JPH02240979A - Gas laser device - Google Patents

Gas laser device

Info

Publication number
JPH02240979A
JPH02240979A JP6163189A JP6163189A JPH02240979A JP H02240979 A JPH02240979 A JP H02240979A JP 6163189 A JP6163189 A JP 6163189A JP 6163189 A JP6163189 A JP 6163189A JP H02240979 A JPH02240979 A JP H02240979A
Authority
JP
Japan
Prior art keywords
cathode
anode
holding part
laser
laser tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6163189A
Other languages
Japanese (ja)
Inventor
Noboru Okamoto
昇 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6163189A priority Critical patent/JPH02240979A/en
Publication of JPH02240979A publication Critical patent/JPH02240979A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/034Optical devices within, or forming part of, the tube, e.g. windows, mirrors

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To absorb impacts of impulse waves which are caused by an electric discharge by providing either of a total reflecting mirror or an output mirror at the holding part of a laser tube through an impact absorption member. CONSTITUTION:A totally reflecting mirror 11 is held at the first holding part 21 which is mounted at an axial one end side of a laser tube and an output mirror 12 is held at the second holding part 22 which is mounted at the other end surface. In the first holding part 21, an impact absorption member 26 consisting of impact absorption materials, e. g. rubber and cork, is provided at a recessed part 25 which is formed at one side of a base plate 24 and the total reflecting mirror 11 is joined and fixed onto the impact absorption member 26. Further, in the same way as the case of the first holding part 21, an impact absorption member 31 is provided at the second holding part 22 and then the output mirror 12 is joined and fixed onto the impact absorption member 31. Impacts of impulse waves which are caused by an electric discharge are thus absorbed.

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の目的] (産業上の利用分野) この発明はガスレーザ媒質を放電エネルギで励起してレ
ーザ光を放出するガスレーザ装置に関する。 (従来の技術) 一般に、TEACO2レーザやエキシマレーザなどのガ
スレーザ装置はガスレーザ媒質が封入されたレーザ管内
に主電極を構成する陰極と陽極とが離間対向して配置さ
れ、これらの間に主放電を発生させることによって上記
レーザ媒質ガスを励起してレーザ光を放出するようにな
っている。 上記陰極と陽極との間に主放電を発生させるに先立ち、
陰極と陽極との間の空間、つまり放電空間をY−備電離
手段によって予fI電離し、レーザ発振を効率よく行な
えるようにしている。 このような従来のガスレーザ装置としては第4図と第5
図とに示す構造のものがあった。すなわち、図中1はレ
ーザ管で、このレーザ管1内にはCO2、N 2 、H
eなどのガスを混合したガスレーザ媒質が封入されてい
る。また、レーザ管1内には一対の保持板2が離間対向
して配置されている。各保持板2の対向する面にはそれ
ぞれ主電極を構成する陰極3と陽極4とが電気的に導通
した状態で保持固定されている。これら陰極3と陽極4
とは高圧電源5に接続されているとともに上記陽極4は
アースされている。 上記一対の保持板2のうち、陰極3が設けられた一方の
保持板2には波形整形のためのピーキングコンデンサ6
aが接続された上部ビン電極6が上記陰極3の両側に、
しかも長手方向に沿って所定間隔で設けられ、他方の保
持板2には先端を上記上部ピン電極6に対向させて下部
ビン電極7が設けられている。 上記レーザ管1内にはガスレーザ媒質を第5図に矢印で
示す方向に循環させるファン8と、このファン8の上流
側に熱交換器9とが配設されている。さらに、レーザ管
1の軸方向一端側と他端側とにはそれぞれホルダ11に
よって全反射ミラー12と出力ミラー13とが気密な状
態で保持されている。 このような構成のガスレーザ装置においては、高圧電源
5が作動して電気エネルギが供給されると、まず上部ピ
ン電極6と下部ビン電極7との対向する端面間で放電が
生じてUV光(紫外光)が発生する。そのUV光は陰極
3と陽極4との間の空間、つまり放電空間を予備電離す
る。放電空間め予備電離が進み、陰極3と陽極4との間
の電圧が大きくなると、これら電極3.4間で主放電が
発生してレーザ光が放出され、そのレーザ光は全反射ミ
ラー11と出力ミラー12との間で増幅されて上記出力
ミラー12から発振されることになる。つまり、レーザ
光は放電方向と直交する方向である各電極3.4の長手
方向に沿って発振される。 ところで、このような構成のガスレーザ装置においては
、上部ビン電極6と下部ビン電極7との間で生じる放電
や陰極3と陽極4との間で生じる主放電によって放電空
間には衝撃波が発生することが避けられない。その衝撃
波は陰極3と陽極4とで反射してこれらの間を往復する
だけでなく、放電空間全体に伝播することになる。その
ため、その衝撃波の衝撃によって放電空間におけるガス
レーザ媒質の流れを不安定にするから、この放電空間か
ら発振されるレーザ光も不安定になることが避けられな
かった。しかも、ガスレーザ媒質の流れが不安定になる
と、レーザ発振の繰返し数を上げることができないとい
うことも生じる。 (発明が解決しようとする課題) このように、従来は放電によって生じる衝撃波の衝撃で
ガスレーザ媒質の流れが不安定になるので、レーザ光の
発振状態も不安定になるばかりか、レーザ発振の繰返し
数を上げることができないなどのことがあった。 この発明は上記事情にもとずきなされたもので、その目
的とするところは、放電によって生じる衝撃波の衝撃を
吸収できるようにしたがスレーザ装置を提供することに
ある。
[Object of the Invention] (Industrial Application Field) The present invention relates to a gas laser device that excites a gas laser medium with discharge energy to emit laser light. (Prior Art) Generally, in a gas laser device such as a TEACO2 laser or an excimer laser, a cathode and an anode, which constitute a main electrode, are placed in a laser tube in which a gas laser medium is sealed, separated from each other, and a main discharge is generated between them. By generating the gas, the laser medium gas is excited to emit laser light. Prior to generating the main discharge between the cathode and anode,
The space between the cathode and the anode, that is, the discharge space, is pre-ionized by the Y-ionization means to enable efficient laser oscillation. Figures 4 and 5 are examples of such conventional gas laser devices.
There was one with the structure shown in the figure. In other words, 1 in the figure is a laser tube, and inside this laser tube 1 are CO2, N2, H.
A gas laser medium mixed with a gas such as e is sealed. Further, a pair of holding plates 2 are arranged in the laser tube 1 so as to be spaced apart from each other and facing each other. A cathode 3 and an anode 4 constituting a main electrode are held and fixed on opposing surfaces of each holding plate 2 in an electrically conductive state. These cathode 3 and anode 4
is connected to a high-voltage power source 5, and the anode 4 is grounded. Of the pair of holding plates 2, one holding plate 2 provided with the cathode 3 has a peaking capacitor 6 for waveform shaping.
The upper bottle electrode 6 to which a is connected is on both sides of the cathode 3,
Furthermore, lower pin electrodes 7 are provided at predetermined intervals along the longitudinal direction, and the other holding plate 2 is provided with lower pin electrodes 7 with their tips facing the upper pin electrodes 6. A fan 8 for circulating a gas laser medium in the direction shown by the arrow in FIG. 5 is disposed within the laser tube 1, and a heat exchanger 9 is disposed upstream of the fan 8. Furthermore, a total reflection mirror 12 and an output mirror 13 are held in an airtight state by holders 11 at one end and the other end in the axial direction of the laser tube 1, respectively. In the gas laser device having such a configuration, when the high-voltage power supply 5 is activated and electrical energy is supplied, a discharge occurs between the opposing end surfaces of the upper pin electrode 6 and the lower bottle electrode 7, and UV light (ultraviolet light) is generated. light) is generated. The UV light pre-ionizes the space between the cathode 3 and the anode 4, that is, the discharge space. When pre-ionization progresses in the discharge space and the voltage between the cathode 3 and anode 4 increases, a main discharge occurs between these electrodes 3.4 and laser light is emitted, and the laser light is reflected by the total reflection mirror 11. It is amplified between the output mirror 12 and is oscillated from the output mirror 12. That is, the laser light is oscillated along the longitudinal direction of each electrode 3.4, which is a direction perpendicular to the discharge direction. By the way, in the gas laser device having such a configuration, shock waves are generated in the discharge space due to the discharge generated between the upper bottle electrode 6 and the lower bottle electrode 7 and the main discharge generated between the cathode 3 and the anode 4. is unavoidable. The shock wave is reflected by the cathode 3 and anode 4 and not only travels back and forth between them, but also propagates throughout the discharge space. Therefore, since the flow of the gas laser medium in the discharge space becomes unstable due to the impact of the shock wave, it is inevitable that the laser light emitted from the discharge space also becomes unstable. Furthermore, if the flow of the gas laser medium becomes unstable, it may become impossible to increase the number of repetitions of laser oscillation. (Problem to be solved by the invention) In this way, conventionally, the flow of the gas laser medium becomes unstable due to the impact of the shock wave generated by the discharge, which not only makes the oscillation state of the laser beam unstable, but also causes repeated laser oscillation. There were some things like not being able to raise the numbers. The present invention was made based on the above circumstances, and its object is to provide a laser device capable of absorbing shock waves generated by electric discharge.

【発明の構成】[Structure of the invention]

(課題を解決するための手段及び作用)上記課題を解決
するためにこの発明は、ガスレーザ媒質が封入されたレ
ーザ管と、このレーザ管内に離間対向して配設された陰
極および陽極からなる主電極と、上記陰極と陽極との間
に電圧を印加する高圧電源と、上記陰極と陽極との間に
生しる主放電に先立つて放電空間を予備電離する予!7
8離手段と、上記陰極と陽極との間に生じる主放電の方
向と直交する光軸方向一端側に配置された全反射ミラー
および他端側に配置された出力ミラーとを具備し、上記
全反射ミラーと出力ミラーとの少なくともどちらか一方
は、上記レーザ管に設けられた保持部に衝撃吸収部材を
介して保持する このような構成とすることで、放電によって発生し放電
空間の全体にわたって伝播する衝撃波が全反射ミラーあ
るいは出力ミラーに衝突すると、その衝撃を上記衝撃吸
収部材によって吸収するようにした。 (実施例) 以下、この発明の一実施例を第1図乃至第3図を参照し
て説明する。なお、第4図に示す従来構造と同一部分に
は同一記号を付して説明を省略する。 すなわち、この発明は、全反射ミラー11がレーザ管1
の軸方向一端側に設けられた第1の保持部21に保持さ
れ、出力ミラー12はレーザ管1の他端面に設けられた
第2の保持部22に保持されている。 上記第1の保持部21は、第2図に示すようにレーザ管
1の一端面に穿設された第1の通孔23と対応する位置
に取付けられたベース板24と、このベース板24の上
記レーザ管1の一端面と対向する一側面に形成された四
部25と、この凹部25に設けられたゴム材やコルクな
どの衝撃を吸収する材料で作られたシート状の衝撃吸収
部材26とから構成されている。そして、この衝撃吸収
部材26に上記全反射ミラー11が接合固定されている
。 上記第2の保持部22は、第3図に示すように第1の保
持部21と同様レーザ管1の他端面に穿設された第2の
通孔27と対応する部分に設けられたベース板28と、
このベース板28の上記レーザ管1の他端面と対向する
一側面に形成された凹部29と、この凹部29に設けら
れたゴム材やコルクなどの衝撃を吸収する材料で作られ
たシート状の衝撃吸収部材31とから構成され、この衝
撃吸収部材31に上記出力ミラー12が接合固定されて
いる。 なお、上記ベース板28と衝撃吸収部材31とには、上
記第2の通孔27と対応する部分にレーザ光が通過する
ための透孔28 a s 31 aが穿設されている。 このような構成のガスレーザ装置において、高圧電源5
を作動させると、上部ビン電極6と下部ビン電極7との
間で放電が生じてUV光が発生し、そのUV光が放電空
間に流れてこの放電空間が予fa電離される。このよう
にして放電空間の予備電離が十分に進むと、陰極3と陽
極4との間で主放電が発生し、その放電方向と直交する
方向にレーザ光が出力されることになる。 放電空間を予備電離するための放電と、レーザ光を出力
させるための主放電とが発生すると、これらの放電によ
って衝撃波が生じ、その衝撃波は放電空間全体に伝播す
る。放電空間に伝播した衝撃波のうち、レーザ光の光・
軸方向であるレーザ管□1の軸方向に伝播した衝撃波は
それぞれ衝撃吸収部材26.31を介してベース板24
.28に取付けられた全反射ミラー11と出力ミラー1
2とに衝突する。そのため、上記衝撃波の衝撃は上記衝
撃吸収部材26.31によって吸収されて低下するから
、衝撃波が放電空間のガスレーザ媒質に与える影響を短
時間で収めることができる。したがって、放電空間で繰
返して行われる放電が衝撃波の衝撃の影響を受けて不安
定になることが少なく、しかも放電の繰返し数を上げる
ことが可能となる。 なお、上記一実施例では全反射ミラーと出力ミラーとの
両方を衝撃吸収部材を介して取付けるようにしたが、こ
れらミラーのどちらか一方だけを衝撃吸収部材を介して
設けるようにしても、衝撃波の衝撃を吸収することがで
きる。また、衝撃吸収部材はゴム材やコルクの代わりに
コイルばねに置き変えてもよい。 〔発明の効果] 以上述べたようにこの発明は、全反射ミラーと出力ミラ
ーの少なくとも一方を、レーザ管に形成された保持部に
衝撃吸収部材を介して設けるようにしたから、放電によ
って生じた衝撃波が上記ミラーに衝突すると、その衝撃
は上記衝撃吸収部材によって吸収される。したがって、
放電による衝撃波の影響で放電空間のガスレーザ媒質の
流れが乱れても、その乱れを短時間で収めることができ
るから、レーザ出力の安定化が計れるばかりが、レーザ
発振の繰返し数を上げることができる。
(Means and Effects for Solving the Problems) In order to solve the above problems, the present invention provides a main body consisting of a laser tube in which a gas laser medium is sealed, and a cathode and an anode arranged spaced apart from each other in the laser tube. A high-voltage power supply that applies a voltage between the electrode, the cathode and the anode, and a pre-ionization unit that pre-ionizes the discharge space prior to the main discharge that occurs between the cathode and the anode. 7
8 separating means, a total reflection mirror disposed at one end in the optical axis direction perpendicular to the direction of the main discharge generated between the cathode and the anode, and an output mirror disposed at the other end; At least one of the reflection mirror and the output mirror is held in a holding part provided on the laser tube via a shock absorbing member, so that the discharge generated by the discharge and propagated throughout the discharge space can be prevented. When the shock wave collides with the total reflection mirror or the output mirror, the shock is absorbed by the shock absorbing member. (Embodiment) An embodiment of the present invention will be described below with reference to FIGS. 1 to 3. Note that the same parts as those in the conventional structure shown in FIG. 4 are given the same symbols and their explanations will be omitted. That is, in this invention, the total reflection mirror 11 is connected to the laser tube 1.
The output mirror 12 is held by a first holding part 21 provided at one axial end of the laser tube 1 , and the output mirror 12 is held by a second holding part 22 provided at the other end of the laser tube 1 . The first holding section 21 includes a base plate 24 attached at a position corresponding to a first through hole 23 bored in one end surface of the laser tube 1, as shown in FIG. A four part 25 formed on one side surface opposite to one end face of the laser tube 1, and a sheet-like shock absorbing member 26 made of a shock absorbing material such as rubber or cork provided in this recess 25. It is composed of. The total reflection mirror 11 is bonded and fixed to this shock absorbing member 26. As shown in FIG. 3, the second holding part 22 is a base provided in a portion corresponding to a second through hole 27 bored in the other end surface of the laser tube 1, similar to the first holding part 21. board 28;
A recess 29 is formed on one side of the base plate 28 facing the other end of the laser tube 1, and a sheet-like sheet made of a shock-absorbing material such as rubber or cork is provided in the recess 29. The output mirror 12 is bonded and fixed to the shock absorbing member 31. Note that the base plate 28 and the shock absorbing member 31 are provided with a through hole 28 a s 31 a in a portion corresponding to the second through hole 27 through which the laser beam passes. In the gas laser device having such a configuration, the high voltage power supply 5
When activated, a discharge occurs between the upper bin electrode 6 and the lower bin electrode 7, generating UV light, which flows into the discharge space to pre-ionize the discharge space. When the preliminary ionization of the discharge space progresses sufficiently in this manner, a main discharge occurs between the cathode 3 and the anode 4, and laser light is output in a direction perpendicular to the direction of the discharge. When a discharge for pre-ionizing the discharge space and a main discharge for outputting laser light are generated, shock waves are generated by these discharges, and the shock waves propagate throughout the discharge space. Of the shock waves propagated in the discharge space, the laser light and
Shock waves propagated in the axial direction of the laser tube □1 are transmitted to the base plate 24 via shock absorbing members 26 and 31, respectively.
.. Total reflection mirror 11 and output mirror 1 attached to 28
Collision with 2. Therefore, the impact of the shock wave is absorbed and reduced by the shock absorbing member 26, 31, so that the influence of the shock wave on the gas laser medium in the discharge space can be suppressed in a short time. Therefore, the discharge that is repeatedly performed in the discharge space is less likely to become unstable due to the impact of the shock wave, and moreover, it is possible to increase the number of discharge repetitions. Note that in the above embodiment, both the total reflection mirror and the output mirror are attached via the shock absorbing member, but even if only one of these mirrors is attached via the shock absorbing member, the shock wave can absorb shock. Further, the shock absorbing member may be replaced with a coil spring instead of a rubber material or cork. [Effects of the Invention] As described above, in this invention, at least one of the total reflection mirror and the output mirror is provided in the holding part formed on the laser tube through a shock absorbing member, so that the impact caused by electric discharge can be reduced. When a shock wave collides with the mirror, the impact is absorbed by the shock absorbing member. therefore,
Even if the flow of the gas laser medium in the discharge space is disturbed due to the shock wave caused by the discharge, the disturbance can be corrected in a short time, which not only stabilizes the laser output but also increases the number of repetitions of laser oscillation. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示すレーザ管の光軸方向
に沿う断面図、第2図は同じく全反射ミラーの拡大断面
図、第3図は同じく出力ミラーの拡大断面図、第4図は
従来のガスレーザ装置の光軸方向に沿う断面図、第5図
は同じく光軸方向と直交する方向の断面図である。 1・・・レーザ管、3・・・陰極、4・・・陽極、5・
・・高圧電源、6・・・上部ビン電極、7・・・下部ピ
ン電極、11・・・全反射ミラー 12・・・出力ミラ
ー 21・・・第1の保持部、22・・・第2の保持部
、424.28・・・ベース板、26.31・・・衝撃
吸収部材。
FIG. 1 is a sectional view along the optical axis of a laser tube showing an embodiment of the present invention, FIG. 2 is an enlarged sectional view of a total reflection mirror, FIG. 3 is an enlarged sectional view of an output mirror, and FIG. The figure is a cross-sectional view of a conventional gas laser device taken along the optical axis direction, and FIG. 5 is a cross-sectional view taken in a direction perpendicular to the optical axis direction. 1... Laser tube, 3... Cathode, 4... Anode, 5...
...High voltage power supply, 6.. Upper bottle electrode, 7.. Lower pin electrode, 11.. Total reflection mirror 12.. Output mirror 21.. First holding part, 22.. Second 424.28 Base plate, 26.31 Shock absorbing member.

Claims (1)

【特許請求の範囲】[Claims]  ガスレーザ媒質が封入されたレーザ管と、このレーザ
管内に離間対向して配設された陰極および陽極からなる
主電極と、上記陰極と陽極との間に電圧を印加する高圧
電源と、上記陰極と陽極との間に生じる主放電に先立っ
て放電空間を予備電離する予備電離手段と、上記陰極と
陽極との間に生じる主放電の方向と直交する光軸方向一
端側に配置された全反射ミラーおよび他端側に配置され
た出力ミラーとを具備し、上記全反射ミラーと出力ミラ
ーとの少なくともどちらか一方は、上記レーザ管に設け
られた保持部に衝撃吸収部材を介して保持されているこ
とを特徴とするガスレーザ装置。
A laser tube in which a gas laser medium is sealed, a main electrode consisting of a cathode and an anode arranged spaced apart and facing each other in the laser tube, a high-voltage power supply that applies a voltage between the cathode and the anode, and the cathode and the anode. Pre-ionization means for pre-ionizing a discharge space prior to the main discharge occurring between the cathode and the anode, and a total reflection mirror disposed at one end in the optical axis direction perpendicular to the direction of the main discharge occurring between the cathode and the anode. and an output mirror disposed on the other end side, and at least one of the total reflection mirror and the output mirror is held by a holding part provided on the laser tube via a shock absorbing member. A gas laser device characterized by:
JP6163189A 1989-03-14 1989-03-14 Gas laser device Pending JPH02240979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6163189A JPH02240979A (en) 1989-03-14 1989-03-14 Gas laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6163189A JPH02240979A (en) 1989-03-14 1989-03-14 Gas laser device

Publications (1)

Publication Number Publication Date
JPH02240979A true JPH02240979A (en) 1990-09-25

Family

ID=13176733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6163189A Pending JPH02240979A (en) 1989-03-14 1989-03-14 Gas laser device

Country Status (1)

Country Link
JP (1) JPH02240979A (en)

Similar Documents

Publication Publication Date Title
EP2690723A1 (en) Single-cavity dual-electrode discharge cavity and excimer laser
US5042047A (en) Laser apparatus
JPH02240979A (en) Gas laser device
US4507788A (en) Multiple pulse tea laser
JPS63228770A (en) Gas laser device
CA1187926A (en) Multiple pulse tea laser
JP2911987B2 (en) Gas laser oscillation device
JPH06216436A (en) Gas laser device
JPH02241072A (en) Gas laser equipment
JPH0381314B2 (en)
US4594721A (en) Corona discharge preionized high pulse repetition frequency laser
JP2685930B2 (en) Gas laser device
JPS61228690A (en) Supersonic excimer laser device
JPH03178179A (en) Gas laser oscillation equipment
JPH02268476A (en) Pulse gas laser oscillator
JP2980707B2 (en) Gas laser oscillation device
JPH01194481A (en) Gas laser oscillating apparatus
JPH01274485A (en) Pulse laser device
JPH07162060A (en) Gas laser
JPS63202980A (en) Gas laser equipment
JPS62243379A (en) Gas pulse laser
JPH01128482A (en) Gas laser oscillator
JPH03116989A (en) Gas laser oscillating device
JPH0535585B2 (en)
JPH0818133A (en) Gas pulse laser