JPH06216376A - Field effect type semiconductor device - Google Patents

Field effect type semiconductor device

Info

Publication number
JPH06216376A
JPH06216376A JP564393A JP564393A JPH06216376A JP H06216376 A JPH06216376 A JP H06216376A JP 564393 A JP564393 A JP 564393A JP 564393 A JP564393 A JP 564393A JP H06216376 A JPH06216376 A JP H06216376A
Authority
JP
Japan
Prior art keywords
insulating film
layer
film
sige
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP564393A
Other languages
Japanese (ja)
Inventor
Yutaka Kujirai
裕 鯨井
Hidekazu Murakami
英一 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP564393A priority Critical patent/JPH06216376A/en
Publication of JPH06216376A publication Critical patent/JPH06216376A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66431Unipolar field-effect transistors with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
    • H01L29/365Planar doping, e.g. atomic-plane doping, delta-doping

Abstract

PURPOSE:To provide a semiconductor device having a gate insulating film without deforming SiGe/Si heterostructure and the profile of doping of impurities, by depositing an oxide film which makes a semiconductor substrate one or the components, and an insulating film, on the semiconductor substrate having an impurity layer wherein the impurity distribution is specified. CONSTITUTION:On Si and SiGe/Sl heterostructure wherein the spread of impurity distribution is smaller than 10nm, a thermal oxide film of 5nm or smaller in thickness is formed at 800 deg.C, and thereon an insulating film is deposited. For example, Si layers 12, 14 having a delta doping layer of B are epitaxially grown on a silicon substrate 11, and the surface is oxidized to be 2nm thick at 800 deg.C, thereby forming an oxide film 15. An insulating film 16 of 3nm in thickness is deposited on the film 15 by a plasma CVD method. A gate insulating film having necessary thickness can be formed without deteriorating the SiGe heterointerface and the sharpness of a doping profile.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置及びその製
造方法に係り、特に、急峻なドーピングプロファイルを
有するSi及びSiGe/Siヘテロ構造上に絶縁膜を
有する電界効果型半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device and a method of manufacturing the same, and more particularly to a field effect semiconductor device having an insulating film on Si and SiGe / Si heterostructures having a steep doping profile.

【0002】[0002]

【従来の技術】Si集積回路は、微細化による高集積
化,高速化が進行している。高集積化には構造の簡単な
金属−酸化膜−半導体型電界効果トランジスタ(Metal
Oxide Semiconductor Feild Effect Transistor;MO
SFET)が適している。ところが、ゲート長がサブミ
クロンレベルの素子では、ソースドレイン間でチャネル
以外のところに電流が流れるパンチスルーなどの、短チ
ャネル効果の抑制が大きな課題となっている。また、低
消費電力化を目指して1.5V レベルの低電圧で動作さ
せる場合、しきい値電圧を±0.3V 以下に設定しない
かぎり、十分な電流駆動能力が得られないという問題が
ある。
2. Description of the Related Art Si integrated circuits are being highly integrated and speeded up by miniaturization. A metal-oxide film-semiconductor type field effect transistor (Metal
Oxide Semiconductor Feild Effect Transistor ; MO
SFET) is suitable. However, in a device having a gate length of submicron level, suppression of a short channel effect such as punch-through in which a current flows between sources and drains other than the channel is a major problem. Further, when operating at a low voltage of 1.5V level for the purpose of low power consumption, there is a problem that sufficient current driving capability cannot be obtained unless the threshold voltage is set to ± 0.3V or less.

【0003】現在、短チャネル効果を抑制するために、
チャネルの直下に基板と同じ導電型の不純物をイオン打
ち込みをして、パンチスルーストッパ層を形成する方法
がとられている。素子を微細化するに従いパンチスルー
ストッパ層の深さを浅くしていく必要があるが、イオン
打込み法では不純物分布の拡がりを10nm以下に抑え
ることができないために、パンチスルーストッパ層を基
板表面から浅い所に形成しようとすると基板表面の不純
物濃度が高くなる。これは、しきい値電圧の上昇を招
き、しきい値電圧の低電圧化に反する。
Currently, in order to suppress the short channel effect,
A method of forming a punch-through stopper layer by ion-implanting impurities of the same conductivity type as that of the substrate just below the channel is used. It is necessary to make the depth of the punch-through stopper layer shallower as the device is miniaturized, but since the spread of the impurity distribution cannot be suppressed to 10 nm or less by the ion implantation method, the punch-through stopper layer is formed from the substrate surface. If it is attempted to form it in a shallow place, the impurity concentration on the substrate surface will increase. This causes an increase in the threshold voltage, which is against the lowering of the threshold voltage.

【0004】そこで分子線エピタキシ法などの低温エピ
タキシャル成長法を用い、高濃度ドーピング層を形成
し、その上に低濃度チャネル層を成長する技術がアプラ
イドフィジックスレターズ,第54巻(1989)p.
1869(Applied PhysicsLetters 54,p.1869(1989))
において提案されている。
Therefore, a technique for forming a high-concentration doping layer and growing a low-concentration channel layer thereon by using a low-temperature epitaxial growth method such as a molecular beam epitaxy method is described in Applied Physics Letters, Vol. 54 (1989) p.
1869 (Applied Physics Letters 54, p.1869 (1989))
Have been proposed in.

【0005】一方、相補型電界効果トランジスタの高性
能化を目指して、キャリヤ移動度が高く、高い電流駆動
能力が期待できるSi−Geヘテロ構造FETが研究さ
れている。例えば、アイイーデーエム テクニカルダイ
ジェスト(1991)p.25(IEDM Technical Di
gest p.25(1991))にpチャネルSi/SiGeヘテロ
構造MOSFETの試作例が報告されている。
On the other hand, in order to improve the performance of complementary field effect transistors, Si-Ge heterostructure FETs with high carrier mobility and high current driving capability are being studied. For example, IDM Technical Digest (1991) p.25 (IEDM Technical Di
gest p.25 (1991)), a prototype of a p-channel Si / SiGe heterostructure MOSFET is reported.

【0006】[0006]

【発明が解決しようとする課題】ところが、上記の分子
線エピタキシ法で作製した、不純物分布が10nm以下
のドーピング層(δドーピング層)やSiGeヘテロ構
造に、熱酸化法によって900℃以上でゲート酸化膜を
形成すると、熱によりSiGeヘテロ界面やドーピング
プロファイルの急峻性が崩れ、期待されるトランジスタ
特性が得られないという問題点があった。
However, a doping layer (δ-doping layer) having an impurity distribution of 10 nm or less or a SiGe heterostructure manufactured by the above molecular beam epitaxy method is subjected to gate oxidation at 900 ° C. or higher by a thermal oxidation method. When the film is formed, there is a problem that the SiGe hetero interface and the steepness of the doping profile are destroyed by heat and the expected transistor characteristics cannot be obtained.

【0007】この問題は、できるだけ基板温度を低くし
て絶縁膜を形成できれば解決できる。ドーピングプロフ
ァイルの急峻性やSiGeヘテロ界面が劣化しない低温
で絶縁膜を作製する技術の代表的なものとして、プラズ
マを利用した気相成長法(Plasma-enhanced Chemical V
apor Deposition:以下プラズマCVD法と略す)があ
る。しかし、この方法は熱酸化法に較べて半導体/絶縁
体ヘテロ界面の界面準位密度が大きく、更に絶縁膜の耐
圧が低いという欠点があった。
This problem can be solved if the substrate temperature is made as low as possible to form the insulating film. As a typical technique for forming an insulating film at a low temperature at which the steepness of the doping profile and the SiGe hetero interface are not deteriorated, plasma-enhanced chemical vapor deposition (Plasma-enhanced Chemical V
apor Deposition: hereinafter abbreviated as plasma CVD method). However, this method has a drawback that the interface state density of the semiconductor / insulator hetero interface is large and the withstand voltage of the insulating film is low as compared with the thermal oxidation method.

【0008】[0008]

【課題を解決するための手段】上記の問題点を解決する
ためには、急峻なドーピングプロファイルを持つSi及
びSiGe/Siヘテロ構造上にまず5nm以下の熱酸
化膜を800℃程度で形成し、次にその上にプラズマC
VD法で絶縁膜を堆積させる方法を考案した。更に不活
性ガス雰囲気中で基板温度500℃以上で熱処理すれば
電気的特性はより改善されることを確認した。
In order to solve the above problems, a thermal oxide film of 5 nm or less is first formed at about 800 ° C. on a Si and SiGe / Si heterostructure having a steep doping profile, Then on top of that plasma C
A method of depositing an insulating film by the VD method was devised. Furthermore, it was confirmed that the electrical characteristics were further improved by heat treatment at a substrate temperature of 500 ° C. or higher in an inert gas atmosphere.

【0009】例えば、図1に示すように、シリコン基板
11上にBのδドーピング層13を有するSi層12,
14をエピタキシャル成長し、その表面を800℃で2
nm酸化し酸化膜15を作製する。更にその上にプラズ
マCVD法で絶縁膜16を3nm堆積する。この図で、
18はソース領域、19はドレイン領域、17はゲート
電極である。
For example, as shown in FIG. 1, a Si layer 12 having a B δ-doping layer 13 on a silicon substrate 11,
14 is epitaxially grown, and the surface is grown at 800 ° C for 2
nm oxidation is performed to form an oxide film 15. Further, an insulating film 16 having a thickness of 3 nm is deposited thereon by the plasma CVD method. In this figure,
Reference numeral 18 is a source region, 19 is a drain region, and 17 is a gate electrode.

【0010】[0010]

【作用】上述のように、熱酸化膜15を作製するために
必要な熱処理が比較的低温で、かつ、熱酸化膜の膜厚が
薄いために、酸化時間も300秒以内に短縮できる。更
にプラズマCVD法で絶縁膜16を堆積すれば、SiG
eヘテロ界面やドーピングプロファイルの急峻性を劣化
させずに、必要な厚さのゲート絶縁膜を作製できる。図
2は、Si中にBをδドーピングした場合の不純物プロ
ファイルの熱処理時間依存性(基板温度800℃の場
合)を示したものである。この図より800℃,300
秒程度の熱処理ではδドーピング層の深さ方向プロファ
イルの拡がりは、熱処理を行わないものに比べて大きく
拡がっていないことがわかる。また、プラズマCVD法
でのみ作製した場合に比べ、絶縁体/半導体界面特性及
び絶縁膜の耐圧が改善される。更に、このプラズマCV
D法により作製された膜は、不活性ガス雰囲気で500
℃以上で熱処理することにより絶縁体/半導体界面特性
及び絶縁膜の耐圧が改善されることがわかった(図
3)。
As described above, since the heat treatment required for producing the thermal oxide film 15 is relatively low and the thickness of the thermal oxide film is thin, the oxidation time can be shortened within 300 seconds. Further, if the insulating film 16 is deposited by the plasma CVD method, SiG
e A gate insulating film having a required thickness can be formed without deteriorating the steepness of the hetero interface and the doping profile. FIG. 2 shows the heat treatment time dependence of the impurity profile when B is δ-doped in Si (at a substrate temperature of 800 ° C.). From this figure, 800 ℃, 300
It can be seen that in the heat treatment for about a second, the spread of the profile in the depth direction of the δ-doped layer is not greatly expanded as compared with the case where the heat treatment is not performed. In addition, the insulator / semiconductor interface characteristics and the withstand voltage of the insulating film are improved as compared with the case where only the plasma CVD method is used. Furthermore, this plasma CV
The film produced by the D method has a thickness of 500 in an inert gas atmosphere.
It was found that the heat treatment at a temperature of ℃ or more improves the insulator / semiconductor interface characteristics and the withstand voltage of the insulating film (FIG. 3).

【0011】[0011]

【実施例】〈実施例1〉まず、ボロン(B)のδドーピン
グ層からなるパンチスルーストッパ層を持つnチャネル
MOSFETを作製した例について述べる(図1)。
Example 1 First, an example in which an n-channel MOSFET having a punch-through stopper layer made of a δ-doping layer of boron (B) was produced (FIG. 1).

【0012】サンプルの作製は分子線エピタキシ法を用
いた。まず、p型Si(100)基板11上に低濃度p
型Si層12を基板温度750℃で50nmエピタキシ
ャル成長し、次にBのδドーピング層13を形成するた
めに、Bを1×1013/cm2蒸着した。その次に基板を
室温にしてp型の不純物を入れたアモルファスSiを5
0nm堆積した。アモルファスSiを結晶化させるため
に基板温度550℃で5分間加熱した。更に結晶化させ
た低濃度p型Si層14の結晶性を改善するために基板
温度を750℃にして5分間加熱した。次に短時間酸化
装置において、水蒸気を含んだO2 雰囲気中、基板温度
800℃でサンプルを200秒酸化した。この時の熱酸
化膜15の膜厚は2nmである。更にプラズマCVD法
により基板温度250℃で3nmのSiO2 膜16を堆
積した。次に絶縁膜の上にゲート電極17を形成した。
そして、高濃度n型にしたソース領域18及びドレイン
領域19を形成した。
The sample was prepared by the molecular beam epitaxy method. First, a low concentration p is formed on the p-type Si (100) substrate 11.
The type Si layer 12 was epitaxially grown to a thickness of 50 nm at a substrate temperature of 750 ° C., and then B was vapor-deposited at 1 × 10 13 / cm 2 in order to form a δ-doping layer 13 of B. Then, the temperature of the substrate is set to room temperature, and amorphous Si containing p-type impurities is added.
0 nm was deposited. The substrate was heated at 550 ° C. for 5 minutes to crystallize the amorphous Si. Further, in order to improve the crystallinity of the crystallized low-concentration p-type Si layer 14, the substrate temperature was set to 750 ° C. and heating was performed for 5 minutes. Next, in a short-time oxidizing device, the sample was oxidized for 200 seconds at a substrate temperature of 800 ° C. in an O 2 atmosphere containing water vapor. The film thickness of the thermal oxide film 15 at this time is 2 nm. Further, a 3 nm SiO 2 film 16 was deposited at a substrate temperature of 250 ° C. by the plasma CVD method. Next, the gate electrode 17 was formed on the insulating film.
Then, the high-concentration n-type source region 18 and the drain region 19 were formed.

【0013】MOSFETは、ゲート長0.1μm にお
いてもパンチスルーを起こすことなくVth=0.3Vで
動作することがわかった。
It has been found that the MOSFET operates at Vth = 0.3 V without punch through even when the gate length is 0.1 μm.

【0014】〈実施例2〉次に、Si/Si0.7Ge0.3
/Siヘテロ構造からなるpチャネルMOSFETを作製した
例について述べる(図4)。
Example 2 Next, Si / Si 0.7 Ge 0.3
An example of producing a p-channel MOSFET having a / Si heterostructure will be described (FIG. 4).

【0015】サンプルの作製は超高真空化学気相堆積法
(UHV−CVD法)を用いた。n型Si(100)基
板41上にノンドープSi0.7Ge0.3層42を基板温度
550℃で10nmエピタキシャル成長した。更にノンド
ープSi層43を7.5nm成長させる。次に短時間酸
化装置において、成長したサンプルを水蒸気を含んだO
2 雰囲気中、基板温度800℃で2nmの熱酸化膜44
を作製した。更にプラズマCVD法により基板温度25
0℃で7.5nmのSiO2膜45を堆積した。そして、
絶縁膜の上にゲート電極46を形成し高濃度p型にした
ソース領域及びドレイン領域はそれぞれ47,48に示
した。
Ultrahigh vacuum chemical vapor deposition (UHV-CVD) was used for the preparation of the sample. A non-doped Si 0.7 Ge 0.3 layer 42 is formed on the n-type Si (100) substrate 41 at the substrate temperature.
Epitaxial growth was performed at 550 ° C. for 10 nm. Further, the non-doped Si layer 43 is grown to 7.5 nm. Next, in a short-time oxidizing device, the grown sample was treated with O containing water vapor.
2 atmosphere, the thermal oxide film 44 of 2nm at a substrate temperature of 800 ° C.
Was produced. Further, the substrate temperature is 25 by the plasma CVD method.
A 7.5 nm SiO 2 film 45 was deposited at 0 ° C. And
The source and drain regions 47 and 48 are formed by forming the gate electrode 46 on the insulating film and making it a high-concentration p-type.

【0016】pチャネルMOSFETは、300Kにお
いて、ホール移動度は165cm2/V・s,ゲート長0.
25μm の場合、相互コンダクタンスは170mS/m
mと同じ条件のSipチャネルMOSFETに比べて高
いキャリア移動度、相互コンダクタンスを示した。
The p-channel MOSFET has a hole mobility of 165 cm 2 / V · s and a gate length of 0.1 at 300K.
For 25 μm, transconductance is 170 mS / m
It showed higher carrier mobility and higher transconductance than the Sip channel MOSFET under the same conditions as m.

【0017】〈実施例3〉次に、Si/Si0.5Ge0.5
/Si0.7Ge0.3ヘテロ構造からなるnチャネルMOS
FETを作製した例について述べる(図5)。
<Embodiment 3> Next, Si / Si 0.5 Ge 0.5
/ Si 0.7 Ge 0.3 n-channel MOS with heterostructure
An example of manufacturing the FET will be described (FIG. 5).

【0018】サンプルの作製は分子線エピタキシ法を用
いた。まず、p型Si(100)基板11上に厚さ1μ
mのp型Si0.7Ge0.3バッファ層51を基板温度50
0℃で成長した。その後、ノンドープSi0.5Ge0.5
52を20nm、ノンドープSi層54を基板温度50
0℃で20nmエピタキシャル成長した。ここで、キャ
リアの供給源としてSi0.5Ge0.5層52中に、Si/
Si0.5Ge0.5界面より5nmの位置にSbのδドーピ
ング層53を形成した。
The sample was prepared by the molecular beam epitaxy method. First, a thickness of 1 μm is formed on the p-type Si (100) substrate 11.
m p-type Si 0.7 Ge 0.3 buffer layer 51 with a substrate temperature of 50
Grow at 0 ° C. Then, the non-doped Si 0.5 Ge 0.5 layer 52 is set to 20 nm, and the non-doped Si layer 54 is set to the substrate temperature 50.
20 nm was epitaxially grown at 0 ° C. Here, in the Si 0.5 Ge 0.5 layer 52 as a carrier supply source, Si /
A Sb δ-doping layer 53 was formed at a position 5 nm from the Si 0.5 Ge 0.5 interface.

【0019】次に短時間酸化装置において、成長したサ
ンプルを水蒸気を含んだO2 雰囲気中、基板温度800
℃で2nmの熱酸化膜55を形成した。更にプラズマC
VD法により基板温度250℃で20nmのSiO2
56を堆積した。その次にゲート電極57,ソース領域
18及びドレイン領域19を形成した。
Next, in a short-time oxidizing apparatus, the grown sample was subjected to a substrate temperature of 800 in an O 2 atmosphere containing water vapor.
A thermal oxide film 55 having a thickness of 2 nm was formed at 0 ° C. Plasma C
A 20 nm SiO 2 film 56 was deposited at a substrate temperature of 250 ° C. by the VD method. Then, the gate electrode 57, the source region 18, and the drain region 19 were formed.

【0020】nチャネルMOSFETは、300Kにお
いて電子移動度が1400cm2/V・sの高移動度を示
した。
The n-channel MOSFET has a high electron mobility of 1400 cm 2 / V · s at 300K.

【0021】なお、Sbのδドーピング層は、Si0.5
Ge0.5層52中にあるが、本方法の熱処理によってド
ーピングプロファイルの急峻性が失われることなく、良
好な電気的特性が得られている。また、Si0.5Ge0.5
層52とSi層54はSi0.7Ge0.3バルク層51の格
子定数と同じ格子定数で成長している。つまり、Si
0.5Ge0.5層52とSi層54は歪みを持っている。そ
こで、熱酸化膜55及び絶縁膜56形成時に歪みが緩和
する可能性がある。しかし、ラマン分光法及び電子顕微
鏡による断面観察から、これらの膜が歪み緩和していな
いことを確認した。
The δ-doping layer of Sb is made of Si 0.5
Although it is in the Ge 0.5 layer 52, good electrical characteristics are obtained without the steepness of the doping profile being lost by the heat treatment of this method. In addition, Si 0.5 Ge 0.5
The layer 52 and the Si layer 54 are grown with the same lattice constant as that of the Si 0.7 Ge 0.3 bulk layer 51. That is, Si
The 0.5 Ge 0.5 layer 52 and the Si layer 54 have strain. Therefore, strain may be relaxed when the thermal oxide film 55 and the insulating film 56 are formed. However, cross-sectional observations by Raman spectroscopy and electron microscopy confirmed that these films were not strain-relieved.

【0022】〈実施例4〉次にSi/Si0.5Ge0.5
Si0.7Ge0.3ヘテロ構造からなるpチャネルMOSF
ETを作製した例について述べる(図6)。
<Embodiment 4> Next, Si / Si 0.5 Ge 0.5 /
P-channel MOSF composed of Si 0.7 Ge 0.3 heterostructure
An example of producing ET will be described (FIG. 6).

【0023】まず、n型Si(100)基板41上に厚
さ1μmのn型Si0.7Ge0.3層61を基板温度500
℃で成長した。その後、基板温度500℃でノンドープ
のSi0.5Ge0.5層52を20nm、ノンドープのSi
層54を20nmエピタキシャル成長した。ここで、キ
ャリアの供給源としてSi層54中に、Si/Si0.5
Ge0.5界面より5nmの位置にHBO2 あるいはBの
δドーピング層62を形成した。
First, an n-type Si 0.7 Ge 0.3 layer 61 having a thickness of 1 μm is formed on an n-type Si (100) substrate 41 at a substrate temperature of 500.
It was grown at ℃. Then, a non-doped Si 0.5 Ge 0.5 layer 52 of 20 nm is formed at a substrate temperature of 500 ° C.
Layer 54 was epitaxially grown to 20 nm. Here, as a carrier supply source, Si / Si 0.5
A δ-doping layer 62 of HBO 2 or B was formed at a position 5 nm from the Ge 0.5 interface.

【0024】次に短時間酸化装置において、成長したサ
ンプルを水蒸気を含むO2 雰囲気中、基板温度800℃
で2nmの酸化膜63を形成した。更にプラズマCVD
法により基板温度250℃で20nmのSiO2 膜64
を堆積した。その次にゲート電極65,ソース領域47
及びドレイン領域48を形成した。
Next, in a short-time oxidation device, the grown sample was subjected to an O 2 atmosphere containing water vapor at a substrate temperature of 800 ° C.
To form a 2 nm oxide film 63. Further plasma CVD
20 nm SiO 2 film 64 at a substrate temperature of 250 ° C.
Was deposited. Next, the gate electrode 65 and the source region 47
And the drain region 48 was formed.

【0025】pチャネルMOSFETは、300Kにお
いてホール移動度は400cm2/V・sの高移動度を示
した。
The p-channel MOSFET showed a high hole mobility of 400 cm 2 / V · s at 300K.

【0026】なお、歪み層の熱処理の影響については実
施例3の場合と同様である。
The influence of heat treatment on the strained layer is the same as in the case of the third embodiment.

【0027】[0027]

【発明の効果】本発明によれば、SiGe/Siヘテロ
構造及びδドーピングのプロファイルを崩さずに、電気
的特性の優れたゲート絶縁膜を有するMOSFETを作
製することができる。
According to the present invention, it is possible to fabricate a MOSFET having a gate insulating film having excellent electric characteristics without degrading the profile of SiGe / Si heterostructure and δ doping.

【図面の簡単な説明】[Brief description of drawings]

【図1】BをδドーピングしたSiのMOSFETの断
面図。
FIG. 1 is a cross-sectional view of a Si MOSFET in which B is δ-doped.

【図2】Si中にBをδドーピングした膜のBプロファ
イルの熱処理時間依存性を示す特性図。
FIG. 2 is a characteristic diagram showing the heat treatment time dependence of the B profile of a film in which B is δ-doped in Si.

【図3】プラズマCVD法により堆積したSiO2膜の
界面準位密度、耐圧のアニール温度依存性の特性図。
FIG. 3 is a characteristic diagram of interface temperature density and annealing temperature dependency of breakdown voltage of a SiO 2 film deposited by a plasma CVD method.

【図4】Si/Si0.7Ge0.3/Siヘテロ構造pチャ
ネルMOSFETの断面図。
FIG. 4 is a cross-sectional view of a Si / Si 0.7 Ge 0.3 / Si heterostructure p-channel MOSFET.

【図5】Si/Si0.5Ge0.5/Si0.7Ge0.3ヘテロ
構造nチャネルMOS−FETの断面図。
FIG. 5 is a cross-sectional view of a Si / Si 0.5 Ge 0.5 / Si 0.7 Ge 0.3 heterostructure n-channel MOS-FET.

【図6】Si/Si0.5Ge0.5/Si0.7Ge0.3ヘテロ
構造pチャネルMOS−FETの断面図。
FIG. 6 is a cross-sectional view of a Si / Si 0.5 Ge 0.5 / Si 0.7 Ge 0.3 heterostructure p-channel MOS-FET.

【符号の説明】[Explanation of symbols]

11…p型Si(100)基板、12…低濃度p型Si
層、13…Bのδドーピング層、14…低濃度p型Si
層、15…熱酸化膜、16…堆積したSiO2膜、17
…ゲート電極、18…高濃度n型ソース領域。
11 ... p-type Si (100) substrate, 12 ... low-concentration p-type Si
Layer, 13 ... B delta doping layer, 14 ... low concentration p-type Si
Layer, 15 ... Thermal oxide film, 16 ... Deposited SiO 2 film, 17
... Gate electrode, 18 ... High concentration n-type source region.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】不純物分布の拡がりが10nm以下である
不純物層を有する半導体基体上に、前記半導体基体をそ
の成分の一つとする酸化膜と、堆積した絶縁膜とを有す
ることを特徴とする電界効果型半導体装置。
1. An electric field comprising an oxide film having the semiconductor substrate as one of its components and a deposited insulating film on a semiconductor substrate having an impurity layer whose impurity distribution spread is 10 nm or less. Effective semiconductor device.
【請求項2】SiGe混晶を含むSiGe/Siヘテロ
薄膜上に、Siをその成分の一つとする酸化膜と堆積し
た絶縁膜とを有することを特徴とする電界効果型半導体
装置。
2. A field effect semiconductor device comprising an SiGe / Si hetero thin film containing a SiGe mixed crystal, an oxide film containing Si as one of its components, and an insulating film deposited on the SiGe / Si hetero thin film.
【請求項3】請求項1または2において、基体温度を9
00℃以下、成長時間を300秒以内で形成する電界効
果型半導体装置。
3. The substrate temperature according to claim 1 or 2,
A field effect semiconductor device formed at a temperature of 00 ° C. or less and a growth time of 300 seconds or less.
【請求項4】請求項1または2において、絶縁膜をプラ
ズマ誘起の気相成長法により堆積し、その膜を不活性ガ
ス雰囲気中500℃以上の温度で熱処理する電界効果型
半導体装置。
4. The field effect semiconductor device according to claim 1, wherein the insulating film is deposited by plasma-induced vapor phase growth method and the film is heat-treated at a temperature of 500 ° C. or higher in an inert gas atmosphere.
JP564393A 1993-01-18 1993-01-18 Field effect type semiconductor device Pending JPH06216376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP564393A JPH06216376A (en) 1993-01-18 1993-01-18 Field effect type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP564393A JPH06216376A (en) 1993-01-18 1993-01-18 Field effect type semiconductor device

Publications (1)

Publication Number Publication Date
JPH06216376A true JPH06216376A (en) 1994-08-05

Family

ID=11616820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP564393A Pending JPH06216376A (en) 1993-01-18 1993-01-18 Field effect type semiconductor device

Country Status (1)

Country Link
JP (1) JPH06216376A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100798826B1 (en) * 2005-07-22 2008-01-28 세이코 엡슨 가부시키가이샤 Semiconductor substrate, semiconductor device, manufacturing method thereof, and method for designing semiconductor substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100798826B1 (en) * 2005-07-22 2008-01-28 세이코 엡슨 가부시키가이샤 Semiconductor substrate, semiconductor device, manufacturing method thereof, and method for designing semiconductor substrate

Similar Documents

Publication Publication Date Title
US6844227B2 (en) Semiconductor devices and method for manufacturing the same
US5847419A (en) Si-SiGe semiconductor device and method of fabricating the same
US6635909B2 (en) Strained fin FETs structure and method
US5241197A (en) Transistor provided with strained germanium layer
US5155571A (en) Complementary field effect transistors having strained superlattice structure
US8513718B2 (en) Stress enhanced transistor devices and methods of making
EP1231643A2 (en) MOS field-effect transistor comprising Si and SiGe layers or Si and SiGeC layers as channel regions
US5428234A (en) Semiconductor device
CN102593118B (en) Semiconductor device and method of manufacturing the same
US8222100B2 (en) CMOS circuit with low-k spacer and stress liner
JPH04137528A (en) Semiconductor device and its manufacture
US20070243672A1 (en) Semiconductor device and method for fabricating the same
JPH11163343A (en) Semiconductor device and its manufacture
JP2005079277A (en) Field effect transistor
WO2000079601A1 (en) Semiconductor device and method of manufacture thereof
JPH10284722A (en) Mosfet and manufacture therefor
JPH06216376A (en) Field effect type semiconductor device
JPH05121450A (en) Semiconductor device and its manufacture
KR100760912B1 (en) Semiconductor Device and Method for Fabricating The Same
JP2000277730A (en) Semiconductor device and its manufacture
JPH07249762A (en) Fabrication of semiconductor device
KR100788353B1 (en) Semiconductor Device and Method for Fabricating The Same
JPH05259449A (en) Mis type field effect transistor and manufacture thereof
JPH09237896A (en) Semiconductor device and manufacture thereof
JP2000091566A (en) Semiconductor device and manufacture thereof