JPH06215788A - Control method of reformer temperature in fuel cell generating facilities - Google Patents

Control method of reformer temperature in fuel cell generating facilities

Info

Publication number
JPH06215788A
JPH06215788A JP5003806A JP380693A JPH06215788A JP H06215788 A JPH06215788 A JP H06215788A JP 5003806 A JP5003806 A JP 5003806A JP 380693 A JP380693 A JP 380693A JP H06215788 A JPH06215788 A JP H06215788A
Authority
JP
Japan
Prior art keywords
reformer
air
fuel cell
gas
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5003806A
Other languages
Japanese (ja)
Inventor
Koichi Onishi
孝一 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP5003806A priority Critical patent/JPH06215788A/en
Publication of JPH06215788A publication Critical patent/JPH06215788A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To provide a control method of reformer temperature capable of preventing the overheat of a reformer heat transfer part at the time of lowering the load of a fuel cell and circulating the whole quantity of CO2 gas from anode side to cathode side. CONSTITUTION:This device is provided with a combustion air control valve 22, an air heater 24 by a combustion exhaust gas 8, a combusting air line 14 for heating and supplying an air 12 to the combustor of a reformer 10, and a temperature sensor 16 for detecting the temperature of the reformer heat transfer part. The temperature rise of the reformer heat transfer part is detected by the temperature sensor 16, or the combustion air control valve 22 is opened by a preceding signal based on load change command to excessively send the air in disregard of the flow rate at general time. Thus, the temperature of the combustion gas in the reformer 10 is lowered, and the overheat of the reformer heat transfer part is prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、燃料電池発電設備にお
ける改質器温度の制御方法に関し、更に詳しくは、負荷
降下時の改質器伝熱部の過熱を防止する制御方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling a reformer temperature in a fuel cell power generation facility, and more particularly to a control method for preventing overheating of a reformer heat transfer section when a load is reduced.

【0002】[0002]

【従来の技術】溶融炭酸塩型燃料電池は、高効率、かつ
環境への影響が少ないなど、従来の発電装置にはない特
徴を有しており、水力・火力・原子力に続く発電システ
ムとして注目を集め、現在世界各国で鋭意研究開発が行
われている。特に天然ガスを燃料とする溶融炭酸塩型燃
料電池を用いた発電設備では、図2に示すように天然ガ
ス1と水蒸気2とを混合してなる燃料ガス3を水素を含
むアノードガス4に改質する改質器10と、アノードガ
ス4と酸素を含むカソードガス5とから発電する燃料電
池20とを一般的に備えており、改質器10で作られた
アノードガス4は燃料電池20に供給され、燃料電池内
でその大部分(例えば80%)を消費してアノード排ガ
ス6となり、その水分を分離した後、燃焼用ガス7とし
て改質器10の燃焼器に供給される。改質器では燃焼用
ガス7中の可燃成分(水素、一酸化炭素、メタン等)を
燃焼器で燃焼して高温の燃焼ガスを生成し、この高温の
燃焼ガスにより改質管10aを加熱し改質管内を通る燃
料ガス3を改質する。改質器を出た燃焼排ガス8は空気
11に合流してカソードガス5となり、このカソードガ
ス5は、燃料電池20内で一部が反応して高温のカソー
ド排ガス9となり、その一部がリサイクルされ、残りは
動力回収装置30のタービン31で動力を回収し、ボイ
ラ35で熱を回収して、系外に排出される。
2. Description of the Related Art Molten carbonate fuel cells have characteristics that conventional power generators do not have, such as high efficiency and little impact on the environment, and they are attracting attention as a power generation system following hydropower, thermal power, and nuclear power. Is currently being researched and developed all over the world. In particular, in a power generation facility using a molten carbonate fuel cell using natural gas as a fuel, a fuel gas 3 obtained by mixing natural gas 1 and steam 2 is converted to an anode gas 4 containing hydrogen as shown in FIG. A reformer 10 that produces a reforming gas and a fuel cell 20 that generates electric power from an anode gas 4 and a cathode gas 5 containing oxygen are generally provided. The anode gas 4 produced by the reformer 10 is supplied to the fuel cell 20. It is supplied and consumes most (for example, 80%) of it in the fuel cell to become the anode exhaust gas 6, and after separating its water content, it is supplied to the combustor of the reformer 10 as the combustion gas 7. In the reformer, combustible components (hydrogen, carbon monoxide, methane, etc.) in the combustion gas 7 are burned in the combustor to generate high temperature combustion gas, and the high temperature combustion gas heats the reforming pipe 10a. The fuel gas 3 passing through the reforming pipe is reformed. The combustion exhaust gas 8 that has left the reformer merges with the air 11 to become the cathode gas 5, and a part of this cathode gas 5 reacts in the fuel cell 20 to become the high-temperature cathode exhaust gas 9, and a part of it is recycled. The remaining power is recovered by the turbine 31 of the power recovery device 30, the heat is recovered by the boiler 35, and the heat is discharged to the outside of the system.

【0003】[0003]

【発明が解決しようとする課題】改質器伝熱部は通常、
例えば900℃前後の高温で運転され、この温度は伝熱
部材料の強度限界にきわめて近くなっている。従って、
この部分の温度制御は改質器の信頼性を高める上で極め
て重要である。一方、燃料電池内での主な電池反応は、 H2 +CO3 2- →H2 O+CO2 +2 e のアノード反
応と、 1/2 O2 +CO2 +2 e →CO3 2- のカソード反
応であり、アノードで発生したCO2 ガスを、カソード
反応に供するために燃料電池のカソードに循環させる必
要がある。上述した発電設備において、燃料電池から出
たアノード排ガス6は水分を分離した後、その全量が燃
焼用ガス7として改質器10の燃焼器に供給される。か
かる発電設備で燃料電池の負荷が降下する際に、負荷指
令に対応して改質器10への燃料ガス3の供給量を減少
させるが、燃料電池20へ供給されるアノードガス4が
実際に減少するまでに時間的な遅れが生じる。このた
め、発電負荷が降下し燃料電池内での燃料(主として水
素)の消費が減少している間、過渡的にアノード排ガス
6の発熱量が上昇し、このアノード排ガス6の全量が改
質器10で燃焼するため、燃焼した燃焼ガスが高温にな
り、改質管10a等の改質器伝熱部が過熱される問題点
があった。このため、改質器伝熱部にホットスポットが
発生して伝熱部が損傷したり、改質管内部に充填された
改質触媒が劣化して寿命が短くなる問題点があった。ま
た、かかる問題点を回避して短時間に負荷を降下させる
ために、アノード排ガス6の一部を、一時的に系外に排
気すると、エネルギー損失と安全性が損なわれると共
に、上述したカソード反応に用いるCO2 ガスの循環量
が低減し、高負荷運転に復帰する際に時間がかかる問題
点があった。従って、従来は、燃料電池の発電負荷を降
下させる際には、改質器伝熱部の温度が許容範囲内に入
るように徐々に負荷を降下させていた。しかし、このた
め、燃料電池の負荷応答特性が悪化し、短時間の負荷変
動に対応できない問題点があった。
The reformer heat transfer section is usually
For example, it is operated at a high temperature of around 900 ° C., and this temperature is extremely close to the strength limit of the heat transfer material. Therefore,
Temperature control of this part is extremely important for improving the reliability of the reformer. On the other hand, the main cell reactions in the fuel cell are the anode reaction of H 2 + CO 3 2- → H 2 O + CO 2 +2 e and the cathode reaction of 1/2 O 2 + CO 2 +2 e → CO 3 2- . The CO 2 gas generated at the anode needs to be circulated to the cathode of the fuel cell in order to be used for the cathode reaction. In the above-described power generation equipment, after the anode exhaust gas 6 emitted from the fuel cell is separated from water, the entire amount thereof is supplied to the combustor of the reformer 10 as the combustion gas 7. When the load of the fuel cell decreases in such a power generation facility, the supply amount of the fuel gas 3 to the reformer 10 is reduced in response to the load command, but the anode gas 4 supplied to the fuel cell 20 is actually reduced. There is a time lag before it decreases. Therefore, while the power generation load drops and the fuel (mainly hydrogen) consumption in the fuel cell decreases, the calorific value of the anode exhaust gas 6 transiently increases, and the entire amount of the anode exhaust gas 6 is reformed. Since it burns at 10, the burned combustion gas becomes high in temperature, and there is a problem that the reformer heat transfer part such as the reforming pipe 10a is overheated. Therefore, there are problems that hot spots are generated in the heat transfer section of the reformer to damage the heat transfer section, or the reforming catalyst filled in the reforming tube is deteriorated to shorten the life. Further, if a part of the anode exhaust gas 6 is temporarily exhausted to the outside of the system in order to avoid such a problem and reduce the load in a short time, energy loss and safety are impaired, and the cathode reaction described above is also performed. There is a problem that the amount of circulation of the CO 2 gas used for is reduced and it takes time to return to the high load operation. Therefore, conventionally, when the power generation load of the fuel cell is lowered, the load is gradually lowered so that the temperature of the reformer heat transfer section falls within an allowable range. However, for this reason, the load response characteristics of the fuel cell are deteriorated, and there is a problem that it is not possible to cope with a load change in a short time.

【0004】本発明は、上述した種々の問題点を解決す
るために創案されたものである。すなわち、本発明の目
的は、燃料電池の負荷降下時の改質器伝熱部の過熱を防
止することができ、かつCO2 ガスをアノード側からカ
ソード側に全量循環させることができる改質器温度の制
御方法を提供することにある。
The present invention was devised to solve the above-mentioned various problems. That is, it is an object of the present invention to prevent overheating of the reformer heat transfer section when the load of the fuel cell is reduced and to circulate the entire amount of CO 2 gas from the anode side to the cathode side. It is to provide a temperature control method.

【0005】[0005]

【課題を解決するための手段】燃料電池の負荷降下時に
はカソードガスに必要な空気量も少なくなり、空気供給
設備の供給能力に対して余剰の空気が発生する。本発明
はかかる余剰空気を利用し、改質器が必要とする以上の
空気を改質器の燃焼器に供給することにより、改質器内
で燃焼用ガス7を過剰空気により燃焼させ、その燃焼温
度を低下させようとするものである。すなわち、本発明
によれば、水蒸気を含む燃料ガスを水素を含むアノード
ガスに改質する改質器と、アノードガスと酸素を含むカ
ソードガスとから発電する燃料電池とを備え、燃料電池
を出たアノード排ガスの全量が改質器の燃焼器に供給さ
れて燃焼し、その燃焼排ガスの全量が燃料電池のカソー
ド側に供給される燃料電池発電設備において、燃焼空気
制御弁と、前記燃焼排ガスによる空気加熱器と、を有
し、空気を加熱して改質器の燃焼器に供給する燃焼用空
気ラインと、改質器伝熱部の温度を検出する温度センサ
ーとを備え、改質器伝熱部の温度上昇を前記温度センサ
ーにより検出し、或いは負荷変化指令に基づく先行信号
によって、前記燃焼空気制御弁を開いて通常時の流量以
上に過剰に空気を送り、これにより改質器の燃焼ガスの
温度を下げ、改質器伝熱部の過熱を防止する、ことを特
徴とする燃料電池発電設備における改質器温度の制御方
法が提供される。本発明の好ましい実施例によれば、カ
ソード空気制御弁を有し、空気をカソードガスに供給す
る空気供給ラインを更に備え、前記燃焼空気制御弁の開
操作と同時に、カソード空気制御弁を閉めてカソードに
供給する空気量を減少させる。また、バイパス弁を有
し、前記空気加熱器をバイパスするバイパスラインを更
に備え、前記燃焼空気制御弁の開操作と同時に、前記バ
イパス弁を全開させる、ことが好ましい。
When the load of the fuel cell drops, the amount of air required for the cathode gas also decreases, and excess air is generated with respect to the supply capacity of the air supply equipment. The present invention utilizes such surplus air and supplies more air than required by the reformer to the combustor of the reformer to burn the combustion gas 7 with excess air in the reformer. It is intended to lower the combustion temperature. That is, according to the present invention, the fuel cell is provided with a reformer for reforming a fuel gas containing water vapor into an anode gas containing hydrogen, and a fuel cell for generating electricity from the anode gas and a cathode gas containing oxygen. In the fuel cell power generation facility in which the entire amount of the anode exhaust gas is supplied to the combustor of the reformer and burns, and the entire amount of the combustion exhaust gas is supplied to the cathode side of the fuel cell, the combustion air control valve and the combustion exhaust gas An air heater, which is provided with a combustion air line for heating air to supply the combustor of the reformer and a temperature sensor for detecting the temperature of the reformer heat transfer section. The temperature sensor detects the temperature rise of the heat section, or the preceding signal based on the load change command opens the combustion air control valve to send excess air above the normal flow rate, thereby burning the reformer. Gas temperature The lowered, to prevent overheating of the reformer heat transfer unit, the control method of the reformer temperature is provided in the fuel cell power plant, characterized in that. According to a preferred embodiment of the present invention, a cathode air control valve is further provided, and an air supply line for supplying air to the cathode gas is further provided, and the cathode air control valve is closed at the same time when the combustion air control valve is opened. Reduce the amount of air supplied to the cathode. Further, it is preferable that a bypass line having a bypass valve and bypassing the air heater is further provided, and the bypass valve is fully opened at the same time as the opening operation of the combustion air control valve.

【0006】[0006]

【作用】上記本発明によれば、改質器伝熱部の温度上昇
を温度センサーにより検出し、或いは負荷変化指令に基
づく先行信号によって、燃焼空気制御弁を開いて通常時
の流量を無視して過剰に空気を送るので、この過剰空気
により改質器の燃焼ガス温度が下がり、改質器伝熱部の
過熱を防止することができる。また、かかる方法によれ
ば、アノード排ガスの全量が、改質器を介して燃料電池
のカソード側に供給されるので、カソード反応に必要な
CO2 ガスの循環を確実に行うことができる。
According to the present invention, the temperature rise in the reformer heat transfer section is detected by the temperature sensor, or the advance signal based on the load change command is used to open the combustion air control valve to ignore the normal flow rate. Since excessive air is sent, the combustion gas temperature of the reformer is lowered by this excess air, and it is possible to prevent overheating of the reformer heat transfer section. Further, according to this method, the entire amount of the anode exhaust gas is supplied to the cathode side of the fuel cell via the reformer, so that the circulation of CO 2 gas necessary for the cathode reaction can be reliably performed.

【0007】[0007]

【実施例】以下に本発明の好ましい実施例を図面を参照
して説明する。図1は、本発明による方法を実施するた
めの溶融炭酸塩型燃料電池の発電設備を示す全体構成図
である。なお、この図において図2と同一のものには同
一の符号を使用している。図1において、燃料電池発電
設備は、水蒸気を含む燃料ガス3を水素を含むアノード
ガス4に改質する改質器10と、アノードガス4と酸素
を含むカソードガス5とから発電する燃料電池20とを
備え、燃料電池20を出たアノード排ガス6の全量が改
質器10の燃焼器に供給されて燃焼し、その燃焼排ガス
8の全量が燃料電池20のカソード側Cに供給されるよ
うになっている。燃料電池20は、アノードガス4が通
過するアノード側Aと、カソードガス5が通過するカソ
ード側Cとからなり、アノードガス中の水素、一酸化炭
素と、カソードガス中の酸素、二酸化炭素とから化学反
応により電気を発生する。前述のように、この電池反応
により、アノード側でCO2 ガスが発生し、カソード側
でCO2 ガスが消費される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is an overall configuration diagram showing a power generation facility of a molten carbonate fuel cell for carrying out the method according to the present invention. In this figure, the same parts as those in FIG. 2 are designated by the same reference numerals. 1, a fuel cell power generation facility includes a reformer 10 for reforming a fuel gas 3 containing water vapor into an anode gas 4 containing hydrogen, and a fuel cell 20 for generating electricity from an anode gas 4 and a cathode gas 5 containing oxygen. So that the entire amount of the anode exhaust gas 6 discharged from the fuel cell 20 is supplied to the combustor of the reformer 10 and burned, and the entire amount of the combustion exhaust gas 8 is supplied to the cathode side C of the fuel cell 20. Has become. The fuel cell 20 is composed of an anode side A through which the anode gas 4 passes and a cathode side C through which the cathode gas 5 passes, and is composed of hydrogen and carbon monoxide in the anode gas and oxygen and carbon dioxide in the cathode gas. Electricity is generated by a chemical reaction. As described above, due to this cell reaction, CO 2 gas is generated on the anode side and CO 2 gas is consumed on the cathode side.

【0008】燃料電池発電設備は更に、空気12を加熱
して改質器10の燃焼器に供給する燃焼用空気ライン1
4と、改質器伝熱部の温度を検出する温度センサー16
とを備える。燃焼用空気ライン14にはその中間に燃焼
空気制御弁22と、燃焼排ガス8による空気加熱器24
とが設けられている。燃焼用空気ライン14により加熱
された空気を改質器の燃焼器に供給することができ、ア
ノード排ガス6の燃焼を安定して行うことができる。図
1の発電設備は更に、空気12をカソードガス5に供給
する空気供給ライン18と、前記空気加熱器24をバイ
パスして空気を改質器10に供給するバイパスライン1
9を備えている。空気供給ライン18にはその中間にカ
ソード空気制御弁26が設けられ、バイパスライン19
にはその中間にバイパス弁27が設けられている。発電
設備は更に、制御装置28を備える。燃焼空気制御弁2
2とカソード空気制御弁26は流量調節弁、バイパス弁
27は開閉弁であり、これらは制御装置28からの制御
信号により開閉されるようになっている。制御装置28
には更に、発電設備全体の負荷指令信号15と、温度セ
ンサー16の検出信号が入力されるようになっている。
その他の点は、図2に示した発電設備と同様であり、こ
こでは重複を避けて説明を省略する。
The fuel cell power generation system further includes a combustion air line 1 for heating the air 12 and supplying it to the combustor of the reformer 10.
4 and a temperature sensor 16 for detecting the temperature of the heat transfer section of the reformer
With. In the combustion air line 14, a combustion air control valve 22 and an air heater 24 for the combustion exhaust gas 8 are provided in the middle thereof.
And are provided. The air heated by the combustion air line 14 can be supplied to the combustor of the reformer, and the combustion of the anode exhaust gas 6 can be stably performed. 1 further includes an air supply line 18 for supplying air 12 to the cathode gas 5 and a bypass line 1 for bypassing the air heater 24 and supplying air to the reformer 10.
9 is equipped. A cathode air control valve 26 is provided in the middle of the air supply line 18, and the bypass line 19 is provided.
Is provided with a bypass valve 27 in the middle thereof. The power generation facility further includes a control device 28. Combustion air control valve 2
2, the cathode air control valve 26 is a flow rate control valve, the bypass valve 27 is an opening / closing valve, and these are opened / closed by a control signal from the control device 28. Control device 28
Further, the load command signal 15 of the entire power generation equipment and the detection signal of the temperature sensor 16 are input to the.
Other points are the same as those of the power generation equipment shown in FIG. 2, and the description thereof will be omitted here to avoid duplication.

【0009】図1に示した燃料電池発電設備における改
質器温度の制御方法を以下に説明する。かかる発電設備
で燃料電池の負荷が降下する際に、負荷変化指令に基づ
く先行信号が出される。改質器伝熱部の温度上昇を前記
温度センサー16により検出し、或いは負荷変化指令に
基づく先行信号によって、前記燃焼空気制御弁22を開
いて通常時の流量以上に過剰に空気を送る。この過剰空
気により改質器10の燃焼ガス温度が下がり、改質器伝
熱部の過熱を防止することができる。また、かかる方法
によれば、アノード排ガス6の全量が、改質器を介して
燃料電池20のカソード側Cに供給されるので、カソー
ド反応に必要なCO2 ガスの循環を確実に行うことがで
きる。また、前記燃焼空気制御弁22の開操作と同時
に、カソード空気制御弁26を閉めてカソードCに供給
する空気量を減少させることが好ましい。これによりカ
ソード空気制御弁26により減少させた分の空気量も燃
焼空気制御弁22を介して改質器10の燃焼器に送り燃
焼ガス温度を更に低下させることができる。なお、負荷
が降下する際にはカソードが必要とする空気量も低下し
ているので上記操作が可能であり、かつ燃焼空気制御弁
22を介して改質器10に供給された過剰空気はその全
量が燃料電池20のカソード側Cに戻るので、その後の
負荷変動には直ぐさま対応することができる。更に、前
記燃焼空気制御弁22の開操作と同時に、前記バイパス
弁27を全開させることが好ましい。これにより、空気
加熱器24をバイパスした低温の空気を改質器10の燃
焼器に供給することができ、冷却効果を更に高めること
ができる。
A method of controlling the reformer temperature in the fuel cell power generation facility shown in FIG. 1 will be described below. When the load of the fuel cell drops in such power generation equipment, a preceding signal based on the load change command is issued. The temperature sensor 16 detects an increase in the temperature of the reformer heat transfer section, or the preceding signal based on a load change command is used to open the combustion air control valve 22 and send air in excess of the normal flow rate. Due to this excess air, the temperature of the combustion gas in the reformer 10 is lowered, and it is possible to prevent overheating of the reformer heat transfer section. Further, according to this method, since the entire amount of the anode exhaust gas 6 is supplied to the cathode side C of the fuel cell 20 via the reformer, it is possible to reliably circulate the CO 2 gas required for the cathode reaction. it can. Further, it is preferable to close the cathode air control valve 26 at the same time as the opening operation of the combustion air control valve 22 to reduce the amount of air supplied to the cathode C. As a result, the amount of air reduced by the cathode air control valve 26 can also be sent to the combustor of the reformer 10 via the combustion air control valve 22 to further lower the combustion gas temperature. When the load drops, the amount of air required by the cathode also decreases, so the above operation is possible, and the excess air supplied to the reformer 10 via the combustion air control valve 22 is Since the entire amount returns to the cathode side C of the fuel cell 20, it is possible to immediately cope with the subsequent load fluctuation. Further, it is preferable that the bypass valve 27 is fully opened at the same time when the combustion air control valve 22 is opened. As a result, low-temperature air bypassing the air heater 24 can be supplied to the combustor of the reformer 10, and the cooling effect can be further enhanced.

【0010】[0010]

【発明の効果】上述したように、本発明によれば、改質
器伝熱部の温度上昇を温度センサーにより検出し、或い
は負荷変化指令に基づく先行信号によって、燃焼空気制
御弁を開いて通常時の流量を無視して過剰に空気を送る
ので、この過剰空気により改質器の燃焼ガス温度が下が
り、改質器伝熱部の過熱を防止することができる。ま
た、かかる方法によれば、アノード排ガスの全量が、改
質器を介して燃料電池のカソード側に供給されるので、
カソード反応に必要なCO2 ガスの循環を確実に行うこ
とができる。従って、本発明により、燃料電池の負荷降
下時の改質器伝熱部の過熱を防止することができ、かつ
CO2 ガスをアノード側からカソード側に全量循環させ
ることができる改質器温度の制御方法を提供することが
できる。
As described above, according to the present invention, the temperature rise of the reformer heat transfer section is detected by the temperature sensor, or the combustion air control valve is normally opened by the preceding signal based on the load change command. Since the excess air is sent while ignoring the flow rate at the time, the combustion gas temperature of the reformer is lowered by this excess air, and it is possible to prevent overheating of the reformer heat transfer section. Further, according to this method, since the entire amount of the anode exhaust gas is supplied to the cathode side of the fuel cell via the reformer,
It is possible to reliably circulate the CO 2 gas necessary for the cathode reaction. Therefore, according to the present invention, it is possible to prevent overheating of the reformer heat transfer portion when the load of the fuel cell is lowered, and to make it possible to circulate the entire amount of CO 2 gas from the anode side to the cathode side. A control method can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による方法を実施する発電設備を示す全
体構成図である。
FIG. 1 is an overall configuration diagram showing a power generation facility for carrying out a method according to the present invention.

【図2】従来の発電設備を示す全体構成図である。FIG. 2 is an overall configuration diagram showing a conventional power generation facility.

【符号の説明】[Explanation of symbols]

1 天然ガス 2 水蒸気 3 燃料ガス 4 アノードガス 5 カソードガス 6 アノード排ガス 7 燃焼用ガス 8 燃焼排ガス 9 カソード排ガス 10 改質器 10a 改質管 11 空気 12 空気 14 燃焼用空気ライン 15 負荷指令信号 16 温度センサー 18 空気供給ライン 19 バイパスライン 20 燃料電池 22 燃焼空気制御弁 24 空気加熱器 26 カソード空気制御弁 27 バイパス弁 28 制御装置 30 動力回収装置 31 タービン 35 ボイラ 1 natural gas 2 steam 3 fuel gas 4 anode gas 5 cathode gas 6 anode exhaust gas 7 combustion gas 8 combustion exhaust gas 9 cathode exhaust gas 10 reformer 10a reforming pipe 11 air 12 air 14 combustion air line 15 load command signal 16 temperature Sensor 18 Air supply line 19 Bypass line 20 Fuel cell 22 Combustion air control valve 24 Air heater 26 Cathode air control valve 27 Bypass valve 28 Control device 30 Power recovery device 31 Turbine 35 Boiler

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 水蒸気を含む燃料ガスを水素を含むアノ
ードガスに改質する改質器と、アノードガスと酸素を含
むカソードガスとから発電する燃料電池とを備え、燃料
電池を出たアノード排ガスの全量が改質器の燃焼器に供
給されて燃焼し、その燃焼排ガスの全量が燃料電池のカ
ソード側に供給される燃料電池発電設備において、 燃焼空気制御弁と前記燃焼排ガスによる空気加熱器とを
有し、空気を加熱して改質器の燃焼器に供給する燃焼用
空気ラインと、 改質器伝熱部の温度を検出する温度センサーとを備え、 改質器伝熱部の温度上昇を前記温度センサーにより検出
し、或いは負荷変化指令に基づく先行信号によって、前
記燃焼空気制御弁を開いて通常時の流量以上に過剰に空
気を送り、これにより改質器の燃焼ガスの温度を下げ、
改質器伝熱部の過熱を防止する、ことを特徴とする燃料
電池発電設備における改質器温度の制御方法。
1. An anode exhaust gas discharged from a fuel cell, comprising a reformer for reforming a fuel gas containing water vapor into an anode gas containing hydrogen, and a fuel cell for generating electricity from the anode gas and a cathode gas containing oxygen. In a fuel cell power generation facility in which all of the fuel gas is supplied to the combustor of the reformer and burns, and the total amount of the combustion exhaust gas is supplied to the cathode side of the fuel cell, a combustion air control valve and an air heater using the combustion exhaust gas Equipped with a combustion air line that heats air to supply it to the combustor of the reformer, and a temperature sensor that detects the temperature of the reformer heat transfer section. Is detected by the temperature sensor, or by a preceding signal based on a load change command, the combustion air control valve is opened to supply excess air above the flow rate at the normal time, thereby lowering the temperature of the combustion gas in the reformer. ,
A method for controlling a reformer temperature in a fuel cell power generation facility, comprising preventing overheating of a reformer heat transfer section.
【請求項2】 カソード空気制御弁を有し、空気をカソ
ードガスに供給する空気供給ラインを更に備え、 前記燃焼空気制御弁の開操作と同時に、カソード空気制
御弁を閉めてカソードに供給する空気量を減少させる、
ことを特徴とする請求項1に記載の燃料電池発電設備に
おける改質器温度の制御方法。
2. An air supply line having a cathode air control valve for supplying air to the cathode gas, the air being supplied to the cathode by closing the cathode air control valve simultaneously with the opening operation of the combustion air control valve. Reduce the amount,
The method for controlling the reformer temperature in the fuel cell power generation facility according to claim 1, wherein.
【請求項3】 バイパス弁を有し、前記空気加熱器をバ
イパスするバイパスラインを更に備え、 前記燃焼空気制御弁の開操作と同時に、前記バイパス弁
を全開させる、ことを特徴とする請求項1に記載の燃料
電池発電設備における改質器温度の制御方法。
3. A bypass line having a bypass valve for bypassing the air heater is further provided, and the bypass valve is fully opened simultaneously with the opening operation of the combustion air control valve. A method for controlling the reformer temperature in the fuel cell power generation facility according to.
JP5003806A 1993-01-13 1993-01-13 Control method of reformer temperature in fuel cell generating facilities Pending JPH06215788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5003806A JPH06215788A (en) 1993-01-13 1993-01-13 Control method of reformer temperature in fuel cell generating facilities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5003806A JPH06215788A (en) 1993-01-13 1993-01-13 Control method of reformer temperature in fuel cell generating facilities

Publications (1)

Publication Number Publication Date
JPH06215788A true JPH06215788A (en) 1994-08-05

Family

ID=11567441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5003806A Pending JPH06215788A (en) 1993-01-13 1993-01-13 Control method of reformer temperature in fuel cell generating facilities

Country Status (1)

Country Link
JP (1) JPH06215788A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000348742A (en) * 1999-06-01 2000-12-15 Ishikawajima Harima Heavy Ind Co Ltd Fuel cell power generation facility
JP2006260855A (en) * 2005-03-15 2006-09-28 Aisin Seiki Co Ltd Fuel cell system
EP2164125A1 (en) * 2008-09-09 2010-03-17 Samsung Electronics Co., Ltd. Fuel cell system and air supply method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000348742A (en) * 1999-06-01 2000-12-15 Ishikawajima Harima Heavy Ind Co Ltd Fuel cell power generation facility
JP2006260855A (en) * 2005-03-15 2006-09-28 Aisin Seiki Co Ltd Fuel cell system
EP2164125A1 (en) * 2008-09-09 2010-03-17 Samsung Electronics Co., Ltd. Fuel cell system and air supply method thereof

Similar Documents

Publication Publication Date Title
JP2511866B2 (en) Fuel cell power generation system and method of starting the same
JP2000331697A (en) Fuel cell generating device injecting vapor into anode exhaust gas line
JPH06215788A (en) Control method of reformer temperature in fuel cell generating facilities
JPH07208200A (en) Combustion equipment for turbine compressor and method thereof
JPH06215790A (en) Control method of reformer temperature in fuel cell generating facilities
JPH07161371A (en) Method and apparatus for controlling temperature of fuel cell
JP3513933B2 (en) Fuel cell power generator
JPH0845527A (en) Operating method of fuel cell power generation device
KR100686714B1 (en) Heat recovery device for cogeneration fuel cell system
JP3928675B2 (en) Combined generator of fuel cell and gas turbine
JP3573239B2 (en) Fuel cell power generator
JP3239540B2 (en) Temperature control method of reformer
JP3882307B2 (en) Fuel cell power generation facility
JP3137143B2 (en) Temperature control method for fuel cell power plant and fuel cell power plant equipped with temperature control device
JPH04243538A (en) Method and device for controlling catalyst layer temperature of fuel reformer for fuel battery use
JPH05326003A (en) Temperature controlling method for reformer of fuel cell power generating facilities
JP2741580B2 (en) Molten carbonate fuel cell system
JP3467759B2 (en) Control method of outlet temperature of reformer
JPH08241722A (en) Fuel cell power generating device, and operating method at low load
JPH0722049A (en) Fuel cell testing device
JP3271677B2 (en) Fuel cell generator
JP3263936B2 (en) Fuel cell generator
JPH0722044A (en) Fuel cell power generating system
JP3331569B2 (en) Fuel cell generator
JPH0778626A (en) Fuel cell power-generating device