JPH06221729A - Freezer - Google Patents

Freezer

Info

Publication number
JPH06221729A
JPH06221729A JP2990493A JP2990493A JPH06221729A JP H06221729 A JPH06221729 A JP H06221729A JP 2990493 A JP2990493 A JP 2990493A JP 2990493 A JP2990493 A JP 2990493A JP H06221729 A JPH06221729 A JP H06221729A
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
evaporator
valve
pressure reducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2990493A
Other languages
Japanese (ja)
Other versions
JP3133536B2 (en
Inventor
Hiroshi Nishikawa
弘 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP05029904A priority Critical patent/JP3133536B2/en
Publication of JPH06221729A publication Critical patent/JPH06221729A/en
Application granted granted Critical
Publication of JP3133536B2 publication Critical patent/JP3133536B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Defrosting Systems (AREA)

Abstract

PURPOSE:To provide a freezer improved in the durability by eliminating generation of shock waves to an inlet side of a reduction valve. CONSTITUTION:A cooling operation is done by making high temperature refrigerant discharged from a compressor 1 flow through a condenser 4, an expansion valve 11 and an evaporator 12 in this order. A defrosting operation is done by controlling valves SV1 to SV5 to make the high temperature refrigerant flow into the evaporator 12. A pressure reducing valve 17 is provided in a pipe through which the refrigerant is made to flow into the compressor 1. When the defrosting operation is finished, a pump down operation is done to collect the refrigerant inside the evaporator 12. A prescribed delay time is provided between the defrosting operation and the pump down operation to prevent the refrigerant from flowing into the pressure reducing valve 17 by means of the valves SV1 to SV5 so that the compressor 1 may be stopped.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、圧縮機から吐出された
高温冷媒を用いて蒸発器の霜取を行う冷凍装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerating apparatus for defrosting an evaporator using a high temperature refrigerant discharged from a compressor.

【0002】[0002]

【従来の技術】この種冷凍装置は、例えばプレハブ冷凍
・冷蔵庫やショーケース等の各種冷凍・冷蔵システムに
おいて用いられており、図1にその冷媒回路図を示す。
図1において、圧縮機1の吐出側の配管2には三方弁S
V1が接続されており、この三方弁SV1の一方の出口
側の配管3には凝縮器4が接続されている。凝縮器4の
冷媒出口側の配管6は受液器7の上部に接続され、この
受液器7の下部から引き出された配管8は、逆止弁9を
介して電磁弁SV2に接続されている。前記逆止弁9は
電磁弁SV2方向が順方向とされている。
2. Description of the Related Art This type of refrigerating apparatus is used in various refrigerating / refrigerating systems such as prefabricated refrigerating / refrigerating machines and showcases. FIG. 1 shows a refrigerant circuit diagram thereof.
In FIG. 1, a three-way valve S is installed in the pipe 2 on the discharge side of the compressor 1.
V1 is connected, and a condenser 4 is connected to the pipe 3 on one outlet side of the three-way valve SV1. The pipe 6 on the refrigerant outlet side of the condenser 4 is connected to the upper part of the liquid receiver 7, and the pipe 8 drawn out from the lower part of the liquid receiver 7 is connected to the solenoid valve SV2 via the check valve 9. There is. The check valve 9 has a solenoid valve SV2 in the forward direction.

【0003】電磁弁SV2の出口側は減圧装置としての
膨張弁11に接続され、膨張弁11は蒸発器12に接続
されている。この電磁弁SV2及び膨張弁SV11の直
列回路には、電磁弁SV3と逆止弁13がそれぞれ並列
に配管接続されており、この逆止弁13は逆止弁9方向
が順方向とされている。蒸発器12の出口側の配管14
は電磁弁SV4に接続され、電磁弁SV4の出口側の配
管16は減圧弁17の入口側17Aに接続されている。
また、前記電磁弁SV4には逆止弁15が並列に接続さ
れると共に、この逆止弁15は蒸発器12の方向を順方
向とされている。
The outlet side of the solenoid valve SV2 is connected to an expansion valve 11 as a pressure reducing device, and the expansion valve 11 is connected to an evaporator 12. In the series circuit of the solenoid valve SV2 and the expansion valve SV11, the solenoid valve SV3 and the check valve 13 are connected in parallel by piping, and the check valve 13 has the check valve 9 in the forward direction. . Pipe 14 on the outlet side of the evaporator 12
Is connected to the solenoid valve SV4, and the pipe 16 on the outlet side of the solenoid valve SV4 is connected to the inlet side 17A of the pressure reducing valve 17.
A check valve 15 is connected in parallel to the solenoid valve SV4, and the check valve 15 is directed in the direction of the evaporator 12.

【0004】前記減圧弁17は圧縮機1の吸込側である
低圧圧力を調整し、その上昇を防止するために介設され
ており、減圧弁17の出口側には直列に配管接続された
二個の気液分離器18a、18bが接続されている。そ
して、冷媒下流側の気液分離器18bの出口側は圧縮機
1の吸込側の配管19に接続されている。
The pressure reducing valve 17 is provided to adjust the low pressure on the suction side of the compressor 1 and prevent its rise, and the outlet side of the pressure reducing valve 17 is connected in series with two pipes. Individual gas-liquid separators 18a and 18b are connected. The outlet side of the gas-liquid separator 18b on the refrigerant downstream side is connected to the suction side pipe 19 of the compressor 1.

【0005】前記逆止弁9の下流側の配管8と配管3間
には配管21が接続されており、この配管21には配管
3の方向を順方向とされた逆止弁22が介設されてい
る。また、前記配管14には配管23が接続されてお
り、この配管23は逆止弁24を介して三方弁SV1の
他方の出口に接続されている。そして、逆止弁24は蒸
発器12側を順方向とされている。更に、前記受液器7
の上部からは配管26が引き出され、この配管26には
電磁弁SV5が介設されると共に、配管26は前記減圧
弁17の入口側17Aに接続されている。上記三方弁S
V1と電磁弁SV2〜SV5とで流路切換装置が構成さ
れている。
A pipe 21 is connected between the pipe 8 and the pipe 3 on the downstream side of the check valve 9, and a check valve 22 having the forward direction of the pipe 3 is provided in the pipe 21. Has been done. A pipe 23 is connected to the pipe 14, and the pipe 23 is connected to the other outlet of the three-way valve SV1 via a check valve 24. Further, the check valve 24 has the evaporator 12 side in the forward direction. Further, the liquid receiver 7
A pipe 26 is drawn out from an upper portion of the pipe 26. An electromagnetic valve SV5 is interposed in the pipe 26, and the pipe 26 is connected to an inlet side 17A of the pressure reducing valve 17. The above three-way valve S
A flow path switching device is configured by V1 and the solenoid valves SV2 to SV5.

【0006】以上の構成で次に図6を参照しながら従来
のこの種冷凍装置の動作を説明する。図6は従来の冷凍
装置の圧縮機1及び三方弁SV1、電磁弁SV2〜SV
5の動作を運転モード別に示したものであり、例えばプ
レハブ冷蔵庫の庫内を冷却する冷却運転においては、図
示しない制御装置が圧縮機1を運転すると共に、三方弁
SV1の冷媒流路を図1中a方向とし、電磁弁SV2及
び電磁弁SV4を開いて(ON)、電磁弁SV3及び電
磁弁SV5は閉じる(OFF)。
The operation of the conventional refrigerating apparatus of this type will be described with reference to FIG. FIG. 6 shows a compressor 1, a three-way valve SV1, and solenoid valves SV2 to SV of a conventional refrigeration system.
5 shows the operation of each of the operation modes according to operation modes. For example, in a cooling operation for cooling the inside of the prefabricated refrigerator, the control device (not shown) operates the compressor 1 and the refrigerant flow path of the three-way valve SV1 is shown in FIG. The solenoid valve SV2 and solenoid valve SV4 are opened (ON) while the solenoid valve SV3 and solenoid valve SV5 are closed (OFF).

【0007】係る状態で圧縮機1から吐出された高温高
圧のガス冷媒は、三方弁SV1を経て凝縮器4に流入
し、そこで放熱して凝縮される。凝縮器4を出た冷媒は
一旦受液器7に流入し、そこから液冷媒のみが逆止弁9
及び電磁弁SV2を経て膨張弁11で減圧された後、蒸
発器12に流入し、そこで蒸発することにより周囲から
吸熱して冷却作用を発揮する。蒸発器12から出た冷媒
は電磁弁SV4を経て減圧弁17に至り、気液分離器1
8a、18b内にて未蒸発冷媒が気液分離された後、ガ
ス冷媒のみが配管19より圧縮機1に吸い込まれる。
The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 in such a state flows into the condenser 4 through the three-way valve SV1 and is radiated and condensed there. The refrigerant discharged from the condenser 4 once flows into the liquid receiver 7, from which only the liquid refrigerant is supplied to the check valve 9
After being decompressed by the expansion valve 11 via the solenoid valve SV2, it flows into the evaporator 12 and evaporates there, thereby absorbing heat from the surroundings and exerting a cooling effect. The refrigerant discharged from the evaporator 12 reaches the pressure reducing valve 17 via the solenoid valve SV4, and the gas-liquid separator 1
After gas-liquid separation of the non-evaporated refrigerant in 8a and 18b, only the gas refrigerant is sucked into the compressor 1 through the pipe 19.

【0008】係る冷却運転によって図示しないプレハブ
冷蔵庫の庫内は冷却されるが、蒸発器12には庫内の湿
気が霜となって成長する。そこで、図示しない制御装置
は所定のタイミング(定時刻、或いは圧縮機1の運転時
間積算後)で蒸発器12の霜取を開始する。この霜取運
転は霜取1と霜取2とから構成され、霜取1で制御装置
は、圧縮機1を運転すると共に、三方弁SV1の冷媒流
路を図1中a方向とし、電磁弁SV2及び電磁弁SV4
を閉じて(OFF)、電磁弁SV3及び電磁弁SV5を
開く(ON)。
The inside of the refrigerator of the prefabricated refrigerator (not shown) is cooled by such a cooling operation, but moisture in the refrigerator grows as frost in the evaporator 12. Therefore, the control device (not shown) starts defrosting the evaporator 12 at a predetermined timing (at a fixed time or after the operation time of the compressor 1 is integrated). This defrosting operation is composed of defrosting 1 and defrosting 2. In defrosting 1, the control device operates the compressor 1 and sets the refrigerant flow path of the three-way valve SV1 to the direction a in FIG. SV2 and solenoid valve SV4
Is closed (OFF), and the solenoid valves SV3 and SV5 are opened (ON).

【0009】係る状態では圧縮機1から吐出された冷媒
は、三方弁SV1、凝縮器4及び受液器7を経て配管2
6を通り、減圧弁17から気液分離器18a、18bに
入り、その後圧縮機1に吸い込まれる。係る霜取1が所
定期間行われた後、制御装置は霜取2に移行する。
In this state, the refrigerant discharged from the compressor 1 passes through the three-way valve SV1, the condenser 4 and the liquid receiver 7 and the pipe 2
After passing through 6, the pressure reducing valve 17 enters the gas-liquid separators 18a and 18b, and is then sucked into the compressor 1. After the defrosting 1 is performed for a predetermined period, the control device shifts to the defrosting 2.

【0010】霜取2では前記制御装置は電磁弁SV2〜
電磁弁SV5を霜取1の状態のまま維持し、三方弁SV
1の冷媒流路を図1中b方向に切り換える。係る状態で
圧縮機1から吐出された高温高圧のガス冷媒は、三方弁
SV1を経て配管23を通り、配管14から蒸発器12
に流入する。係る高温冷媒の流入により蒸発器12は加
熱され、その着霜が融解されると共に、ガス冷媒は凝縮
される。蒸発器12から出た冷媒は電磁弁SV3を経て
配管21より凝縮器4に流入し、そこで一部蒸発しなが
ら受液器7に流入する。冷媒は受液器7から配管26に
流入し、減圧弁17の入口側17Aに至り、気液分離器
18a、18bを経て圧縮機1に吸い込まれる。
In defrost 2, the control device uses solenoid valves SV2 to SV2.
The solenoid valve SV5 is maintained in the defrosting 1 state, and the three-way valve SV5
The refrigerant passage 1 is switched to the direction b in FIG. The high-temperature high-pressure gas refrigerant discharged from the compressor 1 in this state passes through the three-way valve SV1 and the pipe 23, and then from the pipe 14 to the evaporator 12
Flow into. The evaporator 12 is heated by the inflow of the high-temperature refrigerant, the frost is melted, and the gas refrigerant is condensed. The refrigerant discharged from the evaporator 12 flows into the condenser 4 from the pipe 21 through the electromagnetic valve SV3, and then flows into the liquid receiver 7 while partially evaporating. The refrigerant flows from the liquid receiver 7 into the pipe 26, reaches the inlet side 17A of the pressure reducing valve 17, and is sucked into the compressor 1 via the gas-liquid separators 18a and 18b.

【0011】係る高温冷媒の流入による加熱により蒸発
器12の霜取が進行し、所定の除霜終了温度まで蒸発器
12の温度が上昇すると、前記制御装置は霜取運転(霜
取2)を終了し、直ちにポンプダウン運転を実行する。
このポンプダウン運転では、制御装置は電磁弁SV2、
電磁弁SV3及び電磁弁SV5を閉じ(OFF)、電磁
弁SV4のみを開く(ON)。また、三方弁SV1の冷
媒流路を図1中a方向に切り換える。
When the defrosting of the evaporator 12 progresses due to the heating due to the inflow of the high-temperature refrigerant and the temperature of the evaporator 12 rises to a predetermined defrosting end temperature, the control device performs the defrosting operation (defrosting 2). Upon completion, the pump down operation is executed immediately.
In this pump down operation, the control device controls the solenoid valve SV2,
The solenoid valves SV3 and SV5 are closed (OFF) and only the solenoid valve SV4 is opened (ON). Further, the refrigerant passage of the three-way valve SV1 is switched to the direction a in FIG.

【0012】制御装置は係る状態で圧縮機1を運転し、
蒸発器12内の冷媒を電磁弁SV4、減圧弁17、気液
分離器18a、18bを介して吸引し、凝縮器4を経て
受液器7に回収する。そして、このポンプダウン運転を
所定期間実行した後、再び前記冷却運転に移行すること
になる。
The controller operates the compressor 1 in such a state,
The refrigerant in the evaporator 12 is sucked through the electromagnetic valve SV4, the pressure reducing valve 17, and the gas-liquid separators 18a and 18b, and is collected in the liquid receiver 7 via the condenser 4. After the pump down operation is executed for a predetermined period, the cooling operation is started again.

【0013】[0013]

【発明が解決しようとする課題】このように、従来の冷
凍装置では霜取運転(霜取2)の終了直後にポンプダウ
ン運転に移行していたが、係る霜取運転中蒸発器12に
は高温高圧ガス冷媒が供給されており、その温度及び圧
力も高くなっている。そのため、電磁弁SV4を開いて
ポンプダウン運転に移行した直後、この蒸発器12内の
高圧力が衝撃波となって減圧弁17の入口側17Aに加
わる。それによって、減圧弁17の入口側17Aの圧力
が急激に上昇するため、減圧弁17の耐久性が損なわれ
る問題があった。
As described above, in the conventional refrigerating apparatus, the pump down operation is performed immediately after the defrosting operation (defrosting 2) is completed. The high-temperature high-pressure gas refrigerant is supplied, and its temperature and pressure are also high. Therefore, immediately after the solenoid valve SV4 is opened and the pump down operation is started, the high pressure in the evaporator 12 becomes a shock wave and is applied to the inlet side 17A of the pressure reducing valve 17. As a result, the pressure on the inlet side 17A of the pressure reducing valve 17 rises sharply, and there is a problem that the durability of the pressure reducing valve 17 is impaired.

【0014】本発明は、係る従来の技術的課題を解決す
るために成されたものであり、減圧弁の入口側への衝撃
波の発生を解消し、その耐久性を向上させた冷凍装置を
提供することを目的とする。
The present invention has been made in order to solve the above-mentioned conventional technical problems, and provides a refrigerating apparatus which eliminates the generation of a shock wave at the inlet side of the pressure reducing valve and improves its durability. The purpose is to do.

【0015】[0015]

【課題を解決するための手段】本発明の冷凍装置は、圧
縮機1から吐出された高温冷媒を凝縮器4、減圧装置
(膨張弁)11及び蒸発器12に順次流して冷却運転を
実行すると共に、蒸発器12を霜取する際、前記高温冷
媒を蒸発器12に流入させて霜取運転を実行するもので
あって、冷媒の流路を切り換える流路切換装置(弁)S
V1〜SV5と、圧縮機1と流路切換装置(弁)SV1
〜SV5を制御する制御装置31(マイクロコンピュー
タ32)と、圧縮機1に吸い込まれる冷媒が流れる配管
に挿入された減圧弁17とを具備しており、制御装置3
1(マイクロコンピュータ32)は、前記霜取運転が終
了した場合に、所定時間流路切換装置(弁)SV1〜S
V5により減圧弁17への冷媒の流入を阻止し、且つ、
圧縮機1を停止させた後、蒸発器12内の冷媒を回収す
るポンプダウン運転を実行することを特徴とする。
In the refrigerating apparatus of the present invention, the high temperature refrigerant discharged from the compressor 1 is sequentially flown to the condenser 4, the pressure reducing device (expansion valve) 11 and the evaporator 12 to execute the cooling operation. At the same time, when the evaporator 12 is defrosted, the high temperature refrigerant is caused to flow into the evaporator 12 to execute the defrosting operation, and a flow path switching device (valve) S for switching the flow path of the refrigerant.
V1-SV5, compressor 1, flow path switching device (valve) SV1
~ Control device 31 (microcomputer 32) for controlling SV5, and pressure reducing valve 17 inserted in a pipe through which the refrigerant sucked into compressor 1 flows are provided.
1 (microcomputer 32), when the defrosting operation is completed, the flow path switching devices (valves) SV1 to SV for a predetermined time.
V5 prevents the refrigerant from flowing into the pressure reducing valve 17, and
After stopping the compressor 1, a pump down operation for recovering the refrigerant in the evaporator 12 is executed.

【0016】[0016]

【作用】本発明の冷凍装置では、制御装置31(マイク
ロコンピュータ32)が霜取運転とポンプダウン運転の
間に、所定時間減圧弁17への冷媒流入を阻止し、圧縮
機1を停止するので、霜取運転中に上昇した蒸発器12
内の圧力は、その後の所定時間中に一定の低い値まで低
下する。従って、その後のポンプダウン運転開始時に減
圧弁17の入口側17Aに加わる圧力も低下し、前述の
如き衝撃波の発生も解消される。
In the refrigerating apparatus of the present invention, the control device 31 (microcomputer 32) blocks the refrigerant from flowing into the pressure reducing valve 17 for a predetermined time during the defrosting operation and the pump down operation, and stops the compressor 1. , Evaporator 12 raised during defrosting operation
The pressure within drops to a constant low value during a subsequent predetermined time. Therefore, the pressure applied to the inlet side 17A of the pressure reducing valve 17 at the start of the subsequent pump down operation is also reduced, and the generation of the shock wave as described above is eliminated.

【0017】[0017]

【実施例】次に図面に基づき本発明の実施例を詳述す
る。尚、本発明の冷凍装置の冷媒回路は図1に示された
通りであるので説明を省略する。また、図2には本発明
の冷凍装置の制御装置31の電気回路図が示されてお
り、図2においてマイクロコンピュータ32の入力には
例えば図示しないプレハブ冷蔵庫の庫内温度を検出する
庫内センサー33の出力と、蒸発器12の温度を検出す
る蒸発器センサー34の出力が接続されている。また、
マイクロコンピュータ32の出力には、前記圧縮機1、
三方弁SV1、及び電磁弁SV2〜電磁弁SV5がそれ
ぞれ接続されている。
Embodiments of the present invention will now be described in detail with reference to the drawings. Since the refrigerant circuit of the refrigerating apparatus of the present invention is as shown in FIG. 1, its explanation is omitted. Further, FIG. 2 shows an electric circuit diagram of the control device 31 of the refrigerating apparatus of the present invention. In FIG. 2, an input to the microcomputer 32 is an internal sensor for detecting the internal temperature of a prefabricated refrigerator (not shown). The output of 33 and the output of an evaporator sensor 34 that detects the temperature of the evaporator 12 are connected. Also,
At the output of the microcomputer 32, the compressor 1,
The three-way valve SV1 and the solenoid valves SV2 to SV5 are connected to each other.

【0018】以上の構成で次に図3〜図5を参照しなが
ら本発明の冷凍装置の動作を説明する。図3は本発明の
冷凍装置のマイクロコンピュータ32の制御による圧縮
機1、三方弁SV1及び電磁弁SV2〜SV5の動作を
運転モード別に示したものであり、冷却運転においては
マイクロコンピュータ32は圧縮機1を運転すると共
に、三方弁SV1の冷媒流路を図1中a方向とし、電磁
弁SV2及び電磁弁SV4を開いて(ON)、電磁弁S
V3及び電磁弁SV5は閉じる(OFF)。
Next, the operation of the refrigerating apparatus of the present invention having the above structure will be described with reference to FIGS. FIG. 3 shows the operation of the compressor 1, the three-way valve SV1 and the solenoid valves SV2 to SV5 under the control of the microcomputer 32 of the refrigerating apparatus of the present invention for each operation mode. In the cooling operation, the microcomputer 32 is the compressor. 1 is operated, the refrigerant flow path of the three-way valve SV1 is set to the direction a in FIG. 1, and the solenoid valve SV2 and the solenoid valve SV4 are opened (ON).
V3 and solenoid valve SV5 are closed (OFF).

【0019】係る状態で圧縮機1から吐出された高温高
圧のガス冷媒は、三方弁SV1を経て凝縮器4に流入
し、そこで放熱して凝縮される。凝縮器4を出た冷媒は
一旦受液器7に流入し、そこから液冷媒のみが逆止弁9
及び電磁弁SV2を経て膨張弁11で減圧された後、蒸
発器12に流入して、そこで蒸発することにより周囲か
ら吸熱し、庫内の冷却作用を発揮する。蒸発器12から
出た冷媒は電磁弁SV4を経て減圧弁17に至り、気液
分離器18a、18内bにて未蒸発冷媒が気液分離され
た後、ガス冷媒のみが配管19より圧縮機1に吸い込ま
れる。
The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 in such a state flows into the condenser 4 through the three-way valve SV1 and is radiated and condensed there. The refrigerant discharged from the condenser 4 once flows into the liquid receiver 7, from which only the liquid refrigerant is supplied to the check valve 9
After being decompressed by the expansion valve 11 via the solenoid valve SV2, it flows into the evaporator 12 and evaporates there, thereby absorbing heat from the surroundings and exerting a cooling effect on the inside. The refrigerant discharged from the evaporator 12 reaches the pressure reducing valve 17 via the electromagnetic valve SV4, and after the non-evaporated refrigerant is gas-liquid separated in the gas-liquid separators 18a and 18b, only the gas refrigerant is compressed from the pipe 19 through the compressor. Sucked into 1.

【0020】マイクロコンピュータ32は庫内センサー
33の出力に基づき、図示しないプレハブ冷蔵庫の庫内
温度が所定の下限温度に降下したら圧縮機1を停止し、
所定の上限温度まで上昇したら圧縮機1を運転する。そ
れによって、庫内を所定の冷蔵、若しくは冷凍温度に冷
却維持する。
The microcomputer 32 stops the compressor 1 based on the output of the internal sensor 33 when the internal temperature of a prefabricated refrigerator (not shown) drops to a predetermined lower limit temperature,
When the temperature rises to the predetermined upper limit temperature, the compressor 1 is operated. Thereby, the inside of the refrigerator is maintained at a predetermined refrigerating or freezing temperature.

【0021】係る冷却運転によって蒸発器12には庫内
の湿気が霜となって成長する。そこで、マイクロコンピ
ュータ32は所定のタイミング(定時刻、或いは圧縮機
1の運転積算時間後)で蒸発器12の霜取を開始する。
この霜取運転は前述同様に霜取1と霜取2とから構成さ
れ、霜取1でマイクロコンピュータ32は、圧縮機1を
運転すると共に、三方弁SV1の冷媒流路を図1中a方
向とし、電磁弁SV2及び電磁弁SV4を閉じて(OF
F)、電磁弁SV3及び電磁弁SV5を開く(ON)。
Due to such cooling operation, moisture in the refrigerator grows in the evaporator 12 as frost. Therefore, the microcomputer 32 starts the defrosting of the evaporator 12 at a predetermined timing (at a fixed time or after the accumulated operation time of the compressor 1).
This defrosting operation is composed of the defrosting 1 and the defrosting 2 in the same manner as described above. In the defrosting 1, the microcomputer 32 operates the compressor 1 and sets the refrigerant flow path of the three-way valve SV1 in the direction a in FIG. And close the solenoid valves SV2 and SV4 (OF
F), the solenoid valves SV3 and SV5 are opened (ON).

【0022】係る状態では圧縮機1から吐出された冷媒
は、三方弁SV1、凝縮器4及び受液器7を経て配管2
6を通り、減圧弁17から気液分離器18a、18bに
至り、圧縮機1に吸い込まれる。係る霜取1が所定期間
行われた後、マイクロコンピュータ32は霜取2に移行
する。
In this state, the refrigerant discharged from the compressor 1 passes through the three-way valve SV1, the condenser 4 and the liquid receiver 7 and the pipe 2
After passing through 6, the pressure reducing valve 17 reaches the gas-liquid separators 18a and 18b and is sucked into the compressor 1. After the defrosting 1 is performed for a predetermined period, the microcomputer 32 shifts to the defrosting 2.

【0023】霜取2ではマイクロコンピュータ32は電
磁弁SV2〜電磁弁SV5を霜取1の状態のまま維持
し、三方弁SV1の冷媒流路を図1中b方向に切り換え
る。係る状態で圧縮機1から吐出された高温高圧のガス
冷媒は、図4に太線矢印で示す如く三方弁SV1を経て
配管23を通り、配管14から蒸発器12に流入する。
係る高温冷媒の流入により蒸発器12は加熱され、その
着霜が融解されると共に、ガス冷媒は凝縮される。蒸発
器12から出た冷媒は電磁弁SV3を経て配管21より
凝縮器4に流入し、そこで一部蒸発しながら受液器7に
流入する。冷媒は受液器7から配管26に流入し、減圧
弁17の入口側17Aに至り、気液分離器18a、18
bを経て圧縮機1に吸い込まれる。
In defrost 2, the microcomputer 32 maintains the solenoid valves SV2 to SV5 in the defrost 1 state, and switches the refrigerant passage of the three-way valve SV1 in the direction b in FIG. The high-temperature high-pressure gas refrigerant discharged from the compressor 1 in such a state passes through the pipe 23 through the three-way valve SV1 as shown by the thick arrow in FIG. 4, and flows into the evaporator 12 from the pipe 14.
The evaporator 12 is heated by the inflow of the high-temperature refrigerant, the frost is melted, and the gas refrigerant is condensed. The refrigerant discharged from the evaporator 12 flows into the condenser 4 from the pipe 21 through the electromagnetic valve SV3, and then flows into the liquid receiver 7 while partially evaporating. The refrigerant flows from the liquid receiver 7 into the pipe 26, reaches the inlet side 17A of the pressure reducing valve 17, and the gas-liquid separators 18a and 18a.
It is sucked into the compressor 1 via b.

【0024】係る高温冷媒の流入による加熱により蒸発
器12の霜取が進行し、所定の除霜終了温度まで蒸発器
12の温度が上昇すると、マイクロコンピュータ32は
蒸発器センサー34の出力によりそれを感知し、霜取運
転(霜取2)を終了するが、従来の如く直ちにポンプダ
ウン運転に移行せず、所定の遅延期間に入る。
When the defrosting of the evaporator 12 progresses due to the heating due to the inflow of the high temperature refrigerant, and the temperature of the evaporator 12 rises to a predetermined defrosting end temperature, the microcomputer 32 outputs it by the output of the evaporator sensor 34. After sensing, the defrosting operation (defrosting 2) ends, but the pump down operation does not immediately start as in the conventional case, and a predetermined delay period starts.

【0025】この遅延期間中、マイクロコンピュータ3
2は所定時間圧縮機1を停止すると共に、三方弁SV1
の冷媒流路を図1中a方向に切り換え、全電磁弁SV2
〜SV5を閉じる(OFF)。ここで、前記霜取運転に
よって蒸発器12の温度は上昇し、その内部圧力も高く
なっているが、この圧力は遅延期間中に逆止弁13、配
管8、21、及び逆止弁22を通って凝縮器4から受液
器7、或いは圧縮機1方向に逃げる。従って、この遅延
期間中に蒸発器12内の圧力は一定の低い値まで低下す
る。また、電磁弁SV4及びSV5が閉じていることに
より、減圧弁17の入口側17Aへの冷媒流入は阻止さ
れているので、係る遅延期間中の入口側17Aの圧力上
昇も生じない。
During this delay period, the microcomputer 3
2 is a three-way valve SV1 while stopping the compressor 1 for a predetermined time
The refrigerant flow path of the solenoid valve SV2 is switched to the direction a in FIG.
~ Close SV5 (OFF). Here, the temperature of the evaporator 12 rises and the internal pressure thereof also rises due to the defrosting operation, but this pressure causes the check valve 13, the pipes 8 and 21, and the check valve 22 to be increased during the delay period. It escapes from the condenser 4 toward the liquid receiver 7 or the compressor 1. Therefore, during this delay period, the pressure in the evaporator 12 drops to a constant low value. Further, since the solenoid valves SV4 and SV5 are closed to prevent the refrigerant from flowing into the inlet side 17A of the pressure reducing valve 17, the pressure increase on the inlet side 17A does not occur during the delay period.

【0026】この遅延期間はマイクロコンピュータ32
の具備する時計機能によって所定期間確保され、係る遅
延期間の経過後にポンプダウン運転に入る。このポンプ
ダウン運転では、マイクロコンピュータ32は前述同様
に電磁弁SV2、電磁弁SV3及び電磁弁SV5を閉じ
(OFF)、電磁弁SV4のみを開く(ON)。また、
三方弁SV1の冷媒流路は図1中a方向のままとする。
The delay period is the microcomputer 32.
The clock function provided by the device secures a predetermined period of time, and the pump-down operation is started after the elapse of the delay period. In this pump-down operation, the microcomputer 32 closes the solenoid valves SV2, SV3 and SV5 (OFF) and opens only the solenoid valve SV4 (ON) as described above. Also,
The refrigerant flow path of the three-way valve SV1 remains in the direction a in FIG.

【0027】マイクロコンピュータ32は係る状態で圧
縮機1を運転し、図5に太線で示す如く蒸発器12内の
冷媒を電磁弁SV4、減圧弁17、気液分離器18a、
18bを介して吸引し、凝縮器4を経て受液器7に回収
する。そして、このポンプダウン運転を所定期間実行し
た後、再び前記冷却運転に移行することになる。
The microcomputer 32 operates the compressor 1 in such a state, and as shown by the thick line in FIG. 5, the refrigerant in the evaporator 12 is supplied with a solenoid valve SV4, a pressure reducing valve 17, a gas-liquid separator 18a,
It is sucked through 18b and collected in the liquid receiver 7 through the condenser 4. After the pump down operation is executed for a predetermined period, the cooling operation is started again.

【0028】ここで、前記ポンプダウン運転の開始と同
時に電磁弁SV4が開くため、蒸発器12内の冷媒は配
管16を通って減圧弁17に流入し始めるが、このとき
蒸発器12内の圧力は前述の如く一定の低い値まで低下
しているので、電磁弁SV4が開いても減圧弁17の入
口側17Aに過大な圧力が加わることがない。従って、
前述の如きポンプダウン運転開始直後の衝撃波の発生が
防止され、減圧弁17の耐久性も向上する。
Here, since the solenoid valve SV4 is opened at the same time as the start of the pump down operation, the refrigerant in the evaporator 12 begins to flow into the pressure reducing valve 17 through the pipe 16, but at this time, the pressure in the evaporator 12 is reduced. As described above, since it has decreased to a constant low value, even if the solenoid valve SV4 is opened, excessive pressure is not applied to the inlet side 17A of the pressure reducing valve 17. Therefore,
The generation of shock waves immediately after the start of the pump down operation as described above is prevented, and the durability of the pressure reducing valve 17 is also improved.

【0029】尚、実施例では霜取運転を霜取1と霜取2
とで構成したが、それに限られず、例えば霜取2のみで
あっても差し支えない。また、実施例における冷媒回路
はそれに限定されるものではなく、本発明の趣旨を逸脱
しない範囲で種々変更可能であることは云うまでもな
い。
In the embodiment, the defrosting operation is performed by defrosting 1 and defrosting 2
However, the present invention is not limited to this and may be, for example, only the defroster 2. Further, it is needless to say that the refrigerant circuit in the embodiment is not limited thereto and can be variously modified without departing from the spirit of the present invention.

【0030】[0030]

【発明の効果】以上詳述した如く本発明によれば、霜取
運転が終了した後、ポンプダウン運転を行う前に所定時
間減圧弁への冷媒流入を阻止し、且つ、圧縮機を停止す
るので、霜取運転中に上昇した蒸発器内の圧力を、ポン
プダウン運転開始以前に一定の低い値まで低下させるこ
とができる。従って、ポンプダウン運転開始時に減圧弁
の入口側に加わる圧力を低下させることができるので、
減圧弁への衝撃波の発生を防止し、減圧弁の耐久性向上
を達成することができるものである。
As described above in detail, according to the present invention, after the defrosting operation is completed, the refrigerant is prevented from flowing into the pressure reducing valve for a predetermined time before the pump down operation is performed, and the compressor is stopped. Therefore, the pressure in the evaporator that has increased during the defrosting operation can be reduced to a certain low value before the start of the pump down operation. Therefore, the pressure applied to the inlet side of the pressure reducing valve at the start of the pump down operation can be reduced,
It is possible to prevent the generation of a shock wave to the pressure reducing valve and achieve improvement in durability of the pressure reducing valve.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の冷凍装置の冷媒回路図である。FIG. 1 is a refrigerant circuit diagram of a refrigerating apparatus of the present invention.

【図2】本発明の冷凍装置の電気回路図である。FIG. 2 is an electric circuit diagram of the refrigerating apparatus of the present invention.

【図3】本発明の冷凍装置による各運転モードにおける
圧縮機と各弁の状態を示す図である。
FIG. 3 is a diagram showing a state of a compressor and each valve in each operation mode according to the refrigeration apparatus of the present invention.

【図4】霜取2中の冷媒の流れを示す本発明の冷凍装置
の冷媒回路図である。
FIG. 4 is a refrigerant circuit diagram of the refrigerating apparatus of the present invention showing the flow of refrigerant during defrosting 2.

【図5】ポンプダウン運転中の冷媒の流れを示す本発明
の冷凍装置の冷媒回路図である。
FIG. 5 is a refrigerant circuit diagram of the refrigerating apparatus of the present invention showing the flow of refrigerant during pump-down operation.

【図6】従来の冷凍装置による各運転モードにおける圧
縮機と各弁の状態を示す図である。
FIG. 6 is a diagram showing a state of a compressor and each valve in each operation mode by a conventional refrigeration system.

【符号の説明】[Explanation of symbols]

1 圧縮機 4 凝縮器 7 受液器 11 膨張弁 12 蒸発器 17 減圧弁 21 配管 23 配管 26 配管 SV1 三方弁 SV2 電磁弁 SV3 電磁弁 SV4 電磁弁 SV5 電磁弁 1 Compressor 4 Condenser 7 Receiver 11 Expansion valve 12 Evaporator 17 Pressure reducing valve 21 Piping 23 Piping 26 Piping SV1 Three-way valve SV2 Solenoid valve SV3 Solenoid valve SV4 Solenoid valve SV5 Solenoid valve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機から吐出された高温冷媒を凝縮
器、減圧装置及び蒸発器に順次流して冷却運転を実行す
ると共に、前記蒸発器の霜取を行う際には前記高温冷媒
を前記蒸発器に流入させて霜取運転を実行する冷凍装置
において、該冷凍装置内の冷媒の流路を切り換える流路
切換装置と、前記圧縮機と流路切換装置を制御する制御
装置と、前記圧縮機に吸い込まれる冷媒が流れる配管に
挿入された減圧弁とを具備して成り、前記制御装置は、
前記霜取運転が終了した場合に所定時間前記流路切換装
置により前記減圧弁への冷媒の流入を阻止し、且つ、前
記圧縮機を停止させた後、前記蒸発器内の冷媒を回収す
るポンプダウン運転を実行することを特徴とする冷凍装
置。
1. A high-temperature refrigerant discharged from a compressor is sequentially flown to a condenser, a decompression device, and an evaporator to perform a cooling operation, and the high-temperature refrigerant is evaporated to defrost the evaporator. In a refrigerating apparatus for performing a defrosting operation by flowing into a refrigerator, a flow path switching apparatus for switching a flow path of a refrigerant in the refrigerating apparatus, a control apparatus for controlling the compressor and the flow path switching apparatus, and the compressor And a pressure reducing valve inserted in a pipe through which the refrigerant sucked into
A pump that prevents the refrigerant from flowing into the pressure reducing valve by the flow path switching device for a predetermined time when the defrosting operation is completed, and stops the compressor, and then recovers the refrigerant in the evaporator. A refrigeration system characterized by executing a down operation.
JP05029904A 1993-01-26 1993-01-26 Refrigeration equipment Expired - Fee Related JP3133536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05029904A JP3133536B2 (en) 1993-01-26 1993-01-26 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05029904A JP3133536B2 (en) 1993-01-26 1993-01-26 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JPH06221729A true JPH06221729A (en) 1994-08-12
JP3133536B2 JP3133536B2 (en) 2001-02-13

Family

ID=12288973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05029904A Expired - Fee Related JP3133536B2 (en) 1993-01-26 1993-01-26 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP3133536B2 (en)

Also Published As

Publication number Publication date
JP3133536B2 (en) 2001-02-13

Similar Documents

Publication Publication Date Title
EP1598610B1 (en) Apparatus and method for controlling heating operation in heat pump system
US7168262B2 (en) Ice making machine
JPH07120120A (en) Drive controller for air conditioner
JP3158787B2 (en) Operation control device for refrigeration equipment
JPH06221729A (en) Freezer
JPH09318205A (en) Refrigerating device
JPH10220932A (en) Method of defrosting refrigerator
JPH06265242A (en) Engine driven heat pump
JPH08233379A (en) Refrigerator
JPH0519724Y2 (en)
JPS6346350B2 (en)
JPH07324849A (en) Refrigerator
JP3349251B2 (en) Refrigeration equipment
JP2765391B2 (en) Oil recovery operation control device for air conditioner
JP2002081778A (en) Refrigerating apparatus
JP2003139459A (en) Refrigerator
JP2007315637A (en) Refrigerating machine with standby
JPS62237260A (en) Defrostation control method of heat pump type air conditioner
JPH0333990B2 (en)
JPS6361584B2 (en)
JP3326835B2 (en) Refrigeration cycle
JPH04332360A (en) Controlling device for operation of refrigerating plant
JPH07286765A (en) Refrigerating device
JPH07218054A (en) Injection type refrigerant
JPH04353374A (en) Refrigerating cycle device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees