JPH0622113B2 - Nickel positive electrode for alkaline storage battery and its manufacturing method - Google Patents

Nickel positive electrode for alkaline storage battery and its manufacturing method

Info

Publication number
JPH0622113B2
JPH0622113B2 JP59107805A JP10780584A JPH0622113B2 JP H0622113 B2 JPH0622113 B2 JP H0622113B2 JP 59107805 A JP59107805 A JP 59107805A JP 10780584 A JP10780584 A JP 10780584A JP H0622113 B2 JPH0622113 B2 JP H0622113B2
Authority
JP
Japan
Prior art keywords
nickel
positive electrode
nickel hydroxide
powder
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59107805A
Other languages
Japanese (ja)
Other versions
JPS60253156A (en
Inventor
功 松本
正一 池山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59107805A priority Critical patent/JPH0622113B2/en
Publication of JPS60253156A publication Critical patent/JPS60253156A/en
Publication of JPH0622113B2 publication Critical patent/JPH0622113B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、アルカリ蓄電池用ニッケル正極及びその製造
法に関するもので、水酸化ニッケル粉末を主活物質とし
て使用し、これを直接支持体内部に充填するか、または
支持板に塗着する正極一般に適用できるものである。
TECHNICAL FIELD The present invention relates to a nickel positive electrode for an alkaline storage battery and a method for producing the same, in which nickel hydroxide powder is used as a main active material, and the nickel hydroxide powder is directly filled inside a support. Alternatively, it is generally applicable to the positive electrode coated on the support plate.

従来例の構成とその問題点 ニッケル正極は、大別して金属粉末の焼結体を支持体と
し、この中にニッケル塩を含浸する焼結式と、水酸化ニ
ッケル粉末を主とする活物質混合物を支持体内に充填す
るかまたは支持板に塗着する非焼結式に分類される。前
者は、一般に、比較的充放電特性に優れる反面、やや高
価格である。これに対し後者は、一般に比較的高容量密
度化と低廉化の可能性を有している反面、充放電等の電
極としての特性にやや劣る。またここでは、最近市販さ
れている発泡状金属を支持体とし、この中に水酸化ニッ
ケルを主体とする粉末を充填する発泡メタル式ニッケル
正極も後者に含める。
Structure of Conventional Example and Problems Thereof The nickel positive electrode is roughly classified into a sintered body of metal powder as a support, a sintering type in which a nickel salt is impregnated therein, and an active material mixture mainly composed of nickel hydroxide powder. It is classified as a non-sintered type that is filled in the support or applied to the support plate. The former generally has relatively excellent charge and discharge characteristics, but is somewhat expensive. On the other hand, the latter generally has the possibility of relatively high capacity density and low cost, but on the other hand, it is slightly inferior in characteristics as an electrode for charging and discharging. Further, here, a foamed metal type nickel positive electrode in which a foamed metal which is commercially available recently is used as a support, and a powder mainly containing nickel hydroxide is filled therein is also included in the latter.

非焼結式ニッケル正極は、前述したように、焼結式ニッ
ケル正極に対し、通常各種の電極特性に関してはやや劣
るが、その中でも発泡メタル式ニッケル正極は、比較的
焼結式ニッケル正極の特性に近い。また活物質充填密度
も非焼結式の長所どおりに高く、焼結式の約1.3〜
1.5倍有している。
As described above, the non-sintered nickel positive electrode is usually slightly inferior to the sintered nickel positive electrode in various electrode characteristics, but among them, the foam metal nickel positive electrode is relatively characteristic of the sintered nickel positive electrode. Close to. Moreover, the packing density of the active material is as high as the advantage of the non-sintering type, and is about 1.3-
I have 1.5 times.

しかし活物質利用率に関しては、発泡メタル式も他の非
焼結式と同様、焼結式の95〜100%に対し低い値を
示す。その値の概略について述べると、水酸化ニッケル
粉末単独では60〜70%、各種の添加物,導電材を加
えても現状は85〜95%である。またその数値にバラツキ
を有しており、非焼結式の特徴である高容量密度化に
は、活物質利用率の向上と安定化が必要である。
However, regarding the utilization rate of the active material, the foam metal type shows a low value as compared with 95% to 100% of the sintering type similarly to other non-sintering types. The value is roughly 60 to 70% with nickel hydroxide powder alone, and 85 to 95% at present even if various additives and conductive materials are added. Further, the numerical values have variations, and in order to increase the capacity and density, which is a characteristic of the non-sintering type, it is necessary to improve and stabilize the utilization rate of the active material.

水酸化ニッケル粉末を出発物質として用いるニッケル正
極の代表的なものとして発泡メタル式ニッケル正極につ
いてさらに詳しく説明すると、この電極の活物質利用率
の向上に関しては、従来より、水酸化ニッケル粉末を発
泡メタル内に充填する際に、コバルト粉末やニッケル粉
末を加える方法、電極を含水状態で放置し、それらの添
加剤・導電材の効果を助長する方法等が提案されてい
る。しかし、市販の水酸化ニッケル粉末の活物質利用率
の向上は、それらの方法を用いても85〜95%程度で
あり、焼結式に対してその値がまだ低く、バラツキもや
や大きい。
A foam metal nickel positive electrode will be described in more detail as a typical nickel positive electrode using nickel hydroxide powder as a starting material. To improve the utilization rate of the active material of this electrode, nickel hydroxide powder has been conventionally used. There has been proposed a method of adding cobalt powder or nickel powder when filling the inside, a method of leaving the electrode in a water-containing state to promote the effects of those additives and conductive materials, and the like. However, even if these methods are used, the improvement of the active material utilization rate of the commercially available nickel hydroxide powder is about 85 to 95%, and the value is still low compared with the sintering type, and the variation is somewhat large.

また、この電極の活物質利用率に関しては、充填密度と
も因果関係を有している。今まで述べてきたことは、焼
結式の最高値とほぼ同程度の活物質充填密度、すなわち
水酸化ニッケル1g当り289mAhとして約400〜5
00mAh/ccの場合であるが、500mAh/cc以上の活物
質充填密度では、その値の増加とともに活物質利用率は
低下し、従来の方法で利用率向上をはかっても、550
mAh/cc程度では、80〜90%に低下する傾向がみら
れる。非焼結式電極の長所である高容量密度化を発揮す
るには、高密度充填時の活物質利用率を向上させること
も極めて重要である。
The active material utilization rate of this electrode also has a causal relationship with the packing density. What has been described so far is approximately 400 to 5 when the active material packing density is approximately the same as the maximum value of the sintering formula, that is, 289 mAh per 1 g of nickel hydroxide.
Although it is the case of 00 mAh / cc, at an active material packing density of 500 mAh / cc or more, the active material utilization rate decreases as the value increases, and even if the utilization rate is improved by the conventional method, it becomes 550
At about mAh / cc, it tends to decrease to 80 to 90%. In order to realize the high capacity density, which is an advantage of the non-sintered electrode, it is also extremely important to improve the utilization rate of the active material during high density filling.

発明の目的 本発明は、活物質粉末である水酸化ニッケル粉末を改良
することによって、ニッケル正極の活物質利用率の向上
と安定化を図ることを目的とする。
OBJECT OF THE INVENTION It is an object of the present invention to improve the active material utilization rate of a nickel positive electrode and stabilize it by improving nickel hydroxide powder which is an active material powder.

発明の構成 本発明のニッケル正極は、水酸化ニッケルを主とする活
物質混合物を支持体内に充填するか支持体へ塗着したも
ので、活物質の主体をなす水酸化ニッケルがその粒子内
部にコバルト微粒子を含有することを特徴とする。
The nickel positive electrode of the present invention is one in which an active material mixture mainly composed of nickel hydroxide is filled in or coated on a support, and nickel hydroxide which is a main component of the active material is present inside the particles. It is characterized by containing fine cobalt particles.

また、上記の水酸化ニッケル粒子は、ニッケル塩溶液を
アルカリにより中和し、生成する水酸化ニッケル粒子を
成長させる熟成工程,水洗,乾燥工程,必要に応じ粉砕
する工程によって製造するに際し、前記の中和から熟成
工程までの段階で、コバルト微粒子を溶液中に分散させ
ることにより、コバルト微粒子を含有するものとして得
るものである。
In addition, the above nickel hydroxide particles are produced by an aging step of neutralizing a nickel salt solution with an alkali to grow the nickel hydroxide particles produced, a water washing step, a drying step, and a step of crushing as necessary, It is obtained as one containing cobalt fine particles by dispersing the cobalt fine particles in the solution at the stage from the neutralization to the aging step.

なお、ニッケル塩としては、硫酸ニッケルや硝酸ニッケ
ルが用いられ、これらの水溶液は酸性を呈するので、中
和前にコバルトを加えると表面が酸化される不都合があ
る。
As the nickel salt, nickel sulfate or nickel nitrate is used, and since the aqueous solution of these is acidic, there is a disadvantage that the surface is oxidized if cobalt is added before neutralization.

実施例の説明 第1図は本発明の方法により得た水酸化ニッケル粒子の
一部を断面にした概略構成を示す。この粒子1の粒径は
約60μmである。この粒子は、成長時に集合してでき
たものである。このため粒子1の内部には2で示す空間
部が網状に存在している。従来は、このような状態の粉
末であるが、本発明では水酸化ニッケルの集合体を形成
する過程で3で示すようにコバルト微粒子を加え、これ
を粒子1に包含させたものである。コバルト微粒子3は
粒子1の内部で、かつほとんどが空間に接した状態にあ
る。
Description of Examples FIG. 1 shows a schematic structure in which a part of nickel hydroxide particles obtained by the method of the present invention is shown in cross section. The particle size of this particle 1 is about 60 μm. The particles are aggregated during growth. Therefore, the space portion indicated by 2 exists in the inside of the particle 1 in a mesh shape. Conventionally, the powder is in such a state, but in the present invention, cobalt fine particles are added as shown by 3 in the process of forming an aggregate of nickel hydroxide, and this is included in the particle 1. The cobalt fine particles 3 are inside the particles 1 and most of them are in contact with the space.

実施例1 6水塩の結晶水を有する硫酸ニッケル13Kgを水に溶解
して全容積を40とする。これを約25℃に保ち、充分
撹拌しながら、アルカリとしてか性ソーダ粉末8Kgを加
える。ついで直ちに粒径0.1〜10μmのカーボニルコ
バルト粉末0.3Kgを加え、撹拌しながら約50℃で1
時間放置する。素粒子の集合体を形成して成長した沈澱
物を過し、乾燥したのち粉砕して所望の粒度に調整す
る。ついで充分に水洗,乾燥して水酸化ニッケル粉末約
5Kgを得る。
Example 1 13 kg of nickel sulfate having water of crystallization of hexahydrate is dissolved in water to make the total volume 40. This is maintained at about 25 ° C., and 8 kg of caustic soda powder is added as an alkali with sufficient stirring. Next, 0.3 kg of carbonyl cobalt powder having a particle size of 0.1 to 10 μm was immediately added, and the mixture was stirred at about 50 ° C. for 1 hour.
Leave for hours. The precipitate formed by forming aggregates of elementary particles is passed over, dried, and then pulverized to obtain a desired particle size. Then, it is thoroughly washed with water and dried to obtain about 5 kg of nickel hydroxide powder.

こうして得た粒径0.1〜150μmの水酸化ニッケル8
8重量部に、カーボニルニッケル粉末10重量部とカー
ボニルコバルト粉末2重量部を混合し、それに水を加え
てペースト状に練合する。この練合物を多孔度95%、
平均孔径200μm、厚さ1.3mmの発泡状ニッケル多
孔板内に充填し、乾燥後加圧して厚さ約0.7mm、水酸
化ニッケル粉末の充填密度500〜550mAh/ccの電
極を得る。
Nickel hydroxide 8 having a particle size of 0.1 to 150 μm thus obtained
10 parts by weight of carbonyl nickel powder and 2 parts by weight of carbonyl cobalt powder are mixed with 8 parts by weight, and water is added thereto and kneaded into a paste form. The kneaded product has a porosity of 95%,
It is filled in a foamed nickel porous plate having an average pore diameter of 200 μm and a thickness of 1.3 mm, dried and pressed to obtain an electrode having a thickness of about 0.7 mm and a packing density of nickel hydroxide powder of 500 to 550 mAh / cc.

実施例2 実施例1と同様に、硫酸ニッケル水溶液とか性ソーダ粉
末およびカーボニルコバルト粉末を用意し、これらを同
時に混合し、約50℃に保ったまま撹拌を続ける操作を
行ない、水酸化ニッケル粒子が1μm以上に成長した時
点でその粒子を取り出し、以下実施例1と同様にしてニ
ッケル正極を得る。
Example 2 In the same manner as in Example 1, an aqueous solution of nickel sulfate, caustic soda powder and carbonyl cobalt powder were prepared, these were mixed at the same time, and stirring was continued while maintaining the temperature at about 50 ° C. to obtain nickel hydroxide particles. When the particles grow to 1 μm or more, the particles are taken out, and a nickel positive electrode is obtained in the same manner as in Example 1.

実施例3 実施例1において、か性ソーダの代りに水酸化リチウム
5Kgとか性ソーダ4Kgの混合物を使用し、以下実施例1
と同様にしてニッケル正極を得る。ここで得られる水酸
化ニッケルは、コバルト粉末と水酸化リチウムを含んで
いる。
Example 3 In Example 1, a mixture of 5 kg of lithium hydroxide and 4 kg of caustic soda was used in place of caustic soda.
A nickel positive electrode is obtained in the same manner as in. The nickel hydroxide obtained here contains cobalt powder and lithium hydroxide.

実施例4 実施例1において、カーボニルコバルト粉末とともにカ
ーボニルニッケル粉末0.5Kgを加え、以下実施例1と
同様にしてニッケル正極を得る。
Example 4 In Example 1, 0.5 kg of carbonyl nickel powder was added together with the carbonyl cobalt powder, and a nickel positive electrode was obtained in the same manner as in Example 1 below.

ここで得られる水酸化ニッケルは、コバルト粉末ととも
にニッケル粉末を含んでいる。
The nickel hydroxide obtained here contains nickel powder as well as cobalt powder.

実施例1で得たニッケル正極と、正極より容量の大きい
汎用のカドミウム負荷を組み合せて密閉形ニッケル−カ
ドミウム蓄電池KR−Cを試作し、その放電容量を測定
して活物質利用率を調べた。
A sealed nickel-cadmium storage battery KR-C was prototyped by combining the nickel positive electrode obtained in Example 1 and a general-purpose cadmium load having a larger capacity than the positive electrode, and the discharge capacity thereof was measured to examine the active material utilization rate.

ニッケル正極の充填密度を約450,500,550mA
h/ccに調整し各20枚につき前述の電池を試作した
(各20セル)。充電は250mAで16時間行ない、放
電は500mAで終止電圧1.0Vまで行なった。試験は
いずれも20℃で行ない、安定した3サイクル目の放電
電気量を測定し、水酸化ニッケルを主体とする粉末1g
当りの電気量を289mAhとして計算して活物質利用率
とした。最大値と最小値各1セルを除いた残りの最大値
と最小値を第2図のaおよびa′で示す。同図に比較例
として、従来市販の水酸化ニッケル粉末を用いた場合の
同様な結果をb(最大値)、b′(最小値)で示す。
Packing density of nickel positive electrode is about 450,500,550mA
The cells were adjusted to h / cc and the above-mentioned batteries were manufactured as prototypes for each of 20 sheets (20 cells for each). Charging was performed at 250 mA for 16 hours, and discharging was performed at 500 mA to a final voltage of 1.0V. All tests were carried out at 20 ° C, and the amount of discharge electricity at the stable third cycle was measured. 1 g of a powder mainly composed of nickel hydroxide
The amount of electricity per unit was calculated as 289 mAh to obtain the active material utilization rate. The remaining maximum value and minimum value excluding one cell for the maximum value and the minimum value are shown by a and a'in FIG. As a comparative example, the same results are shown by b (maximum value) and b ′ (minimum value) in the case of using a commercially available nickel hydroxide powder as a comparative example.

ここには実施例1のニッケル正極を用いた例をあげた
が、実施例2〜4の電極の場合も若干活物質利用率が向
上するが、ほぼ実施例1と同様な結果であった。
Although the example using the nickel positive electrode of Example 1 is given here, the use of the electrodes of Examples 2 to 4 also improves the utilization factor of the active material to some extent, but the results are almost the same as in Example 1.

上記の結果からも明らかなように、本発明によるニッケ
ル正極は、活物質利用率が従来より高くバラツキも小さ
い。
As is clear from the above results, the nickel positive electrode according to the present invention has a higher utilization ratio of the active material than that of the conventional one, and a small variation.

この理由としては、焼結式のようにニッケル塩で添加し
た場合より、10〜100倍という大きな径の水酸化ニ
ッケル粉末を出発物質として使用する電極においては、
その活物質利用率の向上に現在最も効果がみられるコバ
ルトの添加効果に限界があると思われる。つまり水酸化
ニッケル粒子の内部にまで影響が及びにくいと考えられ
る。このため本発明のように、水酸化ニッケル粒子の内
部にあらかじめコバルトを加えておくことにより、その
添加効果が高くなり、活物質利用率が向上すると考えら
れる。
The reason for this is that in an electrode using a nickel hydroxide powder having a diameter of 10 to 100 times as large as a starting material, as compared with the case of adding with a nickel salt as in a sintering method,
It seems that there is a limit to the effect of adding cobalt, which is currently most effective in improving the utilization rate of the active material. In other words, it is considered that the inside of the nickel hydroxide particles is unlikely to be affected. Therefore, it is considered that by adding cobalt to the inside of the nickel hydroxide particles in advance as in the present invention, the effect of adding cobalt is enhanced and the utilization rate of the active material is improved.

また水酸化ニッケル粒子内のコバルト粒子は、粒径が小
さい程均一に分散し、活物質利用率に対する効果が現れ
る傾向がみられた。そこで0.1〜10μmの粒径を有
するカーボニルコバルトを使用することが好ましい。
Further, the smaller the particle size of the cobalt particles in the nickel hydroxide particles is, the more uniformly they are dispersed, and the effect on the utilization rate of the active material tends to appear. Therefore, it is preferable to use carbonyl cobalt having a particle size of 0.1 to 10 μm.

発明の効果 以上のように、本発明によれば、活物質の利用率が高
く、しかも一定品質のニッケル正極を得ることができ
る。
Effects of the Invention As described above, according to the present invention, it is possible to obtain a nickel positive electrode having a high utilization rate of the active material and having a constant quality.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例の水酸化ニッケルの構成を示す
模式図、第2図は水酸化ニッケル充填密度と活物質利用
率との関係を示す図である。 1……水酸化ニッケル粒子、3……コバルト粉末。
FIG. 1 is a schematic diagram showing the structure of nickel hydroxide according to an embodiment of the present invention, and FIG. 2 is a diagram showing the relationship between nickel hydroxide packing density and active material utilization rate. 1 ... Nickel hydroxide particles, 3 ... Cobalt powder.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】水酸化ニッケル粉末を主活物質とするニッ
ケル正極であって、その水酸化ニッケルは、その粒子内
部に少なくとも金属コバルト微粒子を含有していること
を特徴とするアルカリ蓄電池用ニッケル正極。
1. A nickel positive electrode containing nickel hydroxide powder as a main active material, wherein the nickel hydroxide contains at least metal cobalt fine particles inside the nickel positive electrode for an alkaline storage battery. .
【請求項2】前記水酸化ニッケル中の金属コバルト微粒
子の粒径が0.1〜10μmである特許請求の範囲第1
項記載のアルカリ蓄電池用ニッケル正極。
2. The particle size of the metal cobalt fine particles in the nickel hydroxide is 0.1 to 10 μm.
The nickel positive electrode for alkaline storage batteries according to the item.
【請求項3】前記水酸化ニッケルが、さらにニッケル微
粒子またはリチウムの水酸化物を含有する特許請求の範
囲第1項記載のアルカリ蓄電池用ニッケル正極。
3. The nickel positive electrode for an alkaline storage battery according to claim 1, wherein the nickel hydroxide further contains nickel fine particles or a hydroxide of lithium.
【請求項4】ニッケル塩溶液をアルカリにより中和し、
生成する水酸化ニッケルの粒子を成長させる熟成工程を
有し、前記中和から熟成工程までの段階で前記溶液中に
コバルト微粒子を分散させることにより、コバルト微粒
子を含有する水酸化ニッケルを得る工程を有するアルカ
リ蓄電池用ニッケル正極の製造法。
4. A nickel salt solution is neutralized with an alkali,
A step of obtaining a nickel hydroxide containing cobalt fine particles by dispersing the cobalt fine particles in the solution at a stage from the neutralization to the aging step, which has an aging step of growing nickel hydroxide particles to be generated. Of manufacturing a nickel positive electrode for an alkaline storage battery having the same.
JP59107805A 1984-05-28 1984-05-28 Nickel positive electrode for alkaline storage battery and its manufacturing method Expired - Fee Related JPH0622113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59107805A JPH0622113B2 (en) 1984-05-28 1984-05-28 Nickel positive electrode for alkaline storage battery and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59107805A JPH0622113B2 (en) 1984-05-28 1984-05-28 Nickel positive electrode for alkaline storage battery and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS60253156A JPS60253156A (en) 1985-12-13
JPH0622113B2 true JPH0622113B2 (en) 1994-03-23

Family

ID=14468477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59107805A Expired - Fee Related JPH0622113B2 (en) 1984-05-28 1984-05-28 Nickel positive electrode for alkaline storage battery and its manufacturing method

Country Status (1)

Country Link
JP (1) JPH0622113B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004214210A (en) * 1998-08-17 2004-07-29 Ovonic Battery Co Inc Composite positive electrode material and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004214210A (en) * 1998-08-17 2004-07-29 Ovonic Battery Co Inc Composite positive electrode material and its manufacturing method
JP2012023049A (en) * 1998-08-17 2012-02-02 Ovonic Battery Co Inc Composite positive electrode material and its manufacturing method

Also Published As

Publication number Publication date
JPS60253156A (en) 1985-12-13

Similar Documents

Publication Publication Date Title
US5366831A (en) Nickel electrode for alkaline battery
KR100454542B1 (en) Non-Sintered Nickel Electrode For Alkaline Battery
JPH0350384B2 (en)
JPH0221098B2 (en)
JP2615538B2 (en) Nickel positive electrode for alkaline storage batteries
JPH0622113B2 (en) Nickel positive electrode for alkaline storage battery and its manufacturing method
JPS64787B2 (en)
JPS6137733B2 (en)
JP2765028B2 (en) Sealed alkaline battery
JP3183073B2 (en) Active material for nickel electrode and method for producing the same
JP2792913B2 (en) Non-sintered cadmium negative electrode plate for alkaline storage batteries
JP2730137B2 (en) Alkaline secondary battery and charging method thereof
JP3540558B2 (en) Method for producing nickel hydroxide electrode for alkaline storage battery and nickel hydroxide electrode obtained by this method
JP4458749B2 (en) Alkaline storage battery
JPH1021902A (en) Manufacture of paste type nickel electrode for alkaline secondary battery
JPH09147904A (en) Paste type nickel electrode for alkaline storage battery
JPH0326903B2 (en)
JPH0622112B2 (en) Manufacturing method of nickel positive electrode for alkaline storage battery
JPS61124060A (en) Paste type positive pole plate for alkaline storage battery
JPS63164162A (en) Cadmium negative electrode for alkaline storage battery
JPH09259888A (en) Conductive agent for alkaline storage battery, manufacture thereof, and non-sintered type nickel electrode for alkaline storage battery using same
JPH05314981A (en) Alkaline storage battery and manufacture thereof
JPS63164163A (en) Nickel positive electrode for alkaline storage battery
JP2615538C (en)
JPH10172563A (en) Manufacture of paste type nickel electrode and manufacture of alkaline storage battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees