JPH03178179A - Gas laser oscillation equipment - Google Patents

Gas laser oscillation equipment

Info

Publication number
JPH03178179A
JPH03178179A JP31643289A JP31643289A JPH03178179A JP H03178179 A JPH03178179 A JP H03178179A JP 31643289 A JP31643289 A JP 31643289A JP 31643289 A JP31643289 A JP 31643289A JP H03178179 A JPH03178179 A JP H03178179A
Authority
JP
Japan
Prior art keywords
main discharge
laser
shock
shock absorber
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31643289A
Other languages
Japanese (ja)
Inventor
Noboru Okamoto
昇 岡本
Koji Kakizaki
弘司 柿崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP31643289A priority Critical patent/JPH03178179A/en
Publication of JPH03178179A publication Critical patent/JPH03178179A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/034Optical devices within, or forming part of, the tube, e.g. windows, mirrors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/036Means for obtaining or maintaining the desired gas pressure within the tube, e.g. by gettering, replenishing; Means for circulating the gas, e.g. for equalising the pressure within the tube

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To decrease effect by a shock waves or the like generated at the time of discharge, by installing a shock absorber in front of the reflecting surface of at least one of resonator mirrors on a part of which a laser light transmitting part is formed. CONSTITUTION:Shock absorbers 20 and 20 are installed in front of a highly reflecting mirror 16 and an output mirror 17, respectively, and a space is constituted so as to optically resonate while synchronizing a main discharge between a cathode 2 and an anode 3. A part of the shock absorber 20 is notched in the radiation direction, and a notched part is formed in a light transmitting part 21. Said part 21 has almost the same shape as the main discharge section shape between the cathode 2 and the anode 3, which section is shown in the optical axial direction of a laser tube 1 by a dot-and-dash chain line in Figure. The shock absorbers 20 are fixed in the laser tube 1 so as to be able to rotate freely. Thereby shock wave and acoustic wave are almost absorbed in the shock absorbers 20, and standing wave is scarcely generated, so that the fluctuation of laser medium and the disturbance of gas flow are decreased, and laser oscillation is stabilized.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は放電時の衝撃波の影響を小さくしたガスレーザ
発振装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a gas laser oscillation device that reduces the influence of shock waves during discharge.

(従来の技術) TEA (Transversary  Ex−cit
ed  Atomosphricpressure)C
o2レーザやエキシマレーザなどのパルス発振するガス
レーザ発振装置は、一般的には第5図に示す構造のもの
が知られていた。すなわち、ガスレーザ媒質が封入され
た円筒状のレーザ管(1)を有し、このレーザ管(1)
内には主放電電極を構成する陰極(2)および陽極(3
)がそれぞれ一対の保持板(4a) 、(4b)に電気
的に導通した状態で保持されている。これら陰極(2)
および陽極(3〉とは後述する予備電離放電とこの予備
電離放電後のパルス主放電のタイミングを制御する発振
制御部(5)を介して高圧電源(6〉に接続されている
とともに、陽極(3)はアースされている。
(Conventional technology) TEA (Transversary Ex-cit)
ed Atomosphere pressure)C
2. Description of the Related Art Gas laser oscillation devices that emit pulses, such as o2 lasers and excimer lasers, generally have a structure shown in FIG. 5. That is, it has a cylindrical laser tube (1) in which a gas laser medium is enclosed, and this laser tube (1)
Inside are a cathode (2) and an anode (3) that constitute the main discharge electrode.
) are held in electrically conductive state by a pair of holding plates (4a) and (4b), respectively. These cathodes (2)
The anode (3) is connected to a high-voltage power source (6>) via an oscillation control unit (5) that controls the timing of a pre-ionization discharge and a pulsed main discharge after this pre-ionization discharge, which will be described later. 3) is grounded.

陰極(2)側の保持板(4a)には波形成形のためのピ
ーキングコンデンサ(7)が接続された上部ビン電極(
8)が主放電空間(9)における光軸に沿って陰極(2
)の両側に所定ピッチで設けられている。
The holding plate (4a) on the cathode (2) side has an upper bin electrode (2) connected to a peaking capacitor (7) for waveform shaping.
8) is a cathode (2) along the optical axis in the main discharge space (9).
) are provided at a predetermined pitch on both sides.

また、対になる他方の保持板(4b〉には各上部ビン電
極(8)とそれぞれ対向して下部ビン電極(11)が設
けられ、上部ビン電極(8)、下部ビン電極(11)と
で予備電離電極を構成している。これら予rittN電
極は放電発生のために図示せぬ補助電源に接続され、こ
の補助電源は発振制御部(5〉に接続し、放電制御され
るようになっている。
Further, the other pair of holding plates (4b) are provided with lower bin electrodes (11) facing each of the upper bin electrodes (8), and the upper bin electrodes (8) and the lower bin electrodes (11) These pre-ionization electrodes are connected to an auxiliary power source (not shown) in order to generate discharge, and this auxiliary power source is connected to the oscillation control section (5>) to control the discharge. ing.

レーザ管(1〉内には上記主放電電極や予備電離電極と
は別に、ガスレーザ媒質をレーザ管(1)で循環して主
放電空間(9)に供給するファン(12)と、このファ
ン(12)の上流側に熱交換! (13)とが設けられ
ている。ファン(12)はカップリング(14)を介し
てレーザ管(1)外に設けられたモータ(i5〉で高速
回転されるようになっている。さらに、レーザ管(1)
の両端部において、主放電空間(9)に対向する箇所の
一方に高反射ミラー(1B>が、他方に出力ミラー(1
7)がそれぞれホルダ(18a) 、 (18b)によ
って光軸調整自在、かつ気密に取り付けられている。
Inside the laser tube (1), in addition to the main discharge electrode and pre-ionization electrode, there is a fan (12) that circulates the gas laser medium through the laser tube (1) and supplies it to the main discharge space (9), and this fan (1). A heat exchange! (13) is installed on the upstream side of the laser tube (12).The fan (12) is rotated at high speed by a motor (i5) installed outside the laser tube (1) via a coupling (14). In addition, the laser tube (1)
At both ends of the
7) are attached air-tightly and with adjustable optical axes by holders (18a) and (18b), respectively.

(発明が解決しようとする課8) 上記のような構成の発振装置では、主に陰極(2〉と陽
極(3〉との間の主放電によって主放電空間(9〉に衝
撃波とともに高音の音響波が発生する。
(Issue 8 to be solved by the invention) In the oscillation device configured as described above, a shock wave and high-pitched sound are generated in the main discharge space (9) mainly due to the main discharge between the cathode (2) and the anode (3). Waves are generated.

この衝撃波および音響波は高反射ミラー〈18)、出力
ミラー(17)間で反射して主放電空間(9)に定在波
が発生する。この定在波によって放電励起を受けている
ガスレーザ媒質が揺らぎ、主放電を不安定にする。また
、ガスレーザ媒質の流れが乱されるために、レーザ発振
の繰り返し数を上げることができなかった。
This shock wave and acoustic wave are reflected between the high reflection mirror (18) and the output mirror (17) to generate a standing wave in the main discharge space (9). This standing wave causes the gas laser medium undergoing discharge excitation to fluctuate, making the main discharge unstable. Furthermore, since the flow of the gas laser medium is disturbed, the number of repetitions of laser oscillation cannot be increased.

本発明はこのような事情に鑑みてなされたもので、放電
時に発生する衝撃波等の影響を小さくしたガスレーザ発
振装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a gas laser oscillation device in which the influence of shock waves and the like generated during discharge is reduced.

〔発明の構成] (課題を解決するための手段と作用) ガスレーザ媒質が封入されたレーザ管と、このレーザ管
内に対向して設けられた主放電電極と、この主放電電極
に主放電用の高電圧を印加する高圧電源と、主放電に先
立って主放電空間を予備電離する予備電離手段と、上記
主放電電極を間にして設けられた共振器ミラーを備えた
がスレーザ発振装置において、一部にレーザ光透過部が
形成され上記共振器ミラーの少なくとも一方のミラーの
反射面前方で背負え剥板収面を上記主放電電極側に向け
て設けられた衝撃吸収体と、上記レーザ光透過部を光軸
に横切・らせて回転させる回転手段と、上記回転中上記
主放電に同期して上記レーザ光透過部を上記共振器ミラ
ーの反射面に対面させる制御手段とを備えたもので、放
電時に発生した衝撃波は共振器ミラーに入射する前に大
部分が衝撃吸収体に吸収される。
[Structure of the invention] (Means and effects for solving the problem) A laser tube in which a gas laser medium is sealed, a main discharge electrode provided oppositely in the laser tube, and a main discharge electrode provided on the main discharge electrode to face each other. In the laser oscillation device, which includes a high voltage power supply that applies a high voltage, a pre-ionization means that pre-ionizes the main discharge space prior to main discharge, and a resonator mirror provided with the main discharge electrode in between, a shock absorber having a laser beam transmitting portion formed therein and provided in front of the reflective surface of at least one of the mirrors of the resonator mirror with the shoulder stripping surface facing toward the main discharge electrode side; and the laser beam transmitting portion. and a control means for causing the laser beam transmitting part to face the reflective surface of the resonator mirror in synchronization with the main discharge during the rotation. Most of the shock waves generated during discharge are absorbed by the shock absorber before entering the resonator mirror.

(実施例) 以下、実施例を示す図面に基づいて本発明を説明する。(Example) EMBODIMENT OF THE INVENTION Hereinafter, this invention will be explained based on drawing which shows an Example.

なお、実施例を示す図面において、第4図に示す従来例
と共通する部分には同一符号を付し、これら同一符号部
分の詳細な説明は省略する。
In the drawings showing the embodiment, parts common to the conventional example shown in FIG. 4 are given the same reference numerals, and detailed explanations of these parts with the same numbers will be omitted.

すなわち、第1図は本発明の一実施例で、上記従来例と
は高反射ミラー(1B)、!、出力ミラー(17〉の反
射面の前方にそれぞれ衝撃吸収体(20>、 (20)
を設け、陰極(2)と陽極(3)との主放電に同期して
光共振する構成にした点が異なる。衝撃吸収体(20)
は材質的、または構造的に各種のものが考えられるが、
この実施例では第2図および133図に示すように円盤
状のセラミックス基体(20a)の表面に塩化ビニール
やポリエチレン等の硬質性の連続発泡体(20b)を接
着した構造になっている。衝撃吸収体〈20)の一部は
放射方向に切欠され、この切欠された部分が光透過部(
21)に形成されている。
That is, FIG. 1 shows one embodiment of the present invention, and the conventional example described above is a high reflection mirror (1B)! , a shock absorber (20>, (20)) is placed in front of the reflective surface of the output mirror (17>).
The difference is that a structure is provided in which optical resonance occurs in synchronization with the main discharge between the cathode (2) and the anode (3). Shock absorber (20)
There can be various types of materials or structures, but
As shown in FIGS. 2 and 133, this embodiment has a structure in which a rigid open foam (20b) made of vinyl chloride, polyethylene, etc. is adhered to the surface of a disc-shaped ceramic base (20a). A part of the shock absorber (20) is cut out in the radial direction, and this cut out part becomes the light transmitting part (20).
21).

この光透過部(21)はレーザ管(1)の光軸方向にお
いて図中−点鎖線で示す陰極(2と)陽極(3〉との間
の主放電断面形とほぼ同じ形になっている。また、光透
過部(21)の近傍の連続発泡体(20b)の表面には
発光体(22)が接着されている。上記衝撃吸収体(2
0〉はレーザ管(1)内で回転自在に設けられている。
In the optical axis direction of the laser tube (1), this light transmitting part (21) has almost the same shape as the main discharge cross-sectional shape between the cathode (2) and the anode (3) shown by the dashed line in the figure. Furthermore, a light emitting body (22) is adhered to the surface of the open foam body (20b) near the light transmitting part (21).
0> is rotatably provided within the laser tube (1).

すなわち、衝撃吸収体(20)は回転軸(24)に軸着
され、この回転軸(24)はレーザ管(1)の側部内壁
面に取付けた支持体(25〉の先端部と、レーザ管(1
〉の端部内壁部とで高速回転可能に支持されている。回
転軸(24〉はプーリ(26a) 、 (26b)を介
してレーザ管(1)の外部に設けたモータ(28)によ
ってベルト駆動されるようになっている。このモータ(
28)は図示せぬカバーによって気密に封止されている
。支持体(25)の後端部側には上記発光体(22)を
検出できる箇所にフォトセンサ(30〉が取付けられて
いる。このフォトセンサ(30)は信号制御部(31〉
に接続し、信号制御部(31)の出力信号が発振制御部
(5)に入力後に主放電を開始するようになっている。
That is, the shock absorber (20) is attached to a rotating shaft (24), and this rotating shaft (24) connects the tip of the support (25> attached to the side inner wall surface of the laser tube (1)) and the laser tube. (1
> is supported for high speed rotation by the inner wall of the end. The rotating shaft (24) is belt-driven by a motor (28) provided outside the laser tube (1) via pulleys (26a) and (26b).
28) is hermetically sealed by a cover (not shown). A photosensor (30) is attached to the rear end side of the support body (25) at a location where the light emitting body (22) can be detected.This photosensor (30) is connected to the signal controller (31>
The main discharge is started after the output signal of the signal control section (31) is input to the oscillation control section (5).

すなわち、フォトセンサ(30)からの検出信号が信号
制御部(31)に入力すると、信号制御部(31〉では
この信号を所定時間遅延して発振制御部(5〉に入力す
る。この入力後、発振制御部(5〉において予備電離電
極の上部、下部ピン電極(8)、(11)間で予備放電
が発生し、続いて陰極(2〉、陽極(3〉間で主放電が
発生するように構成されている。また、このとき信号制
御部(31〉において、主放電発生時に衝撃吸収体(2
0)の光透過部(21)が高反射ミラー(16)と出力
ミラー(17)の反射面に対面するタイミングとなるよ
うに、上記遅延時間が設定されている。
That is, when a detection signal from the photosensor (30) is input to the signal control section (31), the signal control section (31> delays this signal by a predetermined time and inputs it to the oscillation control section (5>). , a preliminary discharge occurs between the upper and lower pin electrodes (8) and (11) of the preliminary ionization electrode in the oscillation control unit (5>), and then a main discharge occurs between the cathode (2> and the anode (3)). At this time, the signal control unit (31) controls the shock absorber (2) when the main discharge occurs.
The delay time is set so that the light transmitting portion (21) of 0) faces the reflective surfaces of the high reflection mirror (16) and the output mirror (17).

次に上記構成の作用について説明する。高圧電源(6)
、予備電離電極用の図示せぬ補助電源をONにし、また
、ファン(12)用のモータ(14)および熱交換器(
13)を駆動させて発振準備した後、モータ(28)が
駆動され、衝撃吸収体(20)が回転される。
Next, the operation of the above configuration will be explained. High voltage power supply (6)
, turn on the auxiliary power source (not shown) for the pre-ionization electrode, and turn on the motor (14) for the fan (12) and the heat exchanger (
13) to prepare for oscillation, the motor (28) is driven and the shock absorber (20) is rotated.

この回転で光発光体(22)はフォトセンサ(30〉に
よって検出され、その検出信号が信号制御部(31〉に
送られ、さらにその出力信号が発振制御部(5〉に入力
し上記放電動作が開始される。すなわち、主放電発生時
においては、衝撃吸収体(20〉に形成された光透過部
(21)は高反射ミラー(IB〉と出力ミラー (17
)の反射面に対面し、レーザ発振が起こり、出力ミラー
(17)からレーザ光が出力される。上記対面後は、衝
撃吸収性を有する連続発泡体(20b)の部分が上記反
射面に対面し、主放電時に発生した衝撃波や音響波は高
反射ミラー(16)と出力ミラー (17)に到達前に
、大部分が連続発泡体(20b)で遮蔽されるとともに
、吸収される。
With this rotation, the light emitting body (22) is detected by the photosensor (30>), the detection signal is sent to the signal control unit (31>), and the output signal is input to the oscillation control unit (5>) to perform the above-mentioned discharge operation. That is, when the main discharge occurs, the light transmitting part (21) formed on the shock absorber (20) connects the high reflection mirror (IB> and the output mirror (17)
), laser oscillation occurs and laser light is output from the output mirror (17). After the above-mentioned facing, the part of the continuous foam (20b) having shock absorbing properties faces the above-mentioned reflective surface, and the shock waves and acoustic waves generated during the main discharge reach the high-reflection mirror (16) and the output mirror (17). Before that, most of the material is shielded with open foam (20b) and absorbed.

なお、上記実施例では高反射ミラー(16)と出力ミラ
ー(17〉の両方の反射面前面に衝撃吸収体(20)を
設けたが、どちらか一方に設けても上記衝撃波が吸収さ
れる。また、同実施例では衝撃吸収体(20)に光透過
部(2i)を一箇所のみ形成したが、三箇所以上でもよ
く、例えば4図に示すよう、光透過部(21〉を等角度
に三箇所に形成し、光発光体(22〉もこれら光透過部
(21)に対応して三箇所に設けることで、モータ(2
8)の回転数を173に減らすことができる。
In the above embodiment, the shock absorber (20) was provided in front of the reflective surfaces of both the high reflection mirror (16) and the output mirror (17>), but the shock wave can be absorbed even if it is provided on either one. In addition, in the same example, the light transmitting part (2i) was formed in only one place on the shock absorber (20), but it may be formed in three or more places.For example, as shown in Fig. 4, the light transmitting part (21>) is formed at equal angles. By forming the light emitters (22) at three locations corresponding to these light transmitting portions (21),
8) can be reduced to 173 rotations.

[発明の効果コ 衝撃波や音響波が衝撃吸収体に大部分吸収されるので、
主放電空間に定在波が殆ど発生しなくなる。したがって
、ガスレーザ媒質の揺らぎやガス流の乱れが極めて小さ
くなり、レーザ発振が安定し、また、レーザ発振繰返し
数を上げることができた。
[Effects of the invention: Most of the shock waves and acoustic waves are absorbed by the shock absorber, so
Almost no standing waves are generated in the main discharge space. Therefore, fluctuations in the gas laser medium and turbulence in the gas flow became extremely small, making it possible to stabilize laser oscillation and increase the number of repetitions of laser oscillation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す断面図、第2図はこの
一実施例における衝撃吸収体の拡大平面図、第3図は第
2図の■−■線で切断した断面図、第4図は衝撃吸収体
の変形例を示す拡大平面図、第5図は従来例を示す断面
図である。 (1〉  ・・・レーザ管 (2)・・・陰極 (3)・・・陽極 (5)・・・発振制御部 (6〉  ・・・高圧電源 (16)・・・高反射ミラー (17〉・・・出力ミラー (20〉・・・衝撃吸収体 (21)・・・レーザ光透過部 (30)・・・フォトセンサ (31)・・・信号制御部
FIG. 1 is a sectional view showing an embodiment of the present invention, FIG. 2 is an enlarged plan view of a shock absorber in this embodiment, and FIG. 3 is a sectional view taken along the line ■-■ in FIG. FIG. 4 is an enlarged plan view showing a modified example of the shock absorber, and FIG. 5 is a sectional view showing a conventional example. (1>...Laser tube (2)...Cathode (3)...Anode (5)...Oscillation control unit (6>...High voltage power supply (16)...High reflection mirror (17) 〉...Output mirror (20>...Shock absorber (21)...Laser light transmission section (30)...Photo sensor (31)...Signal control section

Claims (1)

【特許請求の範囲】[Claims] ガスレーザ媒質が封入されたレーザ管と、このレーザ管
内に対向して設けられた主放電電極と、この主放電電極
に主放電用の高電圧を印加する高圧電源と、主放電に先
立って主放電空間を予備電離する予備電離手段と、上記
主放電電極を間にして設けられた共振器ミラーを備えた
ガスレーザ発振装置において、一部にレーザ光透過部が
形成され上記共振器ミラーの少なくとも一方のミラーの
反射面前方で衝撃吸収面を上記主放電電極側に向けて設
けられた衝撃吸収体と、上記レーザ光透過部を光軸に横
切らせて回転させる回転手段と、上記回転中上記主放電
に同期して上記レーザ光透過部を上記共振器ミラーの反
射面に対面させる制御手段とを備えたことを特徴とする
ガスレーザ発振装置。
A laser tube in which a gas laser medium is sealed, a main discharge electrode provided facing inside the laser tube, a high-voltage power supply that applies a high voltage for main discharge to this main discharge electrode, and a main discharge In a gas laser oscillation device including a pre-ionization means for pre-ionizing a space and a resonator mirror provided with the main discharge electrode in between, a laser beam transmitting portion is formed in a part of the resonator mirror, and at least one of the resonator mirrors is provided with a laser beam transmitting portion. a shock absorber provided in front of the reflective surface of the mirror with the shock absorbing surface facing the main discharge electrode side; a rotating means for rotating the laser beam transmitting section across the optical axis; and control means for causing the laser beam transmitting section to face the reflective surface of the resonator mirror in synchronization with the gas laser oscillation device.
JP31643289A 1989-12-07 1989-12-07 Gas laser oscillation equipment Pending JPH03178179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31643289A JPH03178179A (en) 1989-12-07 1989-12-07 Gas laser oscillation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31643289A JPH03178179A (en) 1989-12-07 1989-12-07 Gas laser oscillation equipment

Publications (1)

Publication Number Publication Date
JPH03178179A true JPH03178179A (en) 1991-08-02

Family

ID=18077018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31643289A Pending JPH03178179A (en) 1989-12-07 1989-12-07 Gas laser oscillation equipment

Country Status (1)

Country Link
JP (1) JPH03178179A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08167748A (en) * 1994-12-14 1996-06-25 Hitachi Ltd Pulse laser oscillator device
EP1060542A1 (en) * 1998-03-06 2000-12-20 Cymer, Inc. Laser chamber with minimized acoustic and shock wave disturbances

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08167748A (en) * 1994-12-14 1996-06-25 Hitachi Ltd Pulse laser oscillator device
EP1060542A1 (en) * 1998-03-06 2000-12-20 Cymer, Inc. Laser chamber with minimized acoustic and shock wave disturbances
EP1060542A4 (en) * 1998-03-06 2005-11-09 Cymer Inc Laser chamber with minimized acoustic and shock wave disturbances

Similar Documents

Publication Publication Date Title
JP3316698B2 (en) Laser device
JPH0362579A (en) Laser system
US4479225A (en) Combined laser resonator structure
US4308506A (en) Fast acousto-optic Q-switch laser
WO1986001347A1 (en) A co2 tea laser utilizing an intra-cavity prism q-switch
JPH03178179A (en) Gas laser oscillation equipment
EP0689725B1 (en) A laser
JP2895014B2 (en) Ion laser device
WO1994022189A9 (en) A laser
GB1242642A (en) Laser
JPH03185885A (en) Pulsed gas laser
JP2693004B2 (en) Gas laser oscillation device
JPH04129283A (en) Gas laser oscillator
JPH06216436A (en) Gas laser device
JPS63227082A (en) Gas laser oscillator
JPS59147477A (en) Laser oscillator
JPS628585A (en) Laser light source apparatus
JP2685946B2 (en) Gas laser oscillation device
JPH02143477A (en) Laser resonator
JPS59220984A (en) Laser oscillating device
JPH08167748A (en) Pulse laser oscillator device
JPS5878479A (en) Optical adjusting mechanism for gas laser tube
JP2010016194A (en) Q-switch laser oscillator
JPS6242477A (en) Laser oscillation device
JPH02240979A (en) Gas laser device