JPS6242477A - Laser oscillation device - Google Patents

Laser oscillation device

Info

Publication number
JPS6242477A
JPS6242477A JP18093485A JP18093485A JPS6242477A JP S6242477 A JPS6242477 A JP S6242477A JP 18093485 A JP18093485 A JP 18093485A JP 18093485 A JP18093485 A JP 18093485A JP S6242477 A JPS6242477 A JP S6242477A
Authority
JP
Japan
Prior art keywords
optical
optical fiber
guide path
thin tube
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18093485A
Other languages
Japanese (ja)
Inventor
Tatsumi Goto
後藤 達美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP18093485A priority Critical patent/JPS6242477A/en
Publication of JPS6242477A publication Critical patent/JPS6242477A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
    • H01S3/0975Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser using inductive or capacitive excitation

Abstract

PURPOSE:To enable transmission without requiring any additional optical system for the optical fiber by an arrangement wherein the optical fiber is made to also act as a resonator mirror and integrated with the optical guide path. CONSTITUTION:The electrodes 31, 32 oppositely attached on the outer surface of a thin tube 30 are connected to a RF power supply 33. In one end of the thin tube 30 a highly reflective mirror 36 is airtightly inserted orthogonally with the axis of an optical guide path 35. In the other end, an optical fiber 37, the core diameter of which is substantially same as the diameter of the reflecting surface of the highly reflective mirror 36, is inserted so that the whole surface of the core blocks up the optical guide path 35, maintaining the optical guide path 35 and the outside air in airtightness. The core end opposite to the highly reflective mirror 36 has been applied with a coating treatment so as to have a predetermined reflectance for also acting as the output mirror. In this arrangement, an optical resonator is constructed with the highly reflective mirror 36 and the end face of the optical fiber 37, and the reflected light 40 is transmitted using the optical guide path 35 as a wave guiding path. Therefore, an optical system for incidence becomes unnecessary.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は導波路形のレーザ発振装置に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a waveguide type laser oscillation device.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、この種のレーザ発振装置は内部ミラ一式として、
第4図に示すように中央が細管部(1)になり、この細
管部(1)の周囲に冷却水の流路(2)を形成した二重
構造の管体(3)を有し、細管部(1)の両端側に安定
化抵抗(4)を介した直流電源(5)に接続されたそれ
ぞれアノード(6)およびカソード(7)を配置し、細
管部(3)と同軸に配置した出力鏡(8)および高反射
鏡(9)からなる共振器鏡で管体(3)の両端部を閉塞
した構造のものと、第5図に示すよう細管部四の外側面
に電極C11)、(13を対向させて取付け、これら電
極に几F電源0を接続した構造のものがある。
Conventionally, this type of laser oscillation device has a set of internal mirrors.
As shown in FIG. 4, it has a double-structured tube body (3) with a thin tube part (1) in the center and a cooling water flow path (2) around this thin tube part (1), An anode (6) and a cathode (7) connected to a DC power source (5) via a stabilizing resistor (4) are arranged at both ends of the thin tube section (1), and are arranged coaxially with the thin tube section (3). A structure in which both ends of the tube body (3) are closed with a resonator mirror consisting of an output mirror (8) and a high reflection mirror (9), and an electrode C11 on the outer surface of the thin tube section 4 as shown in FIG. ), (13) are mounted facing each other, and a power source 0 is connected to these electrodes.

なお、細管部α1の冷却用として冷却管t14)が一方
の電極@に当接されている。
Note that a cooling pipe t14) for cooling the thin tube portion α1 is brought into contact with one electrode @.

また、外部ミラ一式として、第6図に示すように、管体
−の両端部をブリコースタ窓μeとし、管体(l!19
の外部に出力鏡(8)および高反射a(9)を配置した
構造のものがある。なお、この構造ではアノード(US
、カソード0は管体41!9内においてレーザ光軸から
外れた位置に設けられている。
In addition, as shown in Fig. 6, as a set of external mirrors, both ends of the tube body are made with bricoaster windows μe, and the tube body (l!19
There is a structure in which an output mirror (8) and a high reflection a (9) are arranged outside the mirror. Note that in this structure, the anode (US
, the cathode 0 is provided within the tube body 41!9 at a position off the laser optical axis.

上記従来のいずれの方式においても共振器鏡は細管部の
両端から距離において取り付けられている構造のため、
共振器鏡の反射角度の微調が必要となり、かつこの部分
での損失も不at’ iである。
In any of the above conventional methods, the resonator mirror is installed at a distance from both ends of the thin tube, so
Fine adjustment of the reflection angle of the resonator mirror is required, and the loss in this part is also insignificant.

また、これら装置から出力されたレーザ光(20)を光
ファイバーで伝送する場合には光ファイバーに入光させ
るための集光レンズ等の光学系が必要となり、その光学
系を調整する機構も必要となってくる。
In addition, when transmitting the laser light (20) output from these devices through an optical fiber, an optical system such as a condenser lens is required to input the light into the optical fiber, and a mechanism for adjusting the optical system is also required. It's coming.

〔発明の目的〕[Purpose of the invention]

本発明はレーザ出力を効率よく発振させるとともに光フ
ァイバーに他の光学系を要することなく伝送できるレー
ザ発振装置を提供するものである。
The present invention provides a laser oscillation device that can efficiently oscillate laser output and transmit it through an optical fiber without requiring any other optical system.

〔発明の既要〕[Existing necessity of the invention]

共振器鏡の少なくとも一方を所定の反射率に形成された
端面をもつ光ファイバーで構成しかつ上記端面がガスレ
ーザ管の一部である細管部を閉塞する位置に設置された
構成にし上記目的を達成するようにしたものである。
To achieve the above object, at least one of the resonator mirrors is constituted by an optical fiber having an end face formed to have a predetermined reflectance, and the end face is installed at a position that closes a thin tube portion that is a part of a gas laser tube. This is how it was done.

〔発明の実施例〕[Embodiments of the invention]

以下、実施例に基いて説明する。 The following will explain based on examples.

第1図は内部ミラー形の構造になる本発明の第1の実施
例を示すもので、(30)は細管でその外側面には電極
(31)および(32)が対向して取り付けられている
。これら電極はRFi源(33)に接続されている。ま
た、一方の電極(32)には冷却管(34)が当接され
、tffl (32)を通して細管(30)を冷却する
よう罠なっている。細管(30)の一方の端部には細管
(30)の導光路(35)の径より若干大の反射面をも
つ高反射鏡(36)が導光路(35)と段差を形成し、
導光路(35)の軸に直交して気密に挿入されている。
FIG. 1 shows a first embodiment of the present invention having an internal mirror-type structure, in which (30) is a thin tube, and electrodes (31) and (32) are mounted facing each other on the outer surface of the tube. There is. These electrodes are connected to an RFi source (33). Further, a cooling pipe (34) is brought into contact with one of the electrodes (32), and serves as a trap to cool the thin tube (30) through the tffl (32). At one end of the thin tube (30), a high reflection mirror (36) having a reflective surface slightly larger than the diameter of the light guide path (35) of the thin tube (30) forms a step with the light guide path (35),
It is inserted perpendicularly to the axis of the light guide (35) in an airtight manner.

また、他方の端部には伝送路となるコアの直径が高反射
=+2 <36)の反射面とほぼ同径になる光ファイバ
ー(37)が挿入され、導光路(35)と外気とを気密
に保持している。なお、挿入された光ファイバー(37
)はそのコアの全面が導光路(35)を塞ぐように高反
射誂(36)と同様、導光路(35)と段差を形成して
いる。そして、高反射m (36)と対面している光フ
ァイバー(37)の端面、すなわちコア端面は出力鏡を
兼ねるように所定の反射率をもつようにコーティング処
理されている。ただし、高利得の場合には上記コア端面
を光学平面にするだけで上記コーティング処理は必要と
しない。
In addition, an optical fiber (37) is inserted into the other end, and the core diameter of the transmission path is approximately the same as the reflective surface of high reflection = +2 < 36), which airtightly connects the light guide path (35) and the outside air. It is held in In addition, the inserted optical fiber (37
) forms a step with the light guide path (35), similar to the high reflection collar (36), so that the entire surface of the core closes the light guide path (35). The end face of the optical fiber (37) facing the high reflection m (36), that is, the core end face, is coated to have a predetermined reflectance so as to serve as an output mirror. However, in the case of high gain, the coating treatment described above is not necessary simply by making the core end face optically flat.

上記の構成では高反射鏡(36)とこれに対面する光フ
ァイバー(37)の端面とで光共振器が構成され、反射
光(40)は導光路(35)を導波路として伝送される
。したがって、この伝送ではファプリーペロー形光振器
とは鴇なり高反射ffl (36)と光ファイバー(3
7)の端面とが平行に対面していなくても十分に共振作
用が行われるので、これら両面を正確に平行に相対向さ
せる調整は不要となる。また、光ファイバー(37)の
端面に当った光は一部光フアイバー(37)内に直接伝
送されることになり、従来のように入射のための光学系
が不要となる構造がとれることになる。
In the above configuration, an optical resonator is configured by the high reflection mirror (36) and the end face of the optical fiber (37) facing it, and the reflected light (40) is transmitted using the light guide (35) as a waveguide. Therefore, in this transmission, the Fapley-Perot optical oscillator is the same as the highly reflective ffl (36) and the optical fiber (3
Even if the end faces of 7) do not face each other in parallel, a sufficient resonance effect is achieved, so there is no need to make adjustments to make these both sides accurately face each other in parallel. In addition, a portion of the light that hits the end face of the optical fiber (37) will be directly transmitted into the optical fiber (37), making it possible to create a structure that eliminates the need for an optical system for inputting light as in the past. .

第2図は同じく本発明の第2の実施例で、上記第1図と
共通する部分には同一符号を付して説明する。すなわち
、細管(30)の外側面は冷却管(40)で気密に囲繞
され、両端部には段差状の貫通孔が形成されたほぼ同径
のアノード(41) 、カソード(42)が細管(30
)の放電路(35)の軸と同軸にされて気密に固着され
ている。アノード(41) 、カソード(42)には直
流心源(43) 、安定化抵抗(44)が接続されてい
る。カソード(42)側には高反射鏡(36)が気密に
固着されている。一方、アノード(41)側には光ファ
イバー(37)が気密に挿入されている。挿入された側
の光ファイバー(37)の端面は所定の反射率をもつ反
射面に形成されている。なお、光ファイバー (37)
の上記端面の導光路(35)および高反射鏡(36)に
対する関係は上記第1の実施例と同様になっている、こ
の構成においても従来のように光ファイバーへの入射の
ための光学系は不要となる。
FIG. 2 also shows a second embodiment of the present invention, and parts common to those in FIG. 1 will be described with the same reference numerals. That is, the outer surface of the thin tube (30) is airtightly surrounded by the cooling tube (40), and the anode (41) and cathode (42), which have approximately the same diameter and have stepped through holes at both ends, are surrounded by the thin tube (40). 30
) is coaxial with the axis of the discharge path (35) and hermetically fixed. A DC core source (43) and a stabilizing resistor (44) are connected to the anode (41) and cathode (42). A high reflection mirror (36) is hermetically fixed to the cathode (42) side. On the other hand, an optical fiber (37) is hermetically inserted into the anode (41) side. The end face of the inserted optical fiber (37) is formed into a reflective surface with a predetermined reflectance. In addition, optical fiber (37)
The relationship between the end face of the light guide path (35) and the high-reflection mirror (36) is the same as in the first embodiment. In this configuration as well, the optical system for inputting the light into the optical fiber is used as in the prior art. No longer needed.

ところで、実用を考えた場合、ファイバー径が細い方が
操作性が良いので望ましい。しかるに、実際的ディメン
ジョンを考えると、CO,レーザの場合、通常出力数1
0W程度のレーザ管の場合、第1図、第2図のいずれに
ついても導光路の寸法は、円形あるいは正方形、矩形の
断面で、径あるいは一辺が数■程度である。また現段階
では利点がなく実用性に乏しいが、He −Ne  レ
ーザ、アルゴンレーザでは通常この寸法が0.5+m程
度になり、第1図、第2図での構成ではファイバー径は
太くなり操作性が悪くなる。
By the way, when considering practical use, it is preferable that the fiber diameter is smaller because it is easier to operate. However, considering the practical dimension, in the case of CO, laser, the number of outputs is usually 1.
In the case of a laser tube of approximately 0 W, the dimensions of the light guide path in both FIGS. 1 and 2 are circular, square, or rectangular in cross section, and the diameter or side is approximately several square inches. Furthermore, although there is no advantage and lack of practicality at this stage, for He-Ne lasers and argon lasers, this dimension is usually around 0.5+m, and in the configurations shown in Figures 1 and 2, the fiber diameter is thicker, making it easier to operate. becomes worse.

第3図はこの問題を解消したもので、同図(a)では途
中からテーパー状部分を経て細径にした光ファイバー(
44)を用いた構成、同図中)では光フアイバー結合端
部の内径をテーパー状にした細管(45)を用いた構成
、また同図(C)では複数本束ねた断面矩形の光ファイ
バー(46)を用いた構成にしたものである。もちろん
この部分で多少のレーザ光損失が発生するが、従来方法
と比較して利点は大きい。
Figure 3 shows a solution to this problem. In Figure 3 (a), the optical fiber (
In the figure (in the figure), a thin tube (45) with a tapered inner diameter at the end of the optical fiber connection is used; in the figure (C), a plurality of bundled optical fibers (46) with a rectangular cross section are used. ). Of course, some laser light loss occurs in this part, but the advantages are great compared to the conventional method.

高エネルギーの荷電粒子が発生するレーザ励起用放電を
点灯させる場合にはプラズマとファイバ一端面が接する
と表面のコーティングが損傷を受ける可能性もある。こ
の場合には、第1図のRF(高周波)放電では電極位置
を調整してファイバ一端面まで放電が伸びないようにす
る。第2図の直流放電の場合についても同様である。
When a laser excitation discharge that generates high-energy charged particles is turned on, if the plasma comes into contact with one end of the fiber, the coating on the surface may be damaged. In this case, in the RF (high frequency) discharge shown in FIG. 1, the electrode position is adjusted so that the discharge does not extend to one end face of the fiber. The same applies to the case of DC discharge shown in FIG.

〔発明の効果〕〔Effect of the invention〕

以上のように光ファイバーを共振器鏡に兼ねさせ、しか
も導光路と一体化した構成としたため、光ファイバーに
導光するのに伴なう余分の光学部品、調整は全く不要と
なり、ま九、従来で生じていたレーザ光の反射、散乱な
どの損失もなくなった。また、内部ミラー構成となるこ
とから、光ファイバーが大気にさらされず、はこりの付
着、酸化、吸湿などによる劣化が発生せず、また構造的
に気密封止が容易な小型の装置を提供することができた
As described above, since the optical fiber doubles as a resonator mirror and is integrated with the light guide path, there is no need for any extra optical parts or adjustments associated with guiding light to the optical fiber. Loss such as reflection and scattering of laser light that had occurred has also been eliminated. Furthermore, since it has an internal mirror configuration, the optical fiber is not exposed to the atmosphere and does not deteriorate due to adhesion of lumps, oxidation, moisture absorption, etc., and it is possible to provide a compact device that is structurally easy to hermetically seal. was completed.

なお、上記の各実施例では光ファイバーを細管と気密に
結合したが、光7アイパーに代えて、角柱体等からなり
レーザ出力を正規分布から平坦にする作用もつ光伝送体
(通常カライドスコープと称される)を使用しても同様
な効果を得ることができる。また、光7アイパー等を一
方でなく両端に結合し、二方向にレーザ光を導光する構
成においても同様である。
In each of the above embodiments, the optical fiber was airtightly coupled to the thin tube, but instead of the optical 7-eyeper, an optical transmission body (usually called a kaleidoscope), which is made of a prismatic body and has the function of flattening the laser output from a normal distribution, is used. A similar effect can be obtained by using Further, the same applies to a configuration in which the optical 7-eyeper or the like is coupled not to one end but to both ends and the laser light is guided in two directions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例を示す断面図、第2図は
本発明の第2の実施例を示す断面図、第3図は第1・第
2の実施例における光フアイバ結合部の各変形例を示す
断面図、第4図乃至第6図は従来例を示す断面図である
。 (30)・・・7則管     (31)、 (32)
・・・電極(36)・・・高反射鏡(37)・・・光フ
ァイバー代理人 弁理士 則 近 ガ 佑 同    竹 花 g入力 第1囚 第2図 (久)     cb)    cl 第3図
Fig. 1 is a sectional view showing a first embodiment of the present invention, Fig. 2 is a sectional view showing a second embodiment of the invention, and Fig. 3 is an optical fiber coupling in the first and second embodiments. 4 to 6 are sectional views showing conventional examples. (30)...Seven rules (31), (32)
... Electrode (36) ... High reflective mirror (37) ... Optical fiber agent Patent attorney Nori Chika Ga Yudo Take Hana g input 1st prisoner Figure 2 (Hisashi) cb) cl Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)共振器鏡間に配置された導波路形細管内でガス状
レーザ媒質を直流または交流方電により励起するレーザ
発振装置において、上記共振器鏡は少なくとも一方が所
定の反射率に形成された端面をもつ光伝送体からなり上
記端面が上記細管の一方の端部を閉塞する位置に設置さ
れたことを特徴とするレーザ発振装置。
(1) In a laser oscillation device in which a gaseous laser medium is excited by direct current or alternating current in a waveguide-shaped thin tube arranged between resonator mirrors, at least one of the resonator mirrors is formed to have a predetermined reflectance. What is claimed is: 1. A laser oscillation device comprising an optical transmission member having an end face, the end face being installed at a position that closes one end of the thin tube.
(2)光伝送体は光ファイバーからなることを特徴とす
る特許請求の範囲第1項記載のレーザ発振装置。
(2) The laser oscillation device according to claim 1, wherein the optical transmission body is made of an optical fiber.
(3)光伝送体は正規分布をもつレーザ出力を平坦な分
布に変換して出光する伝送体になることを特徴とする特
許請求の範囲第1項記載のレーザ発振装置。
(3) The laser oscillation device according to claim 1, wherein the optical transmission body converts a laser output having a normal distribution into a flat distribution and emits light.
JP18093485A 1985-08-20 1985-08-20 Laser oscillation device Pending JPS6242477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18093485A JPS6242477A (en) 1985-08-20 1985-08-20 Laser oscillation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18093485A JPS6242477A (en) 1985-08-20 1985-08-20 Laser oscillation device

Publications (1)

Publication Number Publication Date
JPS6242477A true JPS6242477A (en) 1987-02-24

Family

ID=16091828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18093485A Pending JPS6242477A (en) 1985-08-20 1985-08-20 Laser oscillation device

Country Status (1)

Country Link
JP (1) JPS6242477A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007140960A1 (en) * 2006-06-05 2007-12-13 Trumpf, Inc. Hollow core fiber laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007140960A1 (en) * 2006-06-05 2007-12-13 Trumpf, Inc. Hollow core fiber laser

Similar Documents

Publication Publication Date Title
EP0142815B1 (en) Laser with stabilized external passive cavity
US5412681A (en) Slab-waveguide CO2 laser
US5592504A (en) Transversely excited non waveguide RF gas laser configuration
CN1741328B (en) Diode-pumped laser
US5099492A (en) Laser system
US6256332B1 (en) Stripline laser
EP2965135A1 (en) Ultra high power single mode fiber laser system with non-uniformly configured fiber-to-fiber rod multimode amplifier
US3766488A (en) Dye laser with pump cavity mode matched to laser resonator
EP0098143A2 (en) Combined laser resonator structure
US4887270A (en) Continuous wave, frequency doubled solid state laser systems with stabilized output
US5226054A (en) Cavity mirror for suppressing high gain laser wavelengths
US6628692B2 (en) Solid-state laser device and solid-state laser amplifier provided therewith
Kohn et al. An intracavity-pumped CW dye laser
JPS6242477A (en) Laser oscillation device
US3609587A (en) Gas laser with adjustable mirror
JPS60175477A (en) Laser light amplifier
US3435371A (en) Laser mode selection apparatus
US5299223A (en) Optically pumped laser
US3575668A (en) Laser frequency standard employing an optical limiter
US5077745A (en) Mode-locked solid-state ring laser
US4656639A (en) Laser generating apparatus utilizing frequency agile unstable resonator low pressure gain cell and tuning means
KR100360474B1 (en) Second harmonic generator
US4961202A (en) Single line laser and method
US6567456B1 (en) Method and apparatus for achieving polarization in a laser using a dual-mirror mirror mount
JP2713949B2 (en) Laser equipment