JPH06216436A - Gas laser device - Google Patents

Gas laser device

Info

Publication number
JPH06216436A
JPH06216436A JP487993A JP487993A JPH06216436A JP H06216436 A JPH06216436 A JP H06216436A JP 487993 A JP487993 A JP 487993A JP 487993 A JP487993 A JP 487993A JP H06216436 A JPH06216436 A JP H06216436A
Authority
JP
Japan
Prior art keywords
optical resonator
gas laser
vibration
main electrode
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP487993A
Other languages
Japanese (ja)
Inventor
Noboru Okamoto
昇 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP487993A priority Critical patent/JPH06216436A/en
Publication of JPH06216436A publication Critical patent/JPH06216436A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a gas laser device in which of the oscillation waves generated by the main discharge of the main electrode, the oscillation waves in the direction of the optical axis of an optical resonator can efficiently be attenuated. CONSTITUTION:The device comprises an optical resonator in which an output mirror 14 and a high-reflection mirror 15 are so placed as to oppose to each other, a main electrode consisting of a cathode 2 and an anode 3 which are so placed in the optical resonator as to be spaced apart from each other in a direction perpendicular to the optical axis of the optical resonator, and a plurality of oscillation absorbing plates 17 disposed at gradually changing intervals along the optical axis at least in one of the spaces between one end of the main electrode of the optical resonator and the output mirror and between the other end of the main electrode and the high-reflection mirror.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明はガスレ−ザ媒質を励起
してレ−ザ光を出力させるガスレ−ザ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas laser device which excites a gas laser medium and outputs laser light.

【0002】[0002]

【従来の技術】ガスレ−ザ装置には高気圧横放電励起形
のTEACO2 レ−ザやエキシマレ−ザなどがある。こ
のようなガスレ−ザ装置は、ガスレ−ザ媒質としてCO
2 、N2 、Heなどの混合ガスあるいはKrやXeなど
の希ガスとF2 やHClなどのハロゲンの混合ガスにバ
ッファガスとしてHeやNeが用いられる。
2. Description of the Related Art Gas laser devices include TEACO 2 lasers and excimer lasers of the high pressure lateral discharge excitation type. Such a gas laser device uses CO as a gas laser medium.
He or Ne is used as a buffer gas for a mixed gas of 2 , 2 , N 2 or He or a mixed gas of a rare gas such as Kr or Xe and a halogen such as F 2 or HCl.

【0003】上記ガスレ−ザ媒質はレ−ザ管内を循環さ
せられるとともに、その循環路に流れ方向と直交して配
置された陰極と陽極とからなる主電極間の主放電空間部
を流通させる。そして、上記主電極に高電圧を印加する
ことで主放電を発生させ、その主放電によって主放電空
間部におけるガスレ−ザ媒質を励起してレ−ザ光を発生
させるようになっている。
The gas laser medium is circulated in the laser tube, and is circulated in the main discharge space between the main electrodes composed of the cathode and the anode arranged in the circulation path at right angles to the flow direction. A high voltage is applied to the main electrode to generate a main discharge, and the main discharge excites a gas laser medium in the main discharge space to generate laser light.

【0004】一対の主電極間で発生したレ−ザ光は、主
電極の長手方向両端側に配置された出力ミラ−と高反射
ミラ−とからなる光共振器で増幅され、上記出力ミラ−
から発振出力される。
The laser light generated between the pair of main electrodes is amplified by an optical resonator composed of an output mirror and a high-reflection mirror arranged on both ends of the main electrode in the longitudinal direction, and the output mirror is output.
Is oscillated and output from.

【0005】上記主電極間に主放電を発生させると、そ
の放電によって一対の主電極間に音響波や衝撃波などの
振動波が発生することが避けられない。この振動波は種
々の方向に発生し、とくに上記出力ミラ−と高反射ミラ
−とがなす光共振器の光軸方向に発生する振動波は、こ
の光共振器のミラ−で往復反射し、消滅しずらいので、
主放電空間部におけるガスレ−ザ媒質の密度に揺らぎを
生じさせる。
When a main discharge is generated between the main electrodes, it is inevitable that a vibration wave such as an acoustic wave or a shock wave is generated between the pair of main electrodes due to the discharge. This vibration wave is generated in various directions, and in particular, the vibration wave generated in the optical axis direction of the optical resonator formed by the output mirror and the highly reflective mirror is reflected back and forth by the mirror of the optical resonator, It ’s hard to disappear, so
Fluctuations occur in the density of the gas laser medium in the main discharge space.

【0006】ガスレ−ザ媒質の密度に揺らぎが生じる
と、その密度変化に応じて主放電も一様でなくなって粗
密が生じるから、その粗密により主放電を高繰返しで行
えなくなり、高出力のレ−ザ光を発振させることができ
なくなるということが生じる。
When the density of the gas laser medium fluctuates, the main discharge becomes nonuniform in accordance with the change in the density, and the density becomes coarse. Therefore, the main discharge cannot be performed at high repetition rate due to the density, and a high output laser is obtained. -The light may not be able to oscillate.

【0007】[0007]

【発明が解決しようとする課題】このように、従来のガ
スレ−ザ装置は、光共振器の光軸方向に発生する振動波
によって主放電空間部におけるガスレ−ザ媒質に揺らぎ
が生じるので、その揺らぎによってレ−ザ出力の低下を
招くということがあった。
As described above, in the conventional gas laser device, fluctuations occur in the gas laser medium in the main discharge space due to the vibration waves generated in the optical axis direction of the optical resonator. Fluctuations have sometimes caused a reduction in laser output.

【0008】この発明は上記事情に基づきなされたもの
で、その目的とするところは、光共振器の光軸方向に発
生する振動波を早期に減衰させることができるようにし
たガスレ−ザ装置を提供することにある。
The present invention has been made in view of the above circumstances. An object of the present invention is to provide a gas laser device capable of promptly attenuating a vibration wave generated in the optical axis direction of an optical resonator. To provide.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
にこの発明は、出力ミラ−と高反射ミラ−とが対向して
配置された光共振器と、この光共振器内にその光軸方向
と交差する方向に離間して配置された陰極と陽極とから
なる主電極と、上記光共振器内の上記主電極の一端と出
力ミラ−との間あるいは主電極の他端と高反射ミラ−と
の間の少なくとも一方の空間部に上記光軸方向に沿って
間隔を漸次変化させて配置された複数の振動吸収板とを
具備したことを特徴とする。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides an optical resonator in which an output mirror and a high reflection mirror are arranged to face each other, and an optical axis in the optical resonator. Between a main electrode composed of a cathode and an anode arranged apart from each other in a direction intersecting with the direction, between one end of the main electrode and the output mirror in the optical resonator, or the other end of the main electrode and a high reflection mirror. And a plurality of vibration absorbing plates arranged with gradually changing intervals along the optical axis direction in at least one of the space portions between and.

【0010】[0010]

【作用】上記構成によれば、光共振器の光軸方向に発生
する振動波は、振動吸収板によって減衰され、しかも振
動吸収板の間隔が変化していることにより、その間隔の
変化に応じて異なる周波数帯域の振動を減衰、つまり広
い範囲の周波数帯域の振動を減衰できる。
According to the above construction, the vibration wave generated in the optical axis direction of the optical resonator is attenuated by the vibration absorbing plate and the distance between the vibration absorbing plates is changed. It is possible to damp vibrations in different frequency bands, that is, damp vibrations in a wide range of frequency bands.

【0011】[0011]

【実施例】以下、この発明の一実施例を図面を参照して
説明する。図1と図2に示すガスレ−ザ装置はXe、H
Cl、NeまたはHeからなるエキシマレ−ザ用ガスレ
−ザ媒質が充填されたレ−ザ管1を備えている。このレ
−ザ管1は断面円形状の気密構造をなしていて、その内
部には主電極を形成する陰極2と陽極3とが所定間隔で
対向して上記レ−ザ管1の軸線方向に沿って配置されて
いる。これら電極2、3は図2に示すようにサイラトロ
ン4を介して直流高圧電源5に接続されている。この直
流高圧電源5には主コンデンサ6が並列に接続されてい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. The gas laser device shown in FIG. 1 and FIG.
The laser tube 1 is filled with a gas laser medium for excimer laser, which is made of Cl, Ne or He. The laser tube 1 has an airtight structure having a circular cross section, and a cathode 2 and an anode 3 forming a main electrode are opposed to each other at a predetermined interval in the axial direction of the laser tube 1. It is arranged along. These electrodes 2 and 3 are connected to a DC high voltage power source 5 via a thyratron 4 as shown in FIG. A main capacitor 6 is connected in parallel to the DC high voltage power supply 5.

【0012】また、上記ガスレ−ザ管1内には図2に示
すように送風機7および熱交換器8が配置されている。
ガスレ−ザ媒質は上記送風機7によって陰極2と陽極3
との間の主放電空間部9を循環させられるとともに、上
記熱交換器8は後述する主放電によって温度上昇したガ
スレ−ザ媒質を冷却する。
A blower 7 and a heat exchanger 8 are arranged in the gas laser pipe 1 as shown in FIG.
The gas laser medium is supplied to the cathode 2 and the anode 3 by the blower 7.
The heat exchanger 8 cools the gas laser medium whose temperature has risen due to the main discharge, which will be described later.

【0013】一方、上記陰極2と陽極3との両側には、
図2に示すように端部を上下方向に離間対向させて対を
なした、上部ピン電極11aと下部ピン電極11bとが
上記主電極の長手方向に沿って複数対、所定間隔で配設
されている。各ピン電極11a、11bはサイラトロン
4を介して上記直流高圧電源5に接続されているととも
に、上記上部ピン電極11aはピ−キングコンデンサ1
2を介して上記直流高圧電源5に接続されている。
On the other hand, on both sides of the cathode 2 and the anode 3,
As shown in FIG. 2, a pair of upper pin electrodes 11a and lower pin electrodes 11b, which are opposed to each other in the vertical direction and are opposed to each other, are arranged at predetermined intervals along the longitudinal direction of the main electrode. ing. The pin electrodes 11a and 11b are connected to the DC high-voltage power supply 5 via the thyratron 4, and the upper pin electrode 11a is connected to the peaking capacitor 1
It is connected to the DC high voltage power source 5 via 2.

【0014】したがって、サイラトロン4を図示せぬ制
御部からのトリガ信号によってオンにすれば、主コンデ
ンサ6にチャ−ジされた電荷がピ−キングコンデンサ1
2に移行するから、上部ピン電極11aと下部ピン電極
11bとの間でスパ−ク放電が点弧される。それによっ
て、陰極2と陽極3との間の主放電空間部9が紫外線に
よって予備電離される。主放電空間部9の予備電離が進
行すると、陰極2と陽極3との間で主放電が点弧され、
その主放電によってガスレ−ザ媒質が励起されてレ−ザ
光が発生するようになっている。
Therefore, when the thyratron 4 is turned on by a trigger signal from a control unit (not shown), the charge charged in the main capacitor 6 is changed to the peaking capacitor 1.
Since the transition to No. 2, spark discharge is ignited between the upper pin electrode 11a and the lower pin electrode 11b. As a result, the main discharge space 9 between the cathode 2 and the anode 3 is preionized by the ultraviolet rays. When the preliminary ionization of the main discharge space 9 progresses, the main discharge is ignited between the cathode 2 and the anode 3,
The main discharge excites the gas laser medium to generate laser light.

【0015】上記レ−ザ管1の軸方向両端面の上記主放
電空間部9と対応する部分には、第1の管体12と第2
の管体13の一端がそれぞれ気密に取付けられている。
第1の管体12の他端には出力ミラ−14が気密に取付
けられ、第2の管体13の他端には上記出力ミラ−14
とで光共振器を形成する高反射ミラ−15が同じく気密
に取付けられている。
A first tube body 12 and a second tube body 12 are provided at portions of both end surfaces in the axial direction of the laser tube 1 corresponding to the main discharge space 9.
One end of each tube body 13 is attached airtightly.
An output mirror 14 is airtightly attached to the other end of the first pipe body 12, and the output mirror 14 is attached to the other end of the second pipe body 13.
A highly reflective mirror 15 which forms an optical resonator is also mounted in an airtight manner.

【0016】上記各管体12、13の内部には、上記主
放電空間部9で発生したレ−ザ光Lが通過する矩形状の
通孔16が形成された複数枚、この実施例では4枚の振
動吸収板17が、これらの周辺部間に筒状の複数のスペ
−サ18を介して保持されている。上記スペ−サ18は
ゴムなどの弾性材料、多孔質材、ニッケルの金網あるい
はアルミナ繊維などの振動を吸収し易い材料から形成さ
れ、上記振動吸収板17はアルミニウムやニッケルの板
あるいはニッケルの多孔質板など、同じく振動を吸収し
易い材料で形成されている。
Inside the tubes 12 and 13, a plurality of rectangular through holes 16 through which the laser light L generated in the main discharge space 9 passes are formed. A single vibration absorbing plate 17 is held between these peripheral portions via a plurality of cylindrical spacers 18. The spacer 18 is made of an elastic material such as rubber, a porous material, a material easily absorbing vibration such as a nickel wire mesh or alumina fiber, and the vibration absorbing plate 17 is an aluminum or nickel plate or a nickel porous material. It is also made of a material such as a plate that easily absorbs vibration.

【0017】図3に示すように、4枚の振動吸収板17
の主電極2、3側からミラ−14、15側における間隔
をそれぞれP1 〜P3 とすると、その間隔をたとえば2
mmずつ拡げることで、P1 <P2 <P3 (P1 =2mm、
P2 =4mm、P3 =6mm)に設定されている。つまり、
上記関係を満たすよう、各振動吸収板17間に設けられ
るスペ−サ18の厚さ(長さ)が設定されている。
As shown in FIG. 3, four vibration absorbing plates 17 are provided.
If the distances from the main electrodes 2 and 3 to the mirrors 14 and 15 are P1 to P3, the distance is, for example, 2
By expanding by mm, P1 <P2 <P3 (P1 = 2 mm,
(P2 = 4 mm, P3 = 6 mm). That is,
The thickness (length) of the spacer 18 provided between the vibration absorbing plates 17 is set so as to satisfy the above relationship.

【0018】上記構成のガスレ−ザ装置において、サイ
ラトロン4をオンにし、上部ピン電極11aと下部ピン
電極11bとの間でスパ−ク放電を点弧し、その際に発
生する紫外線で主放電空間部9が予備電離されると、陰
極2と陽極3との間に主放電が点弧される。それによっ
て、主放電空間部9を循環するガスレ−ザ媒質が励起さ
れてレ−ザ光Lが発生する。
In the gas laser device having the above structure, the thyratron 4 is turned on to ignite a spark discharge between the upper pin electrode 11a and the lower pin electrode 11b, and ultraviolet rays generated at that time cause a main discharge space. When part 9 is preionized, a main discharge is ignited between cathode 2 and anode 3. As a result, the gas laser medium circulating in the main discharge space 9 is excited and laser light L is generated.

【0019】主放電空間部9で発生したレ−ザ光Lは光
共振器の高反射ミラ−15と出力ミラ−14とで反射を
繰り返して増幅され、上記出力ミラ−14から発振出力
される。
The laser light L generated in the main discharge space 9 is repeatedly reflected and amplified by the high reflection mirror 15 and the output mirror 14 of the optical resonator, and is oscillated and output from the output mirror 14. .

【0020】上記陰極2と陽極3との間で主放電が点弧
されると、その際に音響波や衝撃波などが発生する。こ
れらの速度はレ−ザガス媒質としてXe、HCl、He
からなるエキシンマレ−ザ用ガス中では約100m/sであ
る。そのうちの、光共振器の光軸方向に沿って発生した
音響波や衝撃波は、その一部が上記一対の主電極2、3
の両端側に設けられた振動吸収板17に当たって減衰さ
れ、他の一部は振動吸収板17の通孔16を通過する際
に図3に矢印で示すようにスペ−サ18の方向へ回り込
み、そのスペ−サ18によって吸収される。
When the main discharge is ignited between the cathode 2 and the anode 3, acoustic waves and shock waves are generated at that time. These velocities are Xe, HCl, He as the laser gas medium.
It is about 100 m / s in the gas for exim maleizer consisting of. Of the acoustic waves and shock waves generated along the optical axis direction of the optical resonator, a part of them is the pair of main electrodes 2, 3 described above.
When it passes through the through hole 16 of the vibration absorbing plate 17, the other part wraps around in the direction of the spacer 18 as shown by the arrow in FIG. It is absorbed by the spacer 18.

【0021】なお、音響波の周波数波電極過案各を2cm
とすると、それを反射しながら伝搬してくるものは約50
KHz、2枚のミラ−14、15で構成される光共振器
の間隔を1mとすると、そこで共振するものは1KHz
であった。また、上記周波数の正数倍の音響波50KH
z、100 KHz、150 KHz、…および1KHz、2K
Hz、3KHzも観測された。
The frequency wave of the acoustic wave is 2 cm for each electrode design.
Then, about 50 will be reflected and propagated.
KHz, if the distance between the optical resonators composed of two mirrors 14 and 15 is 1 m, the one that resonates there is 1 KHz.
Met. In addition, an acoustic wave of 50KH that is a positive multiple of the above frequency
z, 100 KHz, 150 KHz, ... and 1 KHz, 2K
Hz and 3 KHz were also observed.

【0022】上記通孔16を通過した振動波は、複数枚
の振動吸収板17の通孔16を順次通過することで各振
動吸収板17とスペ−サ18とによって次第に減衰さ
れ、出力ミラ−14や高反射ミラ−15へ到達する時に
はかなり減衰されることになる。したがって、主放電空
間部9で発生した振動波は各ミラ−14、15で反射し
て再び主放電空間部9へ戻ることがほとんどないから、
主放電空間部9のガスレ−ザ媒質に揺らぎが生じるとい
うこともなくなる。
The vibration wave passing through the through holes 16 is sequentially attenuated by the vibration absorbing plates 17 and the spacers 18 by successively passing through the through holes 16 of the plurality of vibration absorbing plates 17, and the output mirror is output. When it reaches 14 or the high reflection mirror-15, it will be considerably attenuated. Therefore, since the vibration wave generated in the main discharge space 9 is hardly reflected by the mirrors 14 and 15 and returns to the main discharge space 9 again,
Fluctuation does not occur in the gas laser medium in the main discharge space 9.

【0023】しかも、上記振動吸収板17の間隔をそれ
ぞれのミラ−14、15の方向へ行くにつれて2mmずつ
大きく設定したため、各振動吸収板17間のその間隔の
変化に応じて異なる周波数の振動が吸収される。つま
り、この実施例では間隔が漸次、広くなっているから、
その間隔が広くなるにつれて低い周波数帯域の振動を吸
収することができる。
Moreover, since the distance between the vibration absorbing plates 17 is set to be larger by 2 mm in the direction of the mirrors 14 and 15, vibrations of different frequencies are generated depending on the change in the distance between the vibration absorbing plates 17. Be absorbed. That is, in this embodiment, the interval is gradually widened,
As the interval becomes wider, it is possible to absorb vibration in a low frequency band.

【0024】図5は、主放電によって主放電空間部9に
は10kHz〜1MHzの広い周波数帯域で音響振動が
存在していることを示している。そして、その音響振動
は、主電極2、3の端部側に位置する1枚目と2枚目の
振動吸収板17がなす2mmの間隔P1 では0〜100k
Hzまでの振動と共振してその振動を減衰し、2枚目と
3枚目の振動吸収板17がなす4mmの間隔P2 では10
0〜500kHzまでの振動が共振してその振動を減衰
する。さらに、3枚目と4枚目との振動吸収板17がな
す6mmの間隔P3 では500kHz〜1MHzまでの振
動と共振してその振動を減衰することが測定された。つ
まり、複数枚の振動吸収板17の間隔を漸次、大きくす
ることで、広い範囲に亘る振動数の振動波を減衰させる
ことができる。なお、各間隔における共振周波数は、振
動吸収板17の材質など、種々の条件によって異なる。
FIG. 5 shows that due to the main discharge, acoustic vibration exists in the main discharge space 9 in a wide frequency band of 10 kHz to 1 MHz. Then, the acoustic vibration is 0 to 100 k in the interval P1 of 2 mm formed by the first and second vibration absorbing plates 17 located on the end sides of the main electrodes 2 and 3.
It resonates with vibrations up to Hz, damps the vibrations, and is 10 at a 4 mm interval P2 formed by the second and third vibration absorbing plates 17.
Vibrations of 0 to 500 kHz resonate and attenuate the vibrations. Further, it was measured that at a distance P3 of 6 mm formed by the third and fourth vibration absorbing plates 17, the vibration resonates with the vibration from 500 kHz to 1 MHz and attenuates the vibration. That is, by gradually increasing the distance between the plurality of vibration absorbing plates 17, it is possible to damp vibration waves having frequencies over a wide range. The resonance frequency at each interval varies depending on various conditions such as the material of the vibration absorbing plate 17.

【0025】図6は、この発明と従来のガスレ−ザ装置
における振動波の大きさとパルス発振の繰返し数との関
係を測定した結果を示し、同図中直線Aはこの発明を示
し、直線Bは従来を示す。この発明によれば、繰返し数
が多くなっても、従来よりも振動波の大きさが十分に小
さいことが確認された。
FIG. 6 shows the results of measurement of the relationship between the magnitude of the oscillating wave and the repetition rate of pulse oscillation in the gas laser device of the present invention and the conventional gas laser device. The straight line A in the figure shows the present invention and the straight line B shows. Indicates conventional. According to the present invention, it was confirmed that the magnitude of the vibration wave was sufficiently smaller than the conventional one, even if the number of repetitions increased.

【0026】図7は、この発明と従来のガスレ−ザ装置
におけるレ−ザ出力と繰返し数との関係を示す。曲線A
で示すこの発明によれば、曲線Bで示す従来に比べて繰
返し数を大きくし、高いレ−ザ出力が得られることが確
認された。
FIG. 7 shows the relationship between the laser output and the number of repetitions in the gas laser device of the present invention and the conventional gas laser device. Curve A
It has been confirmed that, according to the present invention shown by, the number of repetitions is increased and a high laser output can be obtained as compared with the conventional case shown by the curve B.

【0027】なお、上記一実施例では複数枚の振動吸収
板の間隔を主電極の端部からミラ−の方向へゆくにした
がって次第に大きくして設け、その間隔に応じて低い振
動数の振動波を漸次、吸収できるようにしたが、複数の
振動吸収板の間隔を次第に狭くして設けることで、漸
次、高い振動数の振動を吸収するようにしてもよく、ま
た振動吸収板は主電極の両端側とミラ−との間の2つの
空間部のうち、どちらか一方の空間部だけに設けるよう
にしても、振動波をかなり減衰することができる。
In the above embodiment, the interval between the plurality of vibration absorbing plates is gradually increased in the direction from the end of the main electrode to the mirror, and the vibration wave having a low frequency is set according to the interval. The vibration absorbing plate may be gradually absorbed, but the vibration absorbing plate may be configured to gradually absorb a vibration of a high frequency by providing the intervals of the plurality of vibration absorbing plates gradually narrower. Even if it is provided in only one of the two space portions between both ends and the mirror, the vibration wave can be considerably attenuated.

【0028】また、各振動吸収板間に設けられるスペ−
サを振動吸収材料で形成し、そのスペ−サによっても振
動波を吸収できるようにしたが、スペ−サがなく、振動
吸収板だけであっても、十分に振動波を吸収することが
できる。
Spaces provided between the vibration absorbing plates are also provided.
The spacer is made of a vibration absorbing material, and the spacer can absorb the vibration wave. However, even if only the vibration absorbing plate is used without the spacer, the vibration wave can be sufficiently absorbed. .

【0029】[0029]

【発明の効果】以上述べたようにこの発明は、光共振器
内に配設された主電極の一端と出力ミラ−との間あるい
は主電極の他端と高反射ミラ−との間の少なくとも一方
の空間部に、光軸方向に沿って間隔を漸次変化させて複
数の振動吸収板を配置するようにした。
As described above, according to the present invention, at least between the one end of the main electrode disposed in the optical resonator and the output mirror or between the other end of the main electrode and the high reflection mirror. A plurality of vibration absorbing plates are arranged in one space portion while gradually changing the intervals along the optical axis direction.

【0030】したがって、主放電によって光共振器の光
軸方向に発生する振動波を、上記振動吸収板によって減
衰させることができ、しかも振動吸収板の間隔を主電極
の端部からミラ−方向へゆくにしたがって漸次変化させ
たから、その間隔の変化によって広い周波数帯域の振動
波を減衰させることができる。
Therefore, the vibration wave generated in the optical axis direction of the optical resonator due to the main discharge can be attenuated by the vibration absorbing plate, and the distance between the vibration absorbing plates is set in the mirror direction from the end of the main electrode. Since the vibration wave is gradually changed as it goes, the vibration wave in a wide frequency band can be attenuated by the change of the interval.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例の全体構成を示す側面図。FIG. 1 is a side view showing the overall configuration of an embodiment of the present invention.

【図2】同じく図1のA−A線に沿う断面図。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】同じくレ−ザ管の端部に設けられた管体の拡大
図。
FIG. 3 is an enlarged view of a tube body also provided at the end of the laser tube.

【図4】同じく振動吸収板の正面図。FIG. 4 is a front view of the vibration absorbing plate.

【図5】主放電によって生じる振動波の周波数帯域を示
す説明図。
FIG. 5 is an explanatory diagram showing a frequency band of a vibration wave generated by a main discharge.

【図6】この発明と従来のガスレ−ザ装置における振動
波の大きさとパルス発振の繰返し数との関係のグラフ。
FIG. 6 is a graph showing the relationship between the magnitude of an oscillating wave and the repetition rate of pulse oscillation in the gas laser device according to the present invention and the related art.

【図7】この発明と従来のガスレ−ザ装置におけるレ−
ザ出力とパルス発振の繰返し数との関係のグラフ。
FIG. 7 shows a laser in the present invention and a conventional gas laser device.
The graph of the relation between the output and the repetition rate of pulse oscillation.

【符号の説明】[Explanation of symbols]

2…陰極、3…陽極、14…出力ミラ−、15…高反射
ミラ−、17…振動吸収板。
2 ... Cathode, 3 ... Anode, 14 ... Output mirror, 15 ... High reflection mirror, 17 ... Vibration absorbing plate.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 7454−4M H01S 3/097 Z ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location 7454-4M H01S 3/097 Z

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 出力ミラ−と高反射ミラ−とが対向して
配置された光共振器と、この光共振器内にその光軸方向
と交差する方向に離間して配置された陰極と陽極とから
なる主電極と、上記光共振器内の上記主電極の一端と出
力ミラ−との間あるいは主電極の他端と高反射ミラ−と
の間の少なくとも一方の空間部に上記光軸方向に沿って
間隔を漸次変化させて配置された複数の振動吸収板とを
具備したことを特徴とするガスレ−ザ装置。
1. An optical resonator in which an output mirror and a high-reflection mirror are arranged to face each other, and a cathode and an anode arranged in the optical resonator so as to be separated from each other in a direction intersecting the optical axis direction. In the optical axis direction in the space between at least one of the main electrode and the output mirror of the main electrode in the optical resonator, or between the other end of the main electrode and the high-reflection mirror. And a plurality of vibration absorbing plates arranged so as to gradually change intervals along the gas laser device.
JP487993A 1993-01-14 1993-01-14 Gas laser device Pending JPH06216436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP487993A JPH06216436A (en) 1993-01-14 1993-01-14 Gas laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP487993A JPH06216436A (en) 1993-01-14 1993-01-14 Gas laser device

Publications (1)

Publication Number Publication Date
JPH06216436A true JPH06216436A (en) 1994-08-05

Family

ID=11595966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP487993A Pending JPH06216436A (en) 1993-01-14 1993-01-14 Gas laser device

Country Status (1)

Country Link
JP (1) JPH06216436A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7215695B2 (en) 2004-10-13 2007-05-08 Gigaphoton Discharge excitation type pulse laser apparatus
CN105226484A (en) * 2015-11-11 2016-01-06 成都微深科技有限公司 A kind of have the carbon dioxide laser leaking particle collection device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7215695B2 (en) 2004-10-13 2007-05-08 Gigaphoton Discharge excitation type pulse laser apparatus
CN105226484A (en) * 2015-11-11 2016-01-06 成都微深科技有限公司 A kind of have the carbon dioxide laser leaking particle collection device

Similar Documents

Publication Publication Date Title
US6466599B1 (en) Discharge unit for a high repetition rate excimer or molecular fluorine laser
US5313486A (en) Discharge excitation pulsed laser oscillation device
JP6129410B2 (en) Laser tube with baffle
JP2003060270A (en) Pulse oscillation gas laser device
JPH06216436A (en) Gas laser device
JPS603170A (en) Silent discharge type gas laser device
JP2007531312A (en) Gas discharge laser chamber improvement
JPH04328889A (en) Gas laser device
JP4579002B2 (en) Pulse oscillation type discharge excitation laser equipment
JPS63228770A (en) Gas laser device
JP2693004B2 (en) Gas laser oscillation device
JPS63227082A (en) Gas laser oscillator
JPH04129283A (en) Gas laser oscillator
JPS61228690A (en) Supersonic excimer laser device
US4594721A (en) Corona discharge preionized high pulse repetition frequency laser
JPH047111B2 (en)
JPH0381314B2 (en)
JPS63202980A (en) Gas laser equipment
JP2704709B2 (en) Pulse laser oscillation device
JPH03178179A (en) Gas laser oscillation equipment
JPH02240979A (en) Gas laser device
JP2006229137A (en) Pulse oscillation type discharge pumped laser device
JPH02241072A (en) Gas laser equipment
JP2980707B2 (en) Gas laser oscillation device
JPH02281675A (en) Gas laser oscillation device