JPH06220637A - Production of rigid carbon film coated member - Google Patents

Production of rigid carbon film coated member

Info

Publication number
JPH06220637A
JPH06220637A JP1295393A JP1295393A JPH06220637A JP H06220637 A JPH06220637 A JP H06220637A JP 1295393 A JP1295393 A JP 1295393A JP 1295393 A JP1295393 A JP 1295393A JP H06220637 A JPH06220637 A JP H06220637A
Authority
JP
Japan
Prior art keywords
carbon film
intermediate layer
gas
hard carbon
vacuum container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1295393A
Other languages
Japanese (ja)
Inventor
Mizuaki Suzuki
瑞明 鈴木
Matsuo Kishi
松雄 岸
Yukitsugu Takahashi
幸嗣 高橋
Jun Tsuneyoshi
潤 恒吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP1295393A priority Critical patent/JPH06220637A/en
Publication of JPH06220637A publication Critical patent/JPH06220637A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To produce the rigid carbon coated member excellent in hardness and adhesion by introducing a specified gaseous material into a vacuum vessel to form a rigid carbon film on the surface of the intermediate layer formed on a base material. CONSTITUTION:The base material to be coated 4 is disposed in the vacuum vessel 1 provided with an evacuating device. Gaseous nitrogen is introduced from a gas introducing pipe 6 and gaseous silane is introduced from a gas introducing pipe 7 into the vacuum vessel 1, and an intermediate layer is formed on the surface of the base material 4 by an electron cyclotron resonance plasma CVD method using these gases. Then, the vacuum vessel is exhausted, and gaseous methane and gaseous hydrogen are introduced from the gas introducing pipe 6 into the vacuum vessel 1 without taking out the base material to the atmosphere, and the rigid carbon film is formed on the surface of the intermediate layer formed on the base material 4 by the electron cyclotron resonance plasma CVD method. In this way, the cutting tools long in lifetime and excellent in cutting property can be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、切削工具などの硬質炭
素膜被覆部材の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a hard carbon film coated member such as a cutting tool.

【0002】[0002]

【従来の技術】従来の技術は、切削工具等に硬質炭素膜
を被覆させる場合、基材と前記硬質炭素膜との間に中間
層を形成せず、前記基材表面に直接単層の硬質炭素膜を
形成することにより、硬質炭素膜被覆工具を製造してい
た。
2. Description of the Related Art In the prior art, when a cutting tool or the like is coated with a hard carbon film, a single layer of hard carbon is directly formed on the surface of the base material without forming an intermediate layer between the base material and the hard carbon film. A hard carbon film-coated tool was manufactured by forming a carbon film.

【0003】[0003]

【発明が解決しようとする課題】上記構成による従来の
切削工具では、基材と硬質炭素膜との密着が悪く、たと
えば、切削工具等においては、切削加工中に前記切削工
具の硬質炭素膜が剥離しやすく、実用に供することがで
きなかった。特に超硬材料と呼ばれるコバルト含有炭化
タングステンを素材とする切削工具に硬質炭素膜を形成
した場合、硬質炭素膜の硬度、密着性が悪化して、剥離
等の問題が多く発生していた。
In the conventional cutting tool having the above-mentioned structure, the adhesion between the base material and the hard carbon film is poor. For example, in the cutting tool, the hard carbon film of the cutting tool is not formed during cutting. It was easy to peel off and could not be put to practical use. In particular, when a hard carbon film is formed on a cutting tool made of a cobalt-containing tungsten carbide material called a super hard material, the hardness and adhesion of the hard carbon film are deteriorated and many problems such as peeling occur.

【0004】[0004]

【課題を解決するための手段】基材と硬質炭素膜との密
着性を向上させるためには、前記基材と硬質炭素膜との
間に中間層として窒化アルミニウム層、窒化ケイ素層、
炭化ケイ素層のいずれかを形成すれば良い。
[Means for Solving the Problems] In order to improve the adhesion between a base material and a hard carbon film, an aluminum nitride layer, a silicon nitride layer as an intermediate layer between the base material and the hard carbon film,
Any of the silicon carbide layers may be formed.

【0005】そして、これら中間層を形成するには、一
般的にはプラズマCVD法と呼ばれる方法を用いれば良
く、トリメチルアルミニウム、シラン、ジシランおよび
窒素または炭化水素などの反応性ガスを電子サイクロト
ロン共鳴プラズマ(ECRプラズマ)で分解、活性化す
ることにより、窒化アルミニウム層、窒化ケイ素層、炭
化ケイ素層のいずれかの中間層を形成することができ
る。
In order to form these intermediate layers, a method generally called plasma CVD method may be used, and trimethylaluminum, silane, disilane and reactive gas such as nitrogen or hydrocarbon are subjected to electron cyclotron resonance plasma. By decomposing and activating with (ECR plasma), any intermediate layer of the aluminum nitride layer, the silicon nitride layer, and the silicon carbide layer can be formed.

【0006】また、中間層の形成後、前記基材を真空容
器から大気中に取り出すことなく、連続して硬質炭素膜
を形成することにより中間層表面の酸化、汚染を防止
し、一層密着性を向上させることができる。 硬質炭素
膜を形成するには、電子サイクロトロン共鳴プラズマあ
るいは熱フィラメントで炭化水素および水素を分解活性
化するか、あるいは水素雰囲気中で電子サイクロトロン
共鳴プラズマにより水素を分解、活性化し、グラファイ
トをスパッタリングする。
Further, after the formation of the intermediate layer, the hard carbon film is continuously formed without taking out the substrate from the vacuum container into the atmosphere, thereby preventing the surface of the intermediate layer from being oxidized and contaminated to further improve the adhesion. Can be improved. To form a hard carbon film, hydrocarbons and hydrogen are decomposed and activated by electron cyclotron resonance plasma or a hot filament, or hydrogen is decomposed and activated by electron cyclotron resonance plasma in a hydrogen atmosphere, and graphite is sputtered.

【0007】[0007]

【作用】素材として切削工具などに用いられる炭化タン
グステン焼結体はバインダーとしてコバルトを含有して
おり、前記炭化タングステン焼結体表面に硬質炭素膜を
形成しようとする場合、コバルトの影響により炭素膜中
にグラファイト成分が析出し、硬度、密着性が悪化す
る。したがって、窒化アルミニウム、窒化ケイ素、炭化
ケイ素のいずれかを炭化タングステン焼結体と硬質炭素
膜との間に中間層として形成し、この中間層表面に硬質
炭素膜を形成すれば、素材表面のコバルトによる影響が
消え、硬度、密着性にすぐれた硬質炭素膜被覆部材を作
ることができる。また、中間層を形成することにより膜
の残留応力を緩和する効果がある。
[Function] A tungsten carbide sintered body used as a material for a cutting tool contains cobalt as a binder, and when a hard carbon film is to be formed on the surface of the tungsten carbide sintered body, the carbon film is affected by cobalt. A graphite component is deposited inside, which deteriorates hardness and adhesion. Therefore, if any of aluminum nitride, silicon nitride, or silicon carbide is formed as an intermediate layer between the tungsten carbide sintered body and the hard carbon film, and the hard carbon film is formed on the surface of the intermediate layer, the cobalt on the surface of the material is The effect due to disappears, and a hard carbon film coated member having excellent hardness and adhesion can be produced. In addition, the formation of the intermediate layer has the effect of relaxing the residual stress of the film.

【0008】[0008]

【実施例】以下、本発明の第1の実施例として窒化ケイ
素から成る中間層の形成について説明する。図1は、本
発明の実施に用いた薄膜形成装置の概略を示す断面図で
ある。
EXAMPLES The formation of an intermediate layer made of silicon nitride will be described below as the first example of the present invention. FIG. 1 is a sectional view showing an outline of a thin film forming apparatus used for carrying out the present invention.

【0009】真空容器1は円筒形状をしており、その一
端に導波管2が接続され、2.45GHzのマイクロ波
を入射することができる。この時、コイル3に通電する
ことにより中心付近で875Gaussの磁場が発生
し、マイクロ波による電子サイクロトロン共鳴(EC
R)放電が可能となる。
The vacuum container 1 has a cylindrical shape, and a waveguide 2 is connected to one end of the vacuum container 1 to allow a microwave of 2.45 GHz to enter. At this time, by energizing the coil 3, a magnetic field of 875 Gauss is generated near the center, and the electron cyclotron resonance (EC
R) Discharge becomes possible.

【0010】実際の作業について説明すれば、はじめ
に、コバルトを添加した炭化タングステン焼結体を素材
とする直径約4mmのエンドミルを基材4として真空容
器1内に設けられた治具5に設置し、真空容器内をター
ボ分子ポンプにより0.001Pa以下の圧力まで排気
した後、ガス導入管6より真空容器1内に窒素ガスを、
また、ガス導入管7からはシランガスを同時に導入す
る。次に、コイル3にそれぞれ通電し、マイクロ波を導
波管2より前記真空容器1に入射し、電子サイクロトロ
ン共鳴放電を開始する。この結果、マイクロ波のエネル
ギーによりプラズマが生成され、導入されたガスは分
解、活性化され、基材4の表面に窒化ケイ素層が形成さ
れる。
Explaining the actual work, first, an end mill having a diameter of about 4 mm and made of a tungsten carbide sintered body to which cobalt is added is installed as a base material 4 on a jig 5 provided in the vacuum container 1. After evacuating the inside of the vacuum container to a pressure of 0.001 Pa or less by a turbo molecular pump, nitrogen gas is introduced into the vacuum container 1 through the gas introduction pipe 6.
Further, silane gas is simultaneously introduced from the gas introduction pipe 7. Next, the coils 3 are energized, microwaves are made incident on the vacuum vessel 1 through the waveguide 2, and electron cyclotron resonance discharge is started. As a result, plasma is generated by microwave energy, the introduced gas is decomposed and activated, and a silicon nitride layer is formed on the surface of the base material 4.

【0011】この時の各条件は下記の通りである。 シランガス流量 20 SCCM 窒素ガス流量 30 SCCM マイクロ波電力 500 W 約30分後、シランガス、窒素ガスの導入を停止し、中
間層の形成が終了する。
The respective conditions at this time are as follows. Silane gas flow rate 20 SCCM Nitrogen gas flow rate 30 SCCM Microwave power 500 W After about 30 minutes, introduction of silane gas and nitrogen gas is stopped, and formation of the intermediate layer is completed.

【0012】続いて、前記基材4をそのまま真空容器内
に保持した状態で、前工程で形成した中間層の表面に硬
質炭素膜を形成するため、ガス導入管6より水素ガスと
メタンガスを導入し、コイル3に通電を開始する。次
に、マイクロ波を導波管2から入射すると真空容器内で
電子サイクロトロン共鳴放電が開始する。この時、マイ
クロ波のエネルギーによってプラズマが生成され、真空
容器内のガスは分解、活性化され、前工程で既に形成さ
れた中間層の表面に硬質炭素膜が形成される。
Subsequently, while the substrate 4 is held in the vacuum container as it is, hydrogen gas and methane gas are introduced from the gas introduction pipe 6 to form a hard carbon film on the surface of the intermediate layer formed in the previous step. Then, energization of the coil 3 is started. Next, when microwaves are incident from the waveguide 2, electron cyclotron resonance discharge is started in the vacuum container. At this time, plasma is generated by the microwave energy, the gas in the vacuum container is decomposed and activated, and a hard carbon film is formed on the surface of the intermediate layer already formed in the previous step.

【0013】この時の各条件は下記の通りである。 水素ガス流量 200 SCCM メタンガス流量 2 SCCM マイクロ波電力 500 W 約20時間後、ガスの導入、コイル3の通電、マイクロ
波の入射を停止し、硬質炭素膜の形成が終了する。その
後、十分な冷却を行い、基材4を真空容器1から取り出
す。
The respective conditions at this time are as follows. Hydrogen gas flow rate 200 SCCM Methane gas flow rate 2 SCCM Microwave power 500 W After about 20 hours, gas introduction, coil 3 energization and microwave incidence are stopped, and formation of the hard carbon film is completed. After that, the substrate 4 is sufficiently cooled and the substrate 4 is taken out of the vacuum container 1.

【0014】以上の方法により硬質炭素膜を被覆したエ
ンドミルをNCフライス盤に取り付け、アルミニウム合
金を切削する切削試験を行った結果、図3に示すような
逃げ面摩耗と切削距離との関係、及び、図4に示すよう
な切削距離に対する切削面の表面粗さの結果が得られ
た。このいずれの図も硬質炭素膜を被覆していないエン
ドミルと比較した状態を示したものである。
An end mill coated with a hard carbon film was attached to an NC milling machine by the above method, and a cutting test was conducted to cut an aluminum alloy. As a result, the relationship between flank wear and cutting distance as shown in FIG. The result of the surface roughness of the cutting surface with respect to the cutting distance as shown in FIG. 4 was obtained. Each of these figures shows a state of comparison with an end mill not coated with a hard carbon film.

【0015】上記本発明の方法で製造したエンドミルは
硬質炭素膜の剥離がなく、図3、図4に示すように、被
覆処理していないエンドミルにくらべ磨耗が小さく長寿
命となっている。次に、本発明第2の実施例について説
明する。
The end mill manufactured by the method of the present invention has no peeling of the hard carbon film and, as shown in FIGS. 3 and 4, has less wear and a longer life than the uncoated end mill. Next, a second embodiment of the present invention will be described.

【0016】第2の実施例は、炭化ケイ素から成る中間
層を形成したもので、薄膜形成装置は、第1の実施例に
使用したものと同様であり、図1に装置の概略断面図を
示す。はじめに、コバルトを添加した炭化タングステン
焼結体を素材とする直径約4mmのエンドミルを基材4
として真空容器1内に設けられた治具5に設置し、前記
真空容器1をターボ分子ポンプにより0.001Pa以
下の圧力まで排気した後、ガス導入管6から真空容器1
内へアセチレンガスを導入し、また、ガス導入管7から
はシランガスを導入する。次に、各コイル3に通電する
と共に、導波管2からマイクロ波を前記真空容器1に入
射し、電子サイクロトロン共鳴放電を開始する。この結
果、マイクロ波のエネルギーによりプラズマが生成さ
れ、真空容器内に導入されたガスは分解、活性化され、
前記基材4の表面に炭化ケイ素層が形成される。
The second embodiment is one in which an intermediate layer made of silicon carbide is formed, and the thin film forming apparatus is the same as that used in the first embodiment. FIG. 1 is a schematic sectional view of the apparatus. Show. First, an end mill having a diameter of about 4 mm and made of a tungsten carbide sintered body to which cobalt is added is used as a base material 4.
Is installed in a jig 5 provided in the vacuum container 1, the vacuum container 1 is evacuated to a pressure of 0.001 Pa or less by a turbo molecular pump, and then the vacuum container 1 is introduced from the gas introduction pipe 6.
Acetylene gas is introduced into the interior, and silane gas is introduced from the gas introduction pipe 7. Next, the coils 3 are energized, and microwaves are made incident on the vacuum vessel 1 from the waveguide 2 to start electron cyclotron resonance discharge. As a result, plasma is generated by the energy of microwaves, the gas introduced into the vacuum container is decomposed and activated,
A silicon carbide layer is formed on the surface of the base material 4.

【0017】この時の諸条件は下記の通りである。 シランガス流量 20 SCCM アセチレンガス流量 20 SCCM マイクロ波電力 500 W 約30分後に前記各ガス導入管からのシランガス、アセ
チレンガスの導入を停止し、中間層の形成が終了する。
The various conditions at this time are as follows. Silane gas flow rate 20 SCCM Acetylene gas flow rate 20 SCCM Microwave power 500 W After about 30 minutes, the introduction of silane gas and acetylene gas from each gas introduction pipe is stopped, and the formation of the intermediate layer is completed.

【0018】続いて、前記基材4をそのまま真空容器内
に保持した状態で、前工程で形成した中間層の表面に硬
質炭素膜を形成するため、ガス導入管6より水素ガスと
メタンガスを真空容器1に導入し、実施例1と同様の方
法で硬質炭素膜を形成し、冷却の後、前記真空容器1か
ら基材4を取り出す。
Subsequently, with the substrate 4 held in the vacuum container as it is, a hydrogen gas and a methane gas are evacuated from the gas introduction pipe 6 to form a hard carbon film on the surface of the intermediate layer formed in the previous step. It is introduced into the container 1, a hard carbon film is formed by the same method as in Example 1, and after cooling, the substrate 4 is taken out from the vacuum container 1.

【0019】以上の方法で得られた硬質炭素膜被覆エン
ドミルで切削試験を行ったところ、実施例1における硬
質炭素膜被覆エンドミルと同様の特性が得られた。次
に、本発明における第3の実施例について説明する。本
実施例では、窒化アルミニウムから成る中間層を形成し
た実施例について説明する。
When a cutting test was conducted using the hard carbon film-coated end mill obtained by the above method, the same characteristics as those of the hard carbon film-coated end mill in Example 1 were obtained. Next, a third embodiment of the present invention will be described. In this example, an example in which an intermediate layer made of aluminum nitride is formed will be described.

【0020】本発明で使用する薄膜形成装置は上記実施
例で使用したものと同様である。はじめに、炭化タング
ステン焼結体を素材とする直径約4mmのエンドミルを
基材4として容器1内に設けられた治具5に設置し、真
空容器1をターボ分子ポンプにより0.001Pa以下
の圧力まで排気した後、ガス導入管6より前記真空容器
1内に臭化アルミニウムガス、アルゴンガス、窒素ガス
を導入する。次に、コイル3に通電すると共に、導波管
2よりマイクロ波を真空容器1に入射し、電子サイクロ
トロン共鳴放電を開始する。この時、マイクロ波のエネ
ルギーによりプラズマが生成され、ガスは分解、活性化
され、前記基材4表面に窒化アルミニウム層が形成され
る。
The thin film forming apparatus used in the present invention is the same as that used in the above embodiment. First, an end mill having a diameter of about 4 mm and made of a tungsten carbide sintered body is installed as a base material 4 on a jig 5 provided in the container 1, and the vacuum container 1 is operated by a turbo molecular pump up to a pressure of 0.001 Pa or less. After evacuation, aluminum bromide gas, argon gas and nitrogen gas are introduced into the vacuum container 1 through the gas introduction pipe 6. Next, the coil 3 is energized and microwaves are made incident on the vacuum container 1 from the waveguide 2 to start electron cyclotron resonance discharge. At this time, plasma is generated by the energy of microwaves, the gas is decomposed and activated, and an aluminum nitride layer is formed on the surface of the base material 4.

【0021】この時の各条件は下記の通りである。 窒素ガス流量 30 SCCM アルゴンガス流量 30 SCCM 臭化アルミニウムガス流量 20 SCCM 約30分後、臭化アルミニウムガス、アルゴンガス、窒
素ガスの導入を停止し、中間層の形成を終了する。
The respective conditions at this time are as follows. Nitrogen gas flow rate 30 SCCM Argon gas flow rate 30 SCCM Aluminum bromide gas flow rate 20 SCCM After about 30 minutes, introduction of aluminum bromide gas, argon gas, and nitrogen gas is stopped, and formation of the intermediate layer is completed.

【0022】続けて、水素ガス、メタンガスを真空容器
1に導入し、実施例1と同様の方法で前記基材4の表面
に硬質炭素膜を形成し、冷却の後、真空容器1から取り
出す。以上の方法で得られた硬質炭素膜被覆エンドミル
の切削試験を行ったところ、実施例1における硬質炭素
膜被覆エンドミルと同様の特性が得られた。
Subsequently, hydrogen gas and methane gas are introduced into the vacuum container 1, a hard carbon film is formed on the surface of the substrate 4 in the same manner as in Example 1, and after cooling, taken out from the vacuum container 1. When a cutting test was performed on the hard carbon film-coated end mill obtained by the above method, the same characteristics as those of the hard carbon film-coated end mill in Example 1 were obtained.

【0023】また、臭化アルミニウムガスにかえてトリ
メチルアルミニウムガスを用いた場合でも同様の硬質炭
素膜被覆エンドミルを得ることができた。次に、本発明
第4の実施例について説明する。図2は本発明の実施に
用いた薄膜形成装置の概略を示す断面図である。
Even when trimethylaluminum gas was used instead of aluminum bromide gas, a similar hard carbon film-coated end mill could be obtained. Next, a fourth embodiment of the present invention will be described. FIG. 2 is a sectional view showing the outline of a thin film forming apparatus used for implementing the present invention.

【0024】真空容器1内には該真空容器1と同軸で円
環形状のターゲット8が設置されており、該ターゲット
8には直流電源9が接続されている。図2の装置は、タ
ーゲット8が付加されたほかは図1に示した装置と同様
の構成となっている。まず、実施例1、2、3に記した
いずれかの方法により窒化アルミニウム、窒化ケイ素、
炭化ケイ素のうちいずれかの材質から成る中間層を形成
する。中間層の形成後、真空容器1内を再び真空排気
し、基材4に形成された中間層の表面に硬質炭素膜の形
成を行う為、ガス導入管6より前記真空容器1に水素ガ
スを導入し、次に、コイル3に通電すると共に導波管2
よりマイクロ波を入射し、電子サイクロトロン共鳴プラ
ズマを生成する。この状態でターゲット8に電圧を印加
すると、該ターゲット8がプラズマ中のイオンによりス
パッタリングされ、基材4表面に硬質炭素膜が形成され
る。
An annular target 8 coaxial with the vacuum container 1 is installed in the vacuum container 1, and a DC power supply 9 is connected to the target 8. The apparatus shown in FIG. 2 has the same configuration as the apparatus shown in FIG. 1 except that a target 8 is added. First, by any one of the methods described in Examples 1, 2 and 3, aluminum nitride, silicon nitride,
An intermediate layer made of any one of silicon carbide is formed. After the formation of the intermediate layer, the vacuum container 1 is evacuated again to form a hard carbon film on the surface of the intermediate layer formed on the base material 4. Therefore, hydrogen gas is supplied to the vacuum container 1 through the gas introduction pipe 6. Then, the coil 3 is energized and the waveguide 2 is introduced.
A microwave is further incident to generate electron cyclotron resonance plasma. When a voltage is applied to the target 8 in this state, the target 8 is sputtered by the ions in the plasma and a hard carbon film is formed on the surface of the base material 4.

【0025】この時の各条件は下記の通りである。 水素ガス流量 200 SCCM マイクロ波電力 500 W ターゲット印加電圧 −300 V 約20時間後、ターゲット8への電圧印加とともにガス
の導入、コイル3への通電、マイクロ波の入射を停止
し、硬質炭素膜の形成を終了する。その後、十分な冷却
の後、前記基材4を真空容器1から取り出す。
The conditions at this time are as follows. Hydrogen gas flow rate 200 SCCM Microwave power 500 W Target applied voltage -300 V Approximately 20 hours later, the voltage was applied to the target 8 and the gas was introduced, the coil 3 was not energized, and the microwave was stopped. Finish the formation. Then, after sufficient cooling, the substrate 4 is taken out from the vacuum container 1.

【0026】以上の方法で得られた硬質炭素膜被覆エン
ドミルの切削試験を行ったところ、実施例1における硬
質炭素膜被覆エンドミルと同様の特性が得られた。
When the cutting test of the hard carbon film-coated end mill obtained by the above method was performed, the same characteristics as those of the hard carbon film-coated end mill in Example 1 were obtained.

【0027】[0027]

【発明の効果】本発明によれば、硬度、密着性にすぐれ
た硬質炭素膜被覆部材を製造することができ、この結
果、寿命が長く、切削性に優れた切削工具を製造するこ
とができる等の効果を有する。
According to the present invention, a hard carbon film coated member having excellent hardness and adhesion can be manufactured, and as a result, a cutting tool having a long life and excellent machinability can be manufactured. And so on.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明第1、2、3の実施例に用いた薄膜形成
装置の概略を示す断面図である。
FIG. 1 is a cross-sectional view schematically showing a thin film forming apparatus used in first, second and third embodiments of the present invention.

【図2】本発明第4の実施例に用いた薄膜形成装置の概
略を示す断面図である。
FIG. 2 is a sectional view schematically showing a thin film forming apparatus used in a fourth embodiment of the present invention.

【図3】本発明によって得られたエンドミルを使用した
時の逃げ面摩耗と切削距離との関係を表した説明図であ
る。
FIG. 3 is an explanatory diagram showing the relationship between flank wear and cutting distance when the end mill obtained according to the present invention is used.

【図4】本発明によって得られたエンドミルを使用した
時の切削距離に対する切削面の表面粗さの関係を表した
説明図である。
FIG. 4 is an explanatory diagram showing the relationship between the cutting distance and the surface roughness of the cutting surface when the end mill obtained according to the present invention is used.

【符号の説明】[Explanation of symbols]

1 真空容器 2 導波管 3 コイル 4 基材 5 治具 6 ガス導入管 7 ガス導入管 8 ターゲット 9 直流電源 1 Vacuum Container 2 Waveguide 3 Coil 4 Base Material 5 Jig 6 Gas Introducing Tube 7 Gas Introducing Tube 8 Target 9 DC Power Supply

───────────────────────────────────────────────────── フロントページの続き (72)発明者 恒吉 潤 東京都江東区亀戸6丁目31番1号 セイコ ー電子工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Jun Tsuneyoshi 6-31-1, Kameido, Koto-ku, Tokyo Seiko Denshi Kogyo Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 基材表面に窒化ケイ素から成る中間層と
該中間層表面に硬質炭素膜を形成した硬質炭素膜被覆部
材の製造方法において、真空排気装置を備えた真空容器
内に被覆基材を設置すると共に、材料ガスとしてシラン
ガスと窒素ガスを用いて電子サイクロトロン共鳴プラズ
マCVD法により基材表面に中間層を形成した後、前記
真空容器を排気し、前記基材を真空容器から大気中に取
り出すことなく、前記真空容器内に材料ガスとしてメタ
ンガスと水素ガスを導入し、電子サイクロトロン共鳴プ
ラズマCVD法により前記基材に形成された中間層表面
に硬質炭素膜を形成することを特徴とする硬質炭素膜被
覆部材の製造方法。
1. A method for producing a hard carbon film-coated member having an intermediate layer made of silicon nitride on the surface of the substrate and a hard carbon film formed on the surface of the intermediate layer, wherein the substrate is coated in a vacuum container equipped with a vacuum exhaust device. With the installation, after forming an intermediate layer on the substrate surface by electron cyclotron resonance plasma CVD method using silane gas and nitrogen gas as the material gas, the vacuum container is evacuated, the substrate from the vacuum container to the atmosphere. Methane gas and hydrogen gas are introduced as material gases into the vacuum container without taking out, and a hard carbon film is formed on the surface of the intermediate layer formed on the base material by the electron cyclotron resonance plasma CVD method. A method for manufacturing a carbon film coated member.
【請求項2】 基材表面に炭化ケイ素から成る中間層と
該中間層表面に硬質炭素膜を形成した硬質炭素膜被覆部
材の製造方法において、真空排気装置を備えた真空容器
内に被覆基材を設置すると共に、材料ガスとしてシラン
ガスとアセチレンガスを用いて電子サイクロトロン共鳴
プラズマCVD法により基材表面に中間層を形成した
後、前記真空容器を排気し、前記基材を真空容器から大
気中に取り出すことなく、前記真空容器内に材料ガスと
してメタンガスと水素ガスを導入し、電子サイクロトロ
ンCVD法により前記基材に形成された中間層表面に硬
質炭素膜を形成することを特徴とする硬質炭素膜被覆部
材の製造方法。
2. A method for producing a hard carbon film-coated member having an intermediate layer made of silicon carbide on the surface of the substrate and a hard carbon film formed on the surface of the intermediate layer, wherein the substrate is coated in a vacuum container equipped with a vacuum exhaust device. With the installation, after forming an intermediate layer on the substrate surface by electron cyclotron resonance plasma CVD method using silane gas and acetylene gas as the material gas, the vacuum container is evacuated, the substrate from the vacuum container to the atmosphere. Methane gas and hydrogen gas are introduced into the vacuum container as material gas without taking out, and a hard carbon film is formed on the surface of the intermediate layer formed on the base material by the electron cyclotron CVD method. A method for manufacturing a covering member.
【請求項3】 基材表面に窒化アルミニウムから成る中
間層と硬質炭素膜を形成した硬質炭素膜被覆部材の製造
方法において、真空排気装置を備えた真空容器内に被覆
基材を設置し、材料ガスとして臭化アルミニウムガスま
たはトリメチルアルミニウムガスと窒素ガスを用いて電
子サイクロトロン共鳴プラズマCVD法により基材表面
に中間層を形成した後、前記真空容器を排気し、その
後、前記基材を真空容器から大気中に取り出すことな
く、前記真空容器内に材料ガスとしてメタンガスと水素
ガスを導入し、電子サイクロトロンCVD法により前記
基材に形成された中間層表面に硬質炭素膜を形成するこ
とを特徴とする硬質炭素膜被覆部材の製造方法。
3. A method for producing a hard carbon film-coated member having an intermediate layer made of aluminum nitride and a hard carbon film formed on a surface of a base material, wherein the coated base material is placed in a vacuum container equipped with a vacuum exhaust device. After forming an intermediate layer on the surface of the substrate by an electron cyclotron resonance plasma CVD method using aluminum bromide gas or trimethylaluminum gas and nitrogen gas as a gas, the vacuum container is evacuated, and then the substrate is removed from the vacuum container. It is characterized in that methane gas and hydrogen gas are introduced into the vacuum container as material gases without being taken out into the atmosphere, and a hard carbon film is formed on the surface of the intermediate layer formed on the base material by the electron cyclotron CVD method. A method for manufacturing a hard carbon film coated member.
【請求項4】 窒化ケイ素、炭化ケイ素あるいは窒化ア
ルミニウム等の中間層を有する基材の中間層表面に、炭
化水素および水素の混合ガスを電子サイクロトロン共鳴
プラズマによって分解、活性化した硬質炭素膜を形成す
ることを特徴とする請求項1、2または3記載の硬質炭
素膜被覆部材の製造方法。
4. A hard carbon film formed by decomposing and activating a mixed gas of hydrocarbon and hydrogen by electron cyclotron resonance plasma on the surface of an intermediate layer of a substrate having an intermediate layer of silicon nitride, silicon carbide or aluminum nitride. The method for producing a hard carbon film-coated member according to claim 1, 2, or 3, characterized in that.
【請求項5】 水素雰囲気中でグラファイトから成るタ
ーゲットを電子サイクロトロン共鳴プラズマでスパッタ
リングすることにより、窒化ケイ素、炭化ケイ素あるい
は窒化アルミニウム等の中間層を有する基材の前記中間
層表面に硬質炭素膜を形成することを特徴とする請求項
1、2または3記載の硬質炭素膜被覆部材の製造方法。
5. A hard carbon film is formed on the surface of the intermediate layer of a substrate having an intermediate layer of silicon nitride, silicon carbide, aluminum nitride or the like by sputtering a target made of graphite with electron cyclotron resonance plasma in a hydrogen atmosphere. It forms, The manufacturing method of the hard carbon film coating member of Claim 1, 2 or 3 characterized by the above-mentioned.
JP1295393A 1993-01-28 1993-01-28 Production of rigid carbon film coated member Pending JPH06220637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1295393A JPH06220637A (en) 1993-01-28 1993-01-28 Production of rigid carbon film coated member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1295393A JPH06220637A (en) 1993-01-28 1993-01-28 Production of rigid carbon film coated member

Publications (1)

Publication Number Publication Date
JPH06220637A true JPH06220637A (en) 1994-08-09

Family

ID=11819644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1295393A Pending JPH06220637A (en) 1993-01-28 1993-01-28 Production of rigid carbon film coated member

Country Status (1)

Country Link
JP (1) JPH06220637A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10130865A (en) * 1996-09-06 1998-05-19 Sanyo Electric Co Ltd Substrate with hard carbon film and its forming method
US6572936B1 (en) 1996-06-09 2003-06-03 Sanyo Electric Co., Ltd. Hard carbon film-coated substrate and method for fabricating the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6572936B1 (en) 1996-06-09 2003-06-03 Sanyo Electric Co., Ltd. Hard carbon film-coated substrate and method for fabricating the same
JPH10130865A (en) * 1996-09-06 1998-05-19 Sanyo Electric Co Ltd Substrate with hard carbon film and its forming method

Similar Documents

Publication Publication Date Title
EP0597445B1 (en) Method of making synthetic diamond film
CA2290514C (en) A method of coating edges with diamond-like carbon
EP1380667B1 (en) Carbon film-coated article and method of producing the same
JP2002541604A (en) Method and apparatus for depositing a diamond-like carbon coating from a Hall current ion source
JPH11100294A (en) Hard carbon thin film and its production
JP4122387B2 (en) Composite hard coating, method for producing the same, and film forming apparatus
JP2004292934A (en) Ion nitriding apparatus and deposition system using the same
JP2001335937A (en) Method for reducing metal contamination, and method for regenerating plasma system
JPH06220637A (en) Production of rigid carbon film coated member
JP3034241B1 (en) Method of forming high hardness and high adhesion DLC film
JPH06240451A (en) Production of hard carbon film coated member
JP2808922B2 (en) Method for forming diamond-like carbon film
JP2777543B2 (en) Hard carbon coated substrate and method of forming the same
JPH06248442A (en) Production of member coated with hard carbon film
JPH05124825A (en) Mold having diamondlike thin film protection film
JP4133150B2 (en) Method for producing diamond film-coated member
JPH0623437B2 (en) Method for producing carbon and boron nitride
US6089185A (en) Thin film forming apparatus
JP2003113470A (en) Diamond-structure carbon film layered body and manufacturing method therefor
JP3236602B2 (en) Method of forming carbon or carbon-based coating
JP3236569B2 (en) Coating method
JP3236600B2 (en) Method of forming carbon or carbon-based coating
JPH10183350A (en) Electrical member
JP3236598B2 (en) Method of forming carbon or carbon-based coating
JP2001181849A (en) Method of ecr protective film deposition, and ecr film deposition system