coil. FIG. 1B shows the two coils laterally displaced in parallel. As shown in FIG. 1 (A), the straight portions of the 8-shaped coil used as the exciting coil are arranged so as to face each other so as to be substantially parallel to the axial circumferential direction. Alternatively, conversely, the straight portions may be positioned so as to be substantially parallel to the axial direction. In this case, the straight portion of the figure-eight coil used as the detection coil naturally becomes the axial direction.

【0008】次に、動作原理について説明する。トルク
伝達軸に図2(A)のような向きにトルクTが印加され
ると、同図のように軸に対し±45°方向に応力が発生
する。軸の磁歪定数を正と仮定すれば、交番磁束は張力
方向に傾いて分布する。これをe、fの矢印で示す。逆
にトルクの方向が反転すると、図2(B)g、hのよう
にその傾きも反転する。いま、磁束の軸方向成分を無視
し、軸周方向成分のみを考えるとeでは下向き、gでは
上向きとなっていることがわかる。ここで、e、gは図
2(C)の励磁電圧の同じ位相に対する磁束の向きを示
したものにほかならない。したがって、図2(A)もし
くは(B)に図1(B)2の8の字コイルを同心状に重
ね検出コイルとして用いれば、磁束の軸方向成分は鎖交
せず軸周方向成分のみが鎖交するから、図2(C)に示
すように出力電圧はトルクの方向によって、励磁電圧と
同相もしくは逆相となる。またこの時、出力電圧の振幅
は印加トルクTに比例する。したがって、励磁電圧の位
相を基準として、出力電圧を同期整流すれば、トルクの
大きさと方向を検出することができる。図1(B)2の
8の字コイルを励磁用コイルとして、1の8の字コイル
を検出用コイルとして用いても全く同様の結果を得るこ
とができる。
Next, the operating principle will be described. When torque T is applied to the torque transmission shaft in the direction as shown in FIG. 2A, stress is generated in the directions of ± 45 ° with respect to the shaft as shown in FIG. Assuming that the magnetostriction constant of the shaft is positive, the alternating magnetic flux is distributed with an inclination in the tension direction. This is indicated by arrows e and f. On the contrary, when the torque direction is reversed, the inclination is reversed as shown in g and h of FIG. Now, ignoring the axial direction component of the magnetic flux and considering only the axial direction component, it can be seen that e is downward and g is upward. Here, e and g are nothing but the directions of the magnetic flux with respect to the same phase of the excitation voltage in FIG. Therefore, if the figure-eight coil of FIG. 1 (B) 2 is concentrically overlapped with FIG. 2 (A) or (B) and is used as the detection coil, the axial component of the magnetic flux does not interlink and only the axial circumferential component is present. Because of the interlinkage, the output voltage becomes in-phase or anti-phase with the excitation voltage depending on the torque direction, as shown in FIG. 2 (C). At this time, the amplitude of the output voltage is proportional to the applied torque T. Therefore, if the output voltage is synchronously rectified with reference to the phase of the excitation voltage, the magnitude and direction of the torque can be detected. The same result can be obtained by using the figure 8 coil of FIG. 1B as the exciting coil and the figure 8 coil 1 as the detecting coil.

【0009】一般に鋼軸はやき入れされている場合が多
く、軸の保磁力が高くなって磁化力が足りないときは8
の字コイルの巻数を増やして対応することができる。こ
の場合の励磁コイル、検出コイルの重ね方の一例を示し
たのが図1(C)である。更に必要があれば軸に印加さ
れる励磁起磁力を増すため、図1(A)のコイル1、2
の上から軟磁性板で作製した磁気ヨークを被せることが
できる。
Generally, the steel shaft is often hardened, and when the coercive force of the shaft is high and the magnetizing force is insufficient, 8
It is possible to increase the number of turns of the C-shaped coil. FIG. 1C shows an example of how the exciting coil and the detecting coil are stacked in this case. If necessary, in order to increase the exciting magnetomotive force applied to the shaft, the coils 1 and 2 of FIG.
A magnetic yoke made of a soft magnetic plate can be covered from above.

【0010】次に、本方法によってトルクセンサを構成
し特性を実験によって調べた結果を図3、4に示す。ト
ルク伝達軸として用いた軸は、直径25mmの調質を行
ったSCM415(ビッカース硬度310)材である。
一対の8の字コイルは図1(C)に示す方法で作製し
た。外径は20mm巻線数は各25ターンとした。ま
た、これらの実験ではアライドシグナル社製のMetg
las2705Mアモルファス薄帯を複数枚重ねたヨー
クを使用した。図3には、励磁周波数をパラメータとし
た感度の励磁電流依存性を示している。これから励磁周
波数が高いほうが感度も高いことがわかる。励磁周波数
を高くすると励磁磁束が軸の極浅い表面部分のみを通過
するようになり、トルクにより生じる応力が最も大きく
なる部位と合致するため、感度も上昇する。しかし実際
には、導体の表皮効果や近接効果、軸における渦電流損
等のために高周波化には限度があり、無闇に高くする訳
には行かない。図4は、励磁電流0、4A、及び0、8
Aの時の入出力特性である。僅かに印加トルクの上昇時
と下降時にヒステリシスが見られるが線形性は良好であ
る。励磁電力は、励磁電流が0、8Aの時約1W程度で
あった。
Next, the results obtained by constructing a torque sensor by this method and examining the characteristics by experiments are shown in FIGS. The shaft used as the torque transmission shaft is an SCM415 (Vickers hardness 310) material having a diameter of 25 mm and subjected to tempering.
The pair of 8-shaped coils were manufactured by the method shown in FIG. The outer diameter was 20 mm and the number of windings was 25 turns each. Also, in these experiments, Metg manufactured by Allied Signal
A yoke in which a plurality of las2705M amorphous ribbons were stacked was used. FIG. 3 shows the dependence of the sensitivity on the exciting current with the exciting frequency as a parameter. From this, it can be seen that the higher the excitation frequency, the higher the sensitivity. When the excitation frequency is increased, the excitation magnetic flux passes only through the extremely shallow surface portion of the shaft, and the stress generated by the torque coincides with the maximum portion, so that the sensitivity is also increased. However, in reality, due to the skin effect, proximity effect of the conductor, eddy current loss in the shaft, etc., there is a limit to the high frequency, and it cannot be inevitably increased. FIG. 4 shows exciting currents of 0, 4 A, and 0, 8
It is an input / output characteristic at the time of A. There is some hysteresis when the applied torque rises and falls slightly, but the linearity is good. The exciting power was about 1 W when the exciting current was 0.8 A.

【0011】[0011]

【発明の効果】以上のように、本発明によれば小型薄形
な励磁検出コイルで磁気ヘッド形トルクセンサを実現す
ることができ、更に励磁回路側と信号処理回路側を電気
的に絶縁できるため回路構造が簡単となり、かつ励磁電
力を従来に比べ半減できる。
As described above, according to the present invention, a magnetic head type torque sensor can be realized with a small and thin excitation detection coil, and the excitation circuit side and the signal processing circuit side can be electrically insulated. Therefore, the circuit structure becomes simple and the exciting power can be reduced to half compared with the conventional one.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例のトルクセンサの主要部分の構成と多
巻線8の字形励磁、検出コイルの構成法を説明する図。
FIG. 1 is a diagram illustrating a configuration of a main part of a torque sensor according to an embodiment, a letter-shaped excitation of multiple windings 8, and a configuration method of a detection coil.

【図2】 実施例の動作原理を説明するための図。FIG. 2 is a diagram for explaining the operation principle of the embodiment.

【図3】 励磁周波数をパラメータとする実施例のトル
クセンサ感度の励磁電流依存性について実験した結果を
示す図。
FIG. 3 is a diagram showing a result of an experiment on the excitation current dependency of the torque sensor sensitivity of the embodiment in which the excitation frequency is a parameter.

【図4】 実施例のトルクセンサの入出力特性を実験し
た結果を示す図。
FIG. 4 is a diagram showing a result of an experiment of input / output characteristics of the torque sensor of the example.

【符号の説明】[Explanation of symbols]

1・・・8の字形励磁コイル、 2・・・8の字形検出
コイル、 3・・・トルク伝達軸(鋼軸)、4・・・交
流励磁電源。
1 ... 8 shaped excitation coil, 2 ... 8 shaped detection coil, 3 ... torque transmission shaft (steel shaft), 4 ... AC excitation power supply.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】一対の8の字形コイルを互いに略直交に配
置し重ねて構成したコイルを用いる磁歪式トルクセンサ
において、前記一対の8の字形コイルの一方を励磁コイ
ル、他方を検出コイルとして用いて構成されることを特
徴とする磁歪式トルクセンサ。
1. A magnetostrictive torque sensor using a coil in which a pair of 8-shaped coils are arranged substantially orthogonal to each other and stacked, wherein one of the pair of 8-shaped coils is used as an exciting coil and the other is used as a detection coil. A magnetostrictive torque sensor characterized by being configured as follows.
JP04429593A 1993-01-24 1993-01-24 Magnetostrictive torque sensor Expired - Fee Related JP3252004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04429593A JP3252004B2 (en) 1993-01-24 1993-01-24 Magnetostrictive torque sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04429593A JP3252004B2 (en) 1993-01-24 1993-01-24 Magnetostrictive torque sensor

Publications (2)

Publication Number Publication Date
JPH06221940A true JPH06221940A (en) 1994-08-12
JP3252004B2 JP3252004B2 (en) 2002-01-28

Family

ID=12687523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04429593A Expired - Fee Related JP3252004B2 (en) 1993-01-24 1993-01-24 Magnetostrictive torque sensor

Country Status (1)

Country Link
JP (1) JP3252004B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0651239A2 (en) * 1993-10-29 1995-05-03 Omron Corporation Magnetostrictive torque sensor, magnetostrictive torque measuring apparatus, and condition - monitoring apparatus for a cutting tool using the same
US6390230B1 (en) 1999-10-06 2002-05-21 Honda Giken Kogyo Kabushiki Kaisha Electric power steering apparatus
US6422095B1 (en) 1999-11-01 2002-07-23 Honda Giken Kogyo Kabushiki Kaisha Magnetostrictive torque sensor and electric power steering apparatus including the same
US6543569B1 (en) 1999-10-08 2003-04-08 Honda Giken Kogyo Kabushiki Kaisha Electric power steering apparatus
JP2006126074A (en) * 2004-10-29 2006-05-18 Ichiro Sasada Sensor coil and magnetic sensor using the same
DE10049548B4 (en) * 1999-10-06 2007-03-22 Honda Giken Kogyo K.K. Electric power steering device
US7343825B2 (en) 2004-01-26 2008-03-18 Hitachi Cable, Ltd. Torque sensor
KR100938597B1 (en) * 2008-03-25 2010-01-26 주식회사 트루윈 Signal Processor of Inductive Wide Angle Sensor and Signal Processing Method of The Same
KR100988573B1 (en) * 2008-09-22 2010-10-18 주식회사 트루윈 Inductive Type Wide-Angle Sensing System for Steering Column
US7997152B2 (en) 2007-01-02 2011-08-16 Azuma Shokai Co., Ltd. Magnetostrictive torque sensor and torque detection method
US11774305B2 (en) 2021-01-29 2023-10-03 Proterial, Ltd. Magnetostrictive torque sensor and design method of thickness of magnetic ring for magnetostrictive torque sensor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0651239A3 (en) * 1993-10-29 1996-06-12 Omron Tateisi Electronics Co Magnetostrictive torque sensor, magnetostrictive torque measuring apparatus, and condition - monitoring apparatus for a cutting tool using the same.
EP0651239A2 (en) * 1993-10-29 1995-05-03 Omron Corporation Magnetostrictive torque sensor, magnetostrictive torque measuring apparatus, and condition - monitoring apparatus for a cutting tool using the same
DE10049548B4 (en) * 1999-10-06 2007-03-22 Honda Giken Kogyo K.K. Electric power steering device
US6390230B1 (en) 1999-10-06 2002-05-21 Honda Giken Kogyo Kabushiki Kaisha Electric power steering apparatus
US6543569B1 (en) 1999-10-08 2003-04-08 Honda Giken Kogyo Kabushiki Kaisha Electric power steering apparatus
US6422095B1 (en) 1999-11-01 2002-07-23 Honda Giken Kogyo Kabushiki Kaisha Magnetostrictive torque sensor and electric power steering apparatus including the same
US7343825B2 (en) 2004-01-26 2008-03-18 Hitachi Cable, Ltd. Torque sensor
JP2006126074A (en) * 2004-10-29 2006-05-18 Ichiro Sasada Sensor coil and magnetic sensor using the same
JP4638713B2 (en) * 2004-10-29 2011-02-23 一郎 笹田 Coil for sensor and magnetic sensor using the same
US7997152B2 (en) 2007-01-02 2011-08-16 Azuma Shokai Co., Ltd. Magnetostrictive torque sensor and torque detection method
KR100938597B1 (en) * 2008-03-25 2010-01-26 주식회사 트루윈 Signal Processor of Inductive Wide Angle Sensor and Signal Processing Method of The Same
KR100988573B1 (en) * 2008-09-22 2010-10-18 주식회사 트루윈 Inductive Type Wide-Angle Sensing System for Steering Column
US11774305B2 (en) 2021-01-29 2023-10-03 Proterial, Ltd. Magnetostrictive torque sensor and design method of thickness of magnetic ring for magnetostrictive torque sensor

Also Published As

Publication number Publication date
JP3252004B2 (en) 2002-01-28

Similar Documents

Publication Publication Date Title
EP0803053B1 (en) Circularly magnetized non-contact torque sensor and method for measuring torque using same
US5708216A (en) Circularly magnetized non-contact torque sensor and method for measuring torque using same
US6490934B2 (en) Circularly magnetized non-contact torque sensor and method for measuring torque using the same
JP3252004B2 (en) Magnetostrictive torque sensor
JP3549539B2 (en) Magneto-elastic non-contact torque transducer
WO2008016198A1 (en) 3 axis thin film fluxgate
US20220018723A1 (en) Torque detection sensor
EP0309979B1 (en) Magnetoelastic torque transducer
JPS62184323A (en) Magneto-striction type torque sensor
EP0700509B1 (en) Magnetoelastic contactless torque transducer with a shaft with a duplex anisotropic microstructure
JP2566640B2 (en) Torque measuring device
JPS61195323A (en) Torque sensor utilizing magnetostriction
JPH1038714A (en) Torque measuring apparatus and paper currency feeding mechanism employing it
JP2001027664A (en) Magnetic sensor
JP7184941B2 (en) Torque detection sensor
JPH06201493A (en) Magnetostrictive stress sensor
JP2905561B2 (en) Non-contact torque sensor
JP2827025B2 (en) Magnetostrictive torque sensor
JPH0262925A (en) Magnetostrictive torque sensor
JPH0763627A (en) Dynamic amount sensor
JPS6050429A (en) Torque sensor
JPH0271127A (en) Torque sensor
JPH03186725A (en) Method and instrument for measuring magnetic stress
JPS6182126A (en) Torque sensor
JPH06265422A (en) Magneto-strictive torque sensor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees