JPH02241072A - Gas laser equipment - Google Patents

Gas laser equipment

Info

Publication number
JPH02241072A
JPH02241072A JP6332889A JP6332889A JPH02241072A JP H02241072 A JPH02241072 A JP H02241072A JP 6332889 A JP6332889 A JP 6332889A JP 6332889 A JP6332889 A JP 6332889A JP H02241072 A JPH02241072 A JP H02241072A
Authority
JP
Japan
Prior art keywords
anode
cathode
discharge
gas laser
shock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6332889A
Other languages
Japanese (ja)
Inventor
Noboru Okamoto
昇 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6332889A priority Critical patent/JPH02241072A/en
Publication of JPH02241072A publication Critical patent/JPH02241072A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/038Electrodes, e.g. special shape, configuration or composition

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To enable the shock wave raised by the discharge between a cathode and an anode to be absorbed by a method wherein at least one out of the cathode or the anode is composed of an exterior body formed of a hollow metallic sheet and core material as a shock absorber filled in the envelope. CONSTITUTION:The title gas laser is composed of a laser tube 1 sealed with gas laser medium, a main electrode comprising a cathode 3 and an anode 21 separately and oppositely arranged in the laser tube 1, a high voltage power supply 5 impressing the cathode 3 and the anode 21 with voltage, preionization means 6, 7a preliminarily ionizing the discharge space before the main discharge occurred between the cathode 3 and the anode 21 while at least one out of the cathode 3 or the anode 21 is composed of an envelope 22 formed of a metallic sheet and a core material 23 as a shock absorber filled in the envelope 22. For example, the said preionization means 6, 7a are to be multiple pairs of pin electrodes 6, 7a with their ends separately and oppositely arranged while at least one out of the opposite pairs of the pin electrodes 6, 7a is to be structured with elasticity and shock absorbing properties.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明はガスレーザ媒質を放電エネルギで励起してレ
ーザ光を放出するガスレーザ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a gas laser device that excites a gas laser medium with discharge energy to emit laser light.

(従来の技術) 一般に、T E A CO2レーザやエキシマレーザな
どのガスレーザ装置はガスレーザ媒質が収容されたレー
ザ管内に主電極を構成する陰極と陽極とが離間対向して
配置され、これらの間に主放電を発生させることによっ
て上記ガスレーザ媒質を励起してレーザ光を放出するよ
うになっている。
(Prior Art) Generally, in a gas laser device such as a TEA CO2 laser or an excimer laser, a cathode and an anode, which constitute a main electrode, are placed in a laser tube containing a gas laser medium and are spaced apart from each other. By generating a main discharge, the gas laser medium is excited to emit laser light.

上記陰極と陽極との間に主放電を発生させるに先立ち、
陰極と陽極との間の空間、つまり放電空間を予備電離手
段によって予備電離し、レーザ発振が効率よ(行なえる
ようにしている。
Prior to generating the main discharge between the cathode and anode,
The space between the cathode and the anode, that is, the discharge space, is pre-ionized by a pre-ionization means so that laser oscillation can be performed efficiently.

このような従来のガスレーザ装置としては第6図に示す
構造のものがあった。すなわち、図中1はレーザ管で、
このレーザ管1内にはCO2、N2、Heなどのガスを
混合したガスレーザ媒質が収容されている。また、レー
ザ管1内には一対の保持板2が離間対向して配設されて
いる。各保持板2の対向する面にはそれぞれ主電極を構
成する陰極3と陽極4とが電気的に導通した状態で保持
固定されている。これら陰極3と陽極4とは高圧電源5
に接続されているとともに上記陽極4はアースされてい
る。
As such a conventional gas laser device, there is one having a structure shown in FIG. In other words, 1 in the figure is a laser tube,
This laser tube 1 houses a gas laser medium in which gases such as CO2, N2, and He are mixed. Further, a pair of holding plates 2 are arranged in the laser tube 1 so as to be spaced apart from each other and facing each other. A cathode 3 and an anode 4 constituting a main electrode are held and fixed on opposing surfaces of each holding plate 2 in an electrically conductive state. These cathodes 3 and anodes 4 are connected to a high voltage power source 5
and the anode 4 is grounded.

上記一対の保持板2のうち、陰極3が設けられた一方の
保持板2には波形整形のためのピーキングコンデンサ6
aを介して上部ピン電極6が陰極3の両側に、しかも長
手方向に沿って所定間隔で設けられ、他方の保持板2に
は先端を上記上部ピン電極6に対向させて下部ピン電極
7が設けられている。
Of the pair of holding plates 2, one holding plate 2 provided with the cathode 3 has a peaking capacitor 6 for waveform shaping.
Upper pin electrodes 6 are provided on both sides of the cathode 3 at predetermined intervals along the longitudinal direction via a, and a lower pin electrode 7 is provided on the other holding plate 2 with its tip facing the upper pin electrode 6. It is provided.

また、上記レーザ管1内にはガスレーザ媒質を矢示方向
に循環させるファン8と、このファン8の上流側に熱交
換器9とが配設されている。
Further, within the laser tube 1, a fan 8 for circulating a gas laser medium in the direction of the arrow, and a heat exchanger 9 are disposed upstream of the fan 8.

このような構成のガスレーザ装置においては、高圧電源
5が作動して電気エネルギが供給されると、まず上部ピ
ン電極6と下部ピン電極7との対向する端面間で放電が
生じてUV光(紫外光)が発生する。そのUV光は陰極
3と陽極4との間の空間、つまり放電空間を予備電離す
る。放電空間の予備電離が進み、陰極3と陽極4との間
の電圧が大きくなると、これら電極3.4間で主放電が
発生し、レーザ光が放電方向と直交する方向である各電
極3.4の長手方向に沿って発振されることになる。
In the gas laser device having such a configuration, when the high voltage power supply 5 is activated and electrical energy is supplied, a discharge occurs between the opposing end surfaces of the upper pin electrode 6 and the lower pin electrode 7, and UV light (ultraviolet light) is generated. light) is generated. The UV light pre-ionizes the space between the cathode 3 and the anode 4, that is, the discharge space. As the pre-ionization of the discharge space progresses and the voltage between the cathode 3 and the anode 4 increases, a main discharge occurs between these electrodes 3.4, and the laser beam is directed to each electrode 3.4 in a direction perpendicular to the discharge direction. 4 along the longitudinal direction.

しかしながら、このような構成のガスレーザ装置におい
ては、陰極3と陽極4との間で主放電が生じると、その
主放電によって放電空間には衝撃波が発生する。その衝
撃波は周囲に広がってゆくだけでなく、陰極3と陽極4
とで反射し、これらの間を何回も往復する。そのため、
その衝撃波の衝撃によって放電空間のガスレーザ媒質の
流れを不安定にするから、この放電空間から発振される
レーザ光も不安定になる。とくに、レーザ発振の繰返し
数を上げると、その傾向が顕著になるため、繰返し数を
上げることが難しくなる。
However, in the gas laser device having such a configuration, when a main discharge occurs between the cathode 3 and the anode 4, a shock wave is generated in the discharge space by the main discharge. The shock wave not only spreads to the surroundings, but also causes damage to the cathode 3 and anode 4.
It reflects back and forth between these many times. Therefore,
Since the impact of the shock wave makes the flow of the gas laser medium in the discharge space unstable, the laser light emitted from the discharge space also becomes unstable. In particular, when the number of repetitions of laser oscillation is increased, this tendency becomes more noticeable, and thus it becomes difficult to increase the number of repetitions.

また、放電空間に発生する衝撃波は、陰極3と陽極4と
の間に生じる主放電だけでなく、放電空間を予備電離す
る上部ピン電極6と下部ピン電極7との間に生じる放電
によっても発生し、その衝撃波の衝撃によってもレーザ
発振が不安定になるということがある。
Furthermore, the shock waves generated in the discharge space are generated not only by the main discharge generated between the cathode 3 and the anode 4, but also by the discharge generated between the upper pin electrode 6 and the lower pin electrode 7, which pre-ionize the discharge space. However, the impact of the shock wave may also cause the laser oscillation to become unstable.

(発明が解決しようとする課題) このように、従来は陰極と陽極との間の放電や放電空間
を予備電離するビシ電極間の放電によって衝撃波が発生
し、その衝撃波の衝撃によってガスレーザ媒質の流れが
不安定になり、安定した状態でレーザ光が発振されなく
なるということがあった。
(Problem to be Solved by the Invention) Conventionally, a shock wave is generated by the discharge between the cathode and the anode or the discharge between the two electrodes that pre-ionizes the discharge space, and the impact of the shock wave causes the flow of the gas laser medium. became unstable, and the laser beam could no longer be oscillated in a stable state.

この発明は上記事情にもとずきなされたもので、その第
1の目的は、陰極と陽極との間の放電によって生じる衝
撃波の衝撃を吸収することができるようにしたガスレー
ザ装置を提供することにある。
The present invention was made based on the above circumstances, and its first object is to provide a gas laser device capable of absorbing shock waves generated by discharge between a cathode and an anode. It is in.

また、この発明の第2の目的は、放電空間を予備電離す
るためのピン電極間の放電によって生じる衝撃波の衝撃
を吸収できるようにしたガスレーザ装置を提供すること
にある。
A second object of the present invention is to provide a gas laser device capable of absorbing shock waves generated by discharge between pin electrodes for pre-ionizing a discharge space.

[発明の構成] (課題を解決するための手段及び作用)上記課題を解決
するために請求項1に記載されたこの発明は、ガスレー
ザ媒質が封入されたレーザ管と、このレーザ管内に離間
対向して配置された陰極および陽極とからなる主電極と
、上記陰極と陽極との間に電圧を印加する高圧電源と、
上記陰極と陽極との間に生じる主放電に先立って放電空
間を予備電離する予備電離手段とを具備し、上記陰極あ
るいは陽極の少なくとも一方は、金属板を中空状に形成
した外装体と、この外装体内に充填された衝撃を吸収す
るコア材とから構成する。
[Structure of the Invention] (Means and Effects for Solving the Problems) In order to solve the above problems, the present invention described in claim 1 includes a laser tube in which a gas laser medium is sealed, and spaced-apart and opposing laser tubes in the laser tube. a main electrode consisting of a cathode and an anode arranged as a main electrode; a high-voltage power source that applies a voltage between the cathode and the anode;
Pre-ionization means for pre-ionizing the discharge space prior to the main discharge occurring between the cathode and the anode; It consists of a core material filled in the exterior body that absorbs shock.

それによって、主放電によって生じる衝撃波の衝撃を上
記コア材で吸収するようにした。
This allows the core material to absorb the impact of the shock waves generated by the main discharge.

また、請求項2に記載されたこの発明は、ガスレーザ媒
質が収容されたレーザ管と、このレーザ管内に離間対向
して配置された陰極および陽極とからなる主電極と、上
記陰極と陽極との間に電圧を印加する高圧電源と、上記
陰極と陽極との間に生じる主放電に先立って放電空間を
予備電離する予備電離手段とを具備し、上記予備電離手
段は、先端を離間対向させて配設された複数組のピン電
極からなり、対向する一対のピン電極の少なくとも一方
は伸縮自在または衝撃を吸収する構造とする。
Further, the present invention as set forth in claim 2 provides a main electrode consisting of a laser tube containing a gas laser medium, a cathode and an anode disposed in a spaced-apart manner in opposition to each other within the laser tube; A high-voltage power supply that applies a voltage between the cathode and the anode, and pre-ionization means that pre-ionizes the discharge space prior to the main discharge occurring between the cathode and the anode, the pre-ionization means having tips separated and facing each other. It consists of a plurality of sets of pin electrodes arranged, and at least one of the pair of opposing pin electrodes has a structure that can be expanded and contracted or can absorb shock.

それによって、一対のピン電極間で発生する放電による
衝撃波の衝撃を、上記ピン電極によって吸収するように
した。
Thereby, the impact of the shock wave caused by the discharge generated between the pair of pin electrodes is absorbed by the pin electrode.

(実施例) 以下、この発明の一実施例を第1図乃至第3因を参照し
て説明する。なお、第6図に示す構成と同一部分には同
一記号を付して説明を省略する。
(Embodiment) An embodiment of the present invention will be described below with reference to FIGS. 1 to 3. Incidentally, the same parts as those in the configuration shown in FIG. 6 are given the same symbols, and the explanation will be omitted.

すなわち、この発明においては、陽極21は、薄い金属
板によって保持板2aと接合する下面側が開放した断面
蒲鉾状の中空に形成された外装体22と、この外装体2
2内に充填されたコア材23とから構成されている。上
記保持板2aとコア材23は、ともにコルク、ゴム材、
鉛などのような衝撃波の衝撃を吸収することができる材
料で作られている。
That is, in the present invention, the anode 21 includes an exterior body 22 formed in a hollow shape with a semi-cylindrical cross section with an open lower surface side and joined to the holding plate 2a by a thin metal plate, and this exterior body 2.
2 and a core material 23 filled therein. Both the retaining plate 2a and the core material 23 are made of cork, rubber, or
It is made of materials that can absorb the impact of shock waves, such as lead.

そして、上記陽極21は、その外装体22の幅方向両側
に設けられたフランジ22aを上記保持板2aにボルト
24によって固定されて設けられている。
The anode 21 is provided with flanges 22a provided on both sides of the exterior body 22 in the width direction fixed to the holding plate 2a with bolts 24.

また、予備電離手段を構成する一対のピン電極のうち、
下部ピン電極7aは上記保持板2aやコア材23と同様
衝撃波の衝撃を吸収する材料で作られている。下部ピン
電極7aを形成する材料がコルクやゴム材などのように
非導電性である場合には、そのピン電極7aの上端面に
は第3図に示すように銅などの導電性の金属板24が取
着され、この金属板24にはコイル状の導m線26の一
端が接続されている。この導電線26の他端は高圧電源
5に接続されている。また、上記陽極21の外装体22
を保持板2aに固定して上記外装体22と電気的に導通
したボルト24も上記導電線26と同様に高圧電源5に
接続されている。
Furthermore, among the pair of pin electrodes constituting the pre-ionization means,
The lower pin electrode 7a is made of a material that absorbs shock waves, similar to the holding plate 2a and the core material 23. When the material forming the lower pin electrode 7a is non-conductive such as cork or rubber, a conductive metal plate such as copper is placed on the upper end surface of the pin electrode 7a as shown in FIG. 24 is attached to the metal plate 24, and one end of a coiled conducting wire 26 is connected to this metal plate 24. The other end of this conductive wire 26 is connected to the high voltage power supply 5. In addition, the exterior body 22 of the anode 21
A bolt 24 fixed to the holding plate 2a and electrically connected to the exterior body 22 is also connected to the high voltage power source 5 in the same way as the conductive wire 26.

このような構成のガスレーザ装置において、高圧電源5
を作動させると、上部ピン電極6′と下部ピン電極7a
との間で放電が生じてUV光が発生し、そのUV光が放
電空間に流れてこの放電空間が予備電離される。このよ
うにして放電空間の予備電離が十分に進むと、陰極3と
陽極21との間で主放電が発生し、その放電方向と直交
する方向にレーザ光が出力されることになる。
In the gas laser device having such a configuration, the high voltage power supply 5
When activated, the upper pin electrode 6' and the lower pin electrode 7a
A discharge occurs between the two and generates UV light, which flows into the discharge space to pre-ionize the discharge space. When the preliminary ionization of the discharge space progresses sufficiently in this manner, a main discharge occurs between the cathode 3 and the anode 21, and laser light is output in a direction perpendicular to the direction of the discharge.

放電空間を予備電離するに際し、上部ピン電極6と下部
ピン電極7aとの間で放電が生じると、その放電によっ
て衝撃波が各ピン電極6.7aの軸方向に生じる。ピン
電極6.7a間の放電によって生じる衝撃波の衝撃は、
下部ピン電極7aが衝撃を吸収する材料で作られている
から、その下部ピン電極7aによって吸収される。しか
も、下部ピン電極7aが立設された保持板2aも衝撃を
吸収する材料で作られているから、下部ピン電極7aか
ら上記保持板2aに伝わる衝撃も吸収されることになる
。したがって、放電空間を予備電離することによって生
じる衝撃波の衝撃でレーザ媒質ガスの流れに乱れが生じ
るのが防止される。
When a discharge is generated between the upper pin electrode 6 and the lower pin electrode 7a when pre-ionizing the discharge space, a shock wave is generated in the axial direction of each pin electrode 6.7a due to the discharge. The impact of the shock wave caused by the discharge between the pin electrodes 6.7a is
Since the lower pin electrode 7a is made of a material that absorbs impact, the impact is absorbed by the lower pin electrode 7a. Moreover, since the holding plate 2a on which the lower pin electrode 7a is erected is also made of a material that absorbs impact, the impact transmitted from the lower pin electrode 7a to the holding plate 2a is also absorbed. Therefore, the flow of the laser medium gas is prevented from being disturbed by the shock wave generated by pre-ionizing the discharge space.

また、予備電離に続いて陰極3と陽極21との間に主放
電が生じ、その主放電によってこれらの間に衝撃波が生
じるとその衝撃波の衝撃波は、上記陽極21の外装体2
2内に充填されたコア材23によって吸収され、しかも
外装体22から保持板2aに伝わる衝撃波は、その保持
板2aによって吸収されることになる。したがって、陰
極3と陽極21との間に生じる主放電による衝撃も良好
に吸収されることになるから、主放電によってレーザ媒
質ガスの流れに乱れが生じることも防止される。
Further, following the pre-ionization, a main discharge occurs between the cathode 3 and the anode 21, and when a shock wave is generated between them due to the main discharge, the shock wave of the shock wave is transmitted to the exterior body of the anode 21.
Shock waves that are absorbed by the core material 23 filled in the housing 2 and transmitted from the exterior body 22 to the retaining plate 2a are absorbed by the retaining plate 2a. Therefore, since the impact caused by the main discharge generated between the cathode 3 and the anode 21 is well absorbed, disturbances in the flow of the laser medium gas due to the main discharge are also prevented.

このように、予備電離や主放電によって生じる衝撃波の
衝撃で放電空間を流れるレーザ媒質ガスの流れに乱れが
生じるのが防止されれば、レーザ光を高繰返しで出力さ
せることができる。
In this way, if the flow of the laser medium gas flowing through the discharge space is prevented from being disturbed by the impact of the shock waves generated by the pre-ionization or the main discharge, it is possible to output laser light with a high repetition rate.

なお、衝撃を吸収するピン電極の構造としては、第4図
あるいは第5図に示すようにしてもよい。
Note that the structure of the pin electrode for absorbing impact may be as shown in FIG. 4 or FIG. 5.

すなわち、第4図は下部ピン電極7aが電気的絶縁性の
衝撃を吸収する材料で作られている場合に、上記一実施
例に示された導電線26に代わり、上記ピン電極7aの
外周面を金属メツシュ31で被覆し、この金属メツシュ
31の上端に金属板24を固着し、他端を高圧電源5に
接続するようにした。このような構造とすれば、コイル
状の導電線26を用いた場合に比べてインダクタンスを
小さくすることができる。
That is, in FIG. 4, when the lower pin electrode 7a is made of an electrically insulating shock-absorbing material, the outer peripheral surface of the pin electrode 7a is replaced with the conductive wire 26 shown in the above embodiment. was covered with a metal mesh 31, a metal plate 24 was fixed to the upper end of the metal mesh 31, and the other end was connected to the high voltage power source 5. With such a structure, inductance can be reduced compared to the case where a coiled conductive wire 26 is used.

また、第5図に示す構造は下部ピン電極7aを金属製の
ベローズ32で作るようにしたもので、このような構造
によれば、衝撃波の衝撃によって上記ベローズ32が軸
方向に弾性的に伸縮変形し、その衝撃を吸収することが
できる。
Further, in the structure shown in FIG. 5, the lower pin electrode 7a is made of a metal bellows 32. According to such a structure, the bellows 32 elastically expands and contracts in the axial direction due to the impact of the shock wave. It can deform and absorb the impact.

また、上記各実施例では陽極21と下部ピン電極7aと
を衝撃を吸収する構造としたが、陰極3と上部ピン電極
6も衝撃を吸収する構造としてもよく、要は少なくとも
一方が衝撃を吸収する構造であればよい。
Further, in each of the above embodiments, the anode 21 and the lower pin electrode 7a have a structure that absorbs shock, but the cathode 3 and the upper pin electrode 6 may also have a structure that absorbs shock, and in short, at least one of them absorbs shock. Any structure that does so is fine.

[発明の効果] 以上述べたように請求項1に記載されたこの発明は、陰
極あるいは陽極の少なくとも〒方を中空の金属板からな
る外装体と、この外装体の中空部内に充填されたコア材
とから構成した。したがって、主放電によって放電空間
に生じる衝撃波の衝撃を上記コア材によって吸収しガス
レーザ媒質の流れが乱れるのを防止することができるか
ら、レーザ光を高繰返しで出力させることができる。
[Effects of the Invention] As described above, the present invention as set forth in claim 1 is characterized in that at least one of the cathode and the anode is made of an exterior body made of a hollow metal plate, and a core filled in the hollow part of the exterior body. It was constructed from materials. Therefore, the core material absorbs the impact of the shock wave generated in the discharge space by the main discharge, and the flow of the gas laser medium can be prevented from being disturbed, so that laser light can be output with high repetition rate.

また、請求項2に記載されたこの発明によれば、予fN
Ti離手段として用いられている対向する一対のピン電
極のうちの少なくとも一方を伸縮自在または衝撃を吸収
する構造とした。したがって、放電空間を予備電離する
際に生じる衝撃波の衝撃を吸収してガスレーザ媒質の流
れに乱れが生じるのを防止し、レーザ光を安定した状態
で出力することができる。
Further, according to the invention described in claim 2, the prefN
At least one of the pair of opposing pin electrodes used as the Ti separating means was configured to be stretchable or shock absorbing. Therefore, it is possible to absorb the shock wave generated when pre-ionizing the discharge space, prevent disturbances in the flow of the gas laser medium, and output laser light in a stable state.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示すガスレーザ装置の断
面図、第2図は同じく陰極と陽極との拡大断面図、第3
図は同じくピン電極の斜視図、第4図と第5図はそれぞ
れこの発明の他の実施例を示すピン電極の断面図、第6
図は従来のガスレーザ装置の断面図である。 1・・・レーザ管、3・・・陰極、5・・・高圧電源、
6・・・上部ピン電極、7a・・・下部ピン電極、21
・・・陽極、22・・・外装体、23・・・コア材、3
2・・・ベローズ。 第4図 第5図
FIG. 1 is a sectional view of a gas laser device showing an embodiment of the present invention, FIG. 2 is an enlarged sectional view of a cathode and an anode, and FIG.
This figure is a perspective view of the pin electrode, FIGS. 4 and 5 are sectional views of the pin electrode showing other embodiments of the present invention, and FIG.
The figure is a sectional view of a conventional gas laser device. 1... Laser tube, 3... Cathode, 5... High voltage power supply,
6... Upper pin electrode, 7a... Lower pin electrode, 21
... Anode, 22 ... Exterior body, 23 ... Core material, 3
2...Bellows. Figure 4 Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)ガスレーザ媒質が封入されたレーザ管と、このレ
ーザ管内に離間対向して配置された陰極および陽極とか
らなる主電極と、上記陰極と陽極との間に電圧を印加す
る高圧電源と、上記陰極と陽極との間に生じる主放電に
先立って放電空間を予備電離する予備電離手段とを具備
し、上記陰極あるいは陽極の少なくとも一方は、金属板
を中空状に形成した外装体と、この外装体内に充填され
た衝撃を吸収するコア材とから構成されていることを特
徴とするガスレーザ装置。
(1) a main electrode consisting of a laser tube in which a gas laser medium is sealed, a cathode and an anode arranged spaced apart and facing each other within the laser tube, and a high-voltage power source that applies a voltage between the cathode and the anode; Pre-ionization means for pre-ionizing the discharge space prior to the main discharge occurring between the cathode and the anode; A gas laser device characterized by comprising a core material filled in an exterior body and absorbing shock.
(2)ガスレーザ媒質が収容されたレーザ管と、このレ
ーザ管内に離間対向して配置された陰極および陽極とか
らなる主電極と、上記陰極と陽極との間に電圧を印加す
る高圧電源と、上記陰極と陽極との間に生じる主放電に
先立って放電空間を予備電離する予備電離手段とを具備
し、上記予備電離手段は、先端を離間対向させて配設さ
れた複数組のピン電極からなり、対向する一対のピン電
極の少なくとも一方は伸縮自在または衝撃を吸収する構
造となっていることを特徴とするガスレーザ装置。
(2) a main electrode consisting of a laser tube containing a gas laser medium, a cathode and an anode arranged spaced apart and facing each other within the laser tube, and a high-voltage power source that applies a voltage between the cathode and the anode; and a pre-ionization means for pre-ionizing the discharge space prior to the main discharge occurring between the cathode and the anode, the pre-ionization means comprising a plurality of sets of pin electrodes disposed with their tips spaced apart and facing each other. A gas laser device characterized in that at least one of the pair of opposing pin electrodes has a structure that is expandable and retractable or absorbs shock.
JP6332889A 1989-03-15 1989-03-15 Gas laser equipment Pending JPH02241072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6332889A JPH02241072A (en) 1989-03-15 1989-03-15 Gas laser equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6332889A JPH02241072A (en) 1989-03-15 1989-03-15 Gas laser equipment

Publications (1)

Publication Number Publication Date
JPH02241072A true JPH02241072A (en) 1990-09-25

Family

ID=13226076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6332889A Pending JPH02241072A (en) 1989-03-15 1989-03-15 Gas laser equipment

Country Status (1)

Country Link
JP (1) JPH02241072A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003060270A (en) * 2001-08-10 2003-02-28 Gigaphoton Inc Pulse oscillation gas laser device
CN105762619A (en) * 2016-05-12 2016-07-13 清华大学深圳研究生院 Assembly structure for electrode and shell of laser and auxiliary assembly device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003060270A (en) * 2001-08-10 2003-02-28 Gigaphoton Inc Pulse oscillation gas laser device
CN105762619A (en) * 2016-05-12 2016-07-13 清华大学深圳研究生院 Assembly structure for electrode and shell of laser and auxiliary assembly device
CN105762619B (en) * 2016-05-12 2018-06-15 清华大学深圳研究生院 A kind of laser electrode and outer housing assembling structure and auxiliary assembling apparatus

Similar Documents

Publication Publication Date Title
JP2564423B2 (en) Laser equipment
US4686682A (en) Discharge excitation type short pulse laser device
US4718072A (en) Corona discharge preionizer for gas laser
US4556981A (en) Laser of the TE type, especially a high-energy laser
Astadjov et al. A CuBr laser with 1.4 W/cm/sup 3/average output power
JPH08772Y2 (en) Recombination laser
JPH02241072A (en) Gas laser equipment
JP2911987B2 (en) Gas laser oscillation device
EP0637106B1 (en) Discharge excitation type laser device
JP2598007B2 (en) Pulse gas laser device
JP2685930B2 (en) Gas laser device
JPH0467797B2 (en)
JPS62243379A (en) Gas pulse laser
JPS63228770A (en) Gas laser device
Sabotinov et al. Copper laser with record specific average output power
JPH04105378A (en) Discharge-excited excimer laser device
JPH07183603A (en) Pulse gas laser device
JPH0528514B2 (en)
JPS6317578A (en) Main discharge electrode for discharge type laser device
JP3441218B2 (en) Semiconductor switch device and electric device using the same
JPS63228776A (en) Gas laser device
JPH03248583A (en) Gas laser oscillator
JPS63228682A (en) Gas laser oscillator
JPH05283777A (en) Gas laser oscillation device
JPH02240981A (en) Gas laser device