JPH0621389A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JPH0621389A
JPH0621389A JP5040661A JP4066193A JPH0621389A JP H0621389 A JPH0621389 A JP H0621389A JP 5040661 A JP5040661 A JP 5040661A JP 4066193 A JP4066193 A JP 4066193A JP H0621389 A JPH0621389 A JP H0621389A
Authority
JP
Japan
Prior art keywords
groove
impurity region
substrate
gate electrode
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5040661A
Other languages
Japanese (ja)
Other versions
JPH0831576B2 (en
Inventor
Toshiharu Watanabe
寿治 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5040661A priority Critical patent/JPH0831576B2/en
Publication of JPH0621389A publication Critical patent/JPH0621389A/en
Publication of JPH0831576B2 publication Critical patent/JPH0831576B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To reduce area occupied by a gate electrode in a plane and to contract unit cell area, for realizing the miniaturization of a device, by forming the gate electrode, isolated by the bottom part of a groove formed on the surface of a semiconductor substrate, on the side walls of the groove through the medium of gate insulating films. CONSTITUTION:A groove is formed by etching the surface of a semiconductor substrate 1 of one conductivity type, and gate oxide films 6 are formed by thermal oxidation. After that, n<->-type impurity regions 7 and 8 are formed in the bottom part of the groove and on the surface of the substrate 1 near the groove, by implanting n-type impurity ions. Next a polycrystalline silicon film 9 are deposited, and transfer gate electrodes 10 are formed on the side walls of the groove by etching. Following this, gate oxide films 6 are wet-etched using these electrodes 10 as masks, and CVD oxide films are deposited and etched back. On this occasion, parts of the films are left unremoved so as to cover the gate electrodes 10, and interlayer insulating films 14 are formed. Following this, thermally oxidized films 15 and polycrystalline silicon films 16 are formed, and capacitor electrodes 17 are formed by etching these selectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置及びその製造
方法に関し、特にMOSダイナミックRAM及びその製
造方法に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device and its manufacturing method, and more particularly to a MOS dynamic RAM and its manufacturing method.

【0002】[0002]

【従来の技術】従来のMOSダイナミックRAMの構造
の一例を第16図及び第17図を参照して説明する。
尚、第17図は第16図のA−A線に沿う断面図であ
る。
2. Description of the Related Art An example of the structure of a conventional MOS dynamic RAM will be described with reference to FIGS.
Incidentally, FIG. 17 is a sectional view taken along the line AA of FIG.

【0003】図中41は例えばp型シリコン基板であ
り、この基板41表面にはフィールド酸化膜42が形成
されている。このフィールド酸化膜42によって囲まれ
た基板41表面の一部にはキャパシタの基板側電極とな
るn型不純物領域43が形成されている。このn型不純
物領域43上にはキャパシタ酸化膜44を介してキャパ
シタ電極45が形成されており、更にこのキャパシタ電
極45表面には層間絶縁膜46が形成されている。これ
らセルキャパシタ以外の基板41表面にはゲート酸化膜
47を介してトランスファゲート電極481 が形成され
ており、図示しない隣接したメモリセルへ延長されてい
る。また、前記層間絶縁膜46上には図示しない隣接し
たメモリセルから延長されたトランスファゲート電極4
2 が形成されている。前記トランスファゲート電極4
1 の両側方の基板41表面にはソース,ドレイン領域
となるn+ 型不純物領域49,50が形成されている。
Reference numeral 41 in the drawing is, for example, a p-type silicon substrate, and a field oxide film 42 is formed on the surface of the substrate 41. An n-type impurity region 43 to be a substrate-side electrode of the capacitor is formed on a part of the surface of the substrate 41 surrounded by the field oxide film 42. A capacitor electrode 45 is formed on the n-type impurity region 43 via a capacitor oxide film 44, and an interlayer insulating film 46 is formed on the surface of the capacitor electrode 45. A transfer gate electrode 48 1 is formed on the surface of the substrate 41 other than the cell capacitors via a gate oxide film 47 and extends to an adjacent memory cell (not shown). In addition, the transfer gate electrode 4 extended from an adjacent memory cell (not shown) on the interlayer insulating film 46.
8 2 are formed. The transfer gate electrode 4
N + -type impurity regions 49 and 50 serving as source and drain regions are formed on the surface of the substrate 41 on both sides of 8 1 .

【0004】上記MOSDRAMは1トランジスタ1キ
ャパシタ型と称されるものであり、その動作は以下のよ
うなものである。すなわち、書込み時にはn+ 型不純物
領域50に情報電荷を与え、トランスファゲート電極4
1 を選択状態にすることにより情報電荷をn+ 型不純
物領域49を介してn型不純物領域43へ伝達する。n
型不純物領域43はキャパシタ酸化膜44を介してキャ
パシタ電極45と対向しており、例えば接地電位に固定
されたキャパシタ電極45とn型不純物領域43との間
には一定の静電容量が存在するので電荷が蓄積される。
この状態でトランスファゲート電極481 を非選択状態
にするとデータが保持される。また、読出し時にはトラ
ンスファゲート電極481 を選択状態にすればn型不純
物領域43に蓄積された電荷がn+ 型不純物領域50へ
伝達される。
The above-mentioned MOS DRAM is called a one-transistor one-capacitor type, and its operation is as follows. That is, at the time of writing, information charges are applied to the n + -type impurity region 50, and the transfer gate electrode 4
When 8 1 is selected, the information charges are transmitted to the n-type impurity region 43 via the n + -type impurity region 49. n
The type impurity region 43 faces the capacitor electrode 45 via the capacitor oxide film 44, and, for example, a certain capacitance exists between the capacitor electrode 45 fixed to the ground potential and the n-type impurity region 43. Therefore, charges are accumulated.
In this state, if the transfer gate electrode 48 1 is set to the non-selected state, the data is retained. Further, when the transfer gate electrode 48 1 is brought into a selected state during reading, the charges accumulated in the n-type impurity region 43 are transferred to the n + -type impurity region 50.

【0005】[0005]

【発明が解決しようとする課題】上述した従来のMOS
DRAMではn型不純物領域43、キャパシタ酸化膜4
4及びキャパシタ電極45からなるセルキャパシタと、
トランスファゲート電極481 、ゲート酸化膜47及び
+ 型不純物領域49,50からなる転送トランジスタ
とが同一平面上にある。このため、単位セル当りの面積
をセルキャパシタと転送トランジスタとが奪いあう形と
なっている。したがって、この様な構造では近年の記憶
容量の増加傾向に伴う単位セル面積の縮小化に対応でき
ないという問題がある。
DISCLOSURE OF THE INVENTION The conventional MOS described above
In the DRAM, the n-type impurity region 43 and the capacitor oxide film 4
4 and a cell capacitor composed of a capacitor electrode 45,
The transfer transistor including the transfer gate electrode 48 1 , the gate oxide film 47 and the n + type impurity regions 49 and 50 is on the same plane. Therefore, the area per unit cell is taken up by the cell capacitor and the transfer transistor. Therefore, such a structure has a problem in that it cannot cope with the reduction in the unit cell area which accompanies the recent trend of increase in storage capacity.

【0006】また、素子の微細化に伴い、ソース,ドレ
イン領域となるn+ 型不純物領域49,50近傍のチャ
ネル領域で電界集中が起こり、ホットキャリアの発生に
起因するトランジスタのしきい値電圧の変動などの問題
が生じる。
In addition, with the miniaturization of the device, electric field concentration occurs in the channel regions near the n + type impurity regions 49 and 50, which are the source and drain regions, and the threshold voltage of the transistor caused by the generation of hot carriers occurs. Problems such as fluctuations occur.

【0007】本発明は上記事情に鑑みてなされたもので
あり、単位セル当たりの面積を縮小するとともに、ソー
ス,ドレイン領域近傍のチャネル領域における電界集中
を防止し得る、大容量かつ素子特性の良好な半導体装置
及びこの様な半導体装置を簡便な方法で製造し得る方法
を提供することを目的としている。
The present invention has been made in view of the above circumstances, and has a large capacity and good device characteristics capable of reducing the area per unit cell and preventing electric field concentration in the channel region near the source and drain regions. Another object of the present invention is to provide a simple semiconductor device and a method capable of manufacturing such a semiconductor device by a simple method.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明では、一導電型の半導体基板表面に形成された
溝の両側壁にゲート絶縁膜を介して形成され、溝底部で
分離された独立制御可能な複数のゲート電極と、溝底部
及び溝周辺の基板表面の複数の領域に形成された、ゲー
ト電極近傍の低濃度不純物領域及び低濃度不純物領域に
隣接する高濃度不純物領域からなる基板と逆導電型の不
純物領域と、溝底部の基板表面の不純物領域上にキャパ
シタ絶縁膜を介して形成されたキャパシタ電極とを具備
したことを特徴とする半導体装置を提供する。
In order to achieve the above object, according to the present invention, the gate insulating film is formed on both side walls of a groove formed on the surface of a semiconductor substrate of one conductivity type, and is separated at the groove bottom. A plurality of independently controllable gate electrodes, a low-concentration impurity region near the gate electrode and a high-concentration impurity region adjacent to the low-concentration impurity region formed in a plurality of regions on the substrate surface around the groove bottom and the groove A semiconductor device comprising: an impurity region having a conductivity type opposite to that of a substrate; and a capacitor electrode formed on the impurity region of the substrate surface at the bottom of the groove with a capacitor insulating film interposed therebetween.

【0009】また、一導電型の半導体基板表面を異方性
エッチングによりエッチングして溝を形成する工程と、
基板表面にゲート絶縁膜を形成する工程と、基板と逆導
電型の不純物を低ドーズ量でイオン注入する工程と、全
面にゲート電極材料を堆積した後、異方性エッチングに
よりゲート電極材料をエッチングして、溝側壁にゲート
絶縁膜を介して独立制御可能な複数のゲート電極を形成
する工程と、ゲート電極をマスクとして基板と逆導電型
の不純物を高ドーズ量でイオン注入し、溝底部及び溝周
辺の複数の領域にゲート電極近傍の低濃度不純物領域及
び低濃度不純物領域に隣接する高濃度不純物領域からな
る基板と逆導電型の不純物領域を形成する工程と、全面
に絶縁膜を堆積した後、異方性エッチングにより絶縁膜
をエッチングし、ゲート電極を覆うように絶縁膜を残存
させる工程と、ゲート電極が形成された領域以外の基板
表面にキャパシタ絶縁膜を形成する工程と、全面にキャ
パシタ電極材料を堆積した後、その一部をエッチングし
て、溝底部の基板表面の不純物領域上にキャパシタ絶縁
膜を介してキャパシタ電極を形成する工程とを具備した
ことを特徴とする半導体装置の製造方法を提供する。
Further, a step of etching the surface of the semiconductor substrate of one conductivity type by anisotropic etching to form a groove,
A step of forming a gate insulating film on the surface of the substrate, a step of ion-implanting impurities of a conductivity type opposite to that of the substrate at a low dose, and a gate electrode material is deposited on the entire surface, and then the gate electrode material is etched by anisotropic etching. Then, a step of forming a plurality of independently controllable gate electrodes on the sidewalls of the trench via the gate insulating film, and using the gate electrodes as a mask, impurities of the opposite conductivity type to the substrate are ion-implanted at a high dose, and the trench bottom and A step of forming an impurity region of a conductivity type opposite to that of the substrate, which is composed of a low-concentration impurity region near the gate electrode and a high-concentration impurity region adjacent to the low-concentration impurity region in a plurality of regions around the trench, and an insulating film is deposited on the entire surface. After that, a step of etching the insulating film by anisotropic etching to leave the insulating film so as to cover the gate electrode and the capacitor on the substrate surface other than the region where the gate electrode is formed A step of forming an edge film and a step of depositing a capacitor electrode material on the entire surface and then etching a part thereof to form a capacitor electrode on the impurity region of the substrate surface at the bottom of the groove via the capacitor insulating film. Provided is a method for manufacturing a semiconductor device characterized by the above.

【0010】[0010]

【作用】本発明の半導体装置では、溝側壁にゲート電極
を形成しているので、平面におけるゲート電極の占有面
積を減少することができ、単位セル面積を縮小すること
ができる。また、ソース,ドレイン領域となる不純物領
域がいわゆるLDD構造となっているため、素子が微細
化しても良好な素子特性を維持することができる。 ま
た、本発明の製造方法によれば、上記半導体装置を極め
て簡便な工程で製造することができる。
In the semiconductor device of the present invention, since the gate electrode is formed on the side wall of the groove, the area occupied by the gate electrode on the plane can be reduced and the unit cell area can be reduced. Further, since the impurity regions serving as the source and drain regions have a so-called LDD structure, good device characteristics can be maintained even if the device is miniaturized. Further, according to the manufacturing method of the present invention, the semiconductor device can be manufactured by extremely simple steps.

【0011】[0011]

【実施例】以下、図1乃至図11を参照して本発明の実
施例を説明する。
Embodiments of the present invention will be described below with reference to FIGS.

【0012】まず、例えばp型シリコン基板1表面の一
部を反応性イオンエッチング(以下、RIEと略記す
る)により選択的にエッチングし、例えば幅1.8μ
m、深さ1.5μmの溝2を形成する(図1)。次に、
基板1表面の一部を等方性エッチングまたはやや等方性
エッチングを帯びた異方性エッチングによりエッチング
し、例えば幅0.8μm、深さ0.8μmの素子分離用
溝3を形成した後、フィールド反転防止のイオン注入を
行なう。つづいて、全面に例えば厚さ5000オングス
トロームのCVD酸化膜4を堆積する。この結果、素子
分離用溝3は幅が狭いのでCVD酸化膜4が充填された
状態となるが、溝2内には底面及び側壁に厚さ5000
オングストロームのCVD酸化膜4が堆積された状態と
なる(図2)。つづいて、RIEによりCVD酸化膜4
を全面エッチバックすることにより素子分離用溝3内に
のみCVD酸化膜4を埋設し、フィールド酸化膜5を形
成する(図3)。図3までの工程を経た段階での平面図
は図11に示すようになる。すなわち、フィールド酸化
膜5によって囲まれた領域が2ビット分のメモリセル領
域であり、その中央部を溝2が隣接する多数のメモリセ
ルに亘って平行して延長された状態となっている。
First, for example, a part of the surface of the p-type silicon substrate 1 is selectively etched by reactive ion etching (hereinafter abbreviated as RIE) to have, for example, a width of 1.8 μm.
A groove 2 having a depth of m and a depth of 1.5 μm is formed (FIG. 1). next,
After etching a part of the surface of the substrate 1 by isotropic etching or anisotropic etching with slightly isotropic etching, for example, to form a device isolation groove 3 having a width of 0.8 μm and a depth of 0.8 μm, Ion implantation is performed to prevent field inversion. Subsequently, a CVD oxide film 4 having a thickness of 5000 Å, for example, is deposited on the entire surface. As a result, since the element isolation trench 3 has a narrow width, it is in a state of being filled with the CVD oxide film 4. However, in the trench 2, the bottom surface and the side wall have a thickness of 5000.
The CVD oxide film 4 of Angstrom is deposited (FIG. 2). Then, CVD oxide film 4 is formed by RIE.
Is etched back to bury the CVD oxide film 4 only in the element isolation trench 3 to form a field oxide film 5 (FIG. 3). A plan view after the steps up to FIG. 3 is shown in FIG. That is, the region surrounded by the field oxide film 5 is a memory cell region for 2 bits, and the central portion thereof is in a state in which the trench 2 is extended in parallel over many adjacent memory cells.

【0013】次いで、熱酸化を行い露出した基板1表面
に例えば厚さ120オングストロームのゲート酸化膜6
を形成する。つづいて、n型不純物、例えばAs+ を1
13cm-2程度の比較的低ドーズ量でイオン注入する。
この結果、イオン束にほぼ垂直な面、すなわち溝2の底
部及び溝2の周辺の基板1表面には熱処理後にn- 型不
純物領域7,8が形成される。つづいて、全面に例えば
厚さ3000オングストロームの多結晶シリコン膜9を
堆積する(図4)。その後、多結晶シリコン膜9をRI
Eにより溝2側壁に例えば1.2μmの高さで残存する
ようにエッチングし、トランスファゲート電極10を形
成する。これらトランスファゲート電極10は溝2側壁
に沿って多数のメモリセルに亘って延長されており、ワ
ード線となる。つづいて、トランスファゲート電極10
をマスクとしてn型不純物例えばAs+ を1015cm-2
程度の比較的高ドーズ量でイオン注入する。この結果、
熱処理後に前記n- 型不純物領域7,8からの不純物の
拡散、あるいは高ドーズイオン注入時に溝2上端部側壁
に斜め方向から低ドーズイオン注入されたとみなしてよ
い不純物の拡散により、溝2底部の基板1表面にはトラ
ンスファゲート電極10近傍のn- 型不純物領域11a
及びこれらの領域に隣接するn+ 型不純物領域11bか
らなるn型不純物領域11が、溝2周辺の基板1表面に
はトランスファゲート電極10近傍のn- 型不純物領域
12a及びこれらの領域に隣接するn+ 型不純物領域1
2bからなるn型不純物領域12がそれぞれ形成される
(図5)。つづいて、トランスファゲート電極10をマ
スクとしてゲート酸化膜6をウエットエッチングした
後、全面に例えば厚さ3000オングストロームのCV
D酸化膜13を堆積する(図6)。つづいて、CVD酸
化膜13をRIEによりエッチバックしてトランスファ
ゲート電極10を覆うように残存させ、層間絶縁膜14
を形成する(図7)。
Next, a gate oxide film 6 having a thickness of, for example, 120 Å is formed on the exposed surface of the substrate 1 by thermal oxidation.
To form. Then, add n-type impurities such as As + to 1
Ion implantation is performed at a relatively low dose of about 0 13 cm -2 .
As a result, n type impurity regions 7 and 8 are formed after the heat treatment on the surface substantially perpendicular to the ion flux, that is, on the bottom of the groove 2 and the surface of the substrate 1 around the groove 2. Subsequently, a polycrystalline silicon film 9 having a thickness of 3000 angstrom, for example, is deposited on the entire surface (FIG. 4). After that, the polycrystalline silicon film 9 is RI
The transfer gate electrode 10 is formed by etching with E so that the side wall of the groove 2 remains at a height of 1.2 μm, for example. These transfer gate electrodes 10 extend along the sidewalls of the trench 2 over a large number of memory cells and serve as word lines. Next, the transfer gate electrode 10
Is used as a mask to remove n-type impurities such as As + from 10 15 cm -2.
Ion implantation is performed at a relatively high dose amount. As a result,
After the heat treatment, diffusion of impurities from the n -type impurity regions 7 and 8 or diffusion of impurities that may be regarded as being low-dose ion-implanted obliquely to the sidewall of the upper end portion of the groove 2 during high-dose ion implantation causes On the surface of the substrate 1, an n -type impurity region 11a near the transfer gate electrode 10 is formed.
And an n-type impurity region 11 composed of an n + -type impurity region 11b adjacent to these regions is adjacent to the n -type impurity region 12a near the transfer gate electrode 10 and these regions on the surface of the substrate 1 around the trench 2. n + type impurity region 1
The n-type impurity regions 12 made of 2b are formed (FIG. 5). Then, after the gate oxide film 6 is wet-etched using the transfer gate electrode 10 as a mask, a CV having a thickness of 3000 angstrom is formed on the entire surface.
A D oxide film 13 is deposited (FIG. 6). Subsequently, the CVD oxide film 13 is etched back by RIE and left so as to cover the transfer gate electrode 10, and the interlayer insulating film 14 is formed.
Are formed (FIG. 7).

【0014】次いで、熱酸化により露出した基板1表面
に例えば厚さ100オングストロームの熱酸化膜(キャ
パシタ酸化膜)15を形成した後、全面に例えば厚さ3
000オングストロームの多結晶シリコン膜16を堆積
する(図8)。つづいて、図示しないホトレジストパタ
ーンをマスクとして多結晶シリコン膜16を選択的にエ
ッチングし、溝2周辺のn型不純物領域12上にキャパ
シタ酸化膜15を介してキャパシタ電極17を形成す
る。つづいて、前記ホトレジストパターンを除去した
後、熱酸化を行い、キャパシタ電極17表面に層間絶縁
膜18を形成する。つづいて、図示しないホトレジスト
パターンをマスクとして溝2底部のn型不純物領域11
表面の熱酸化膜をエッチングした後、ホトレジストパタ
ーンを除去する(図9)。つづいて、全面に例えばAl
膜を蒸着した後パターニングして、トランスファゲート
電極10と直交する方向に延長されたビット線19を形
成し、MOSDRAMを製造する(図10)。
Then, a thermal oxide film (capacitor oxide film) 15 having a thickness of 100 angstrom, for example, is formed on the surface of the substrate 1 exposed by thermal oxidation, and then, for example, a thickness of 3 is applied on the entire surface.
A polycrystal silicon film 16 of 000 angstrom is deposited (FIG. 8). Subsequently, the polycrystalline silicon film 16 is selectively etched using a photoresist pattern (not shown) as a mask to form a capacitor electrode 17 on the n-type impurity region 12 around the trench 2 via a capacitor oxide film 15. Subsequently, after removing the photoresist pattern, thermal oxidation is performed to form an interlayer insulating film 18 on the surface of the capacitor electrode 17. Next, using the photoresist pattern (not shown) as a mask, the n-type impurity region 11 at the bottom of the groove 2 is formed.
After etching the thermal oxide film on the surface, the photoresist pattern is removed (FIG. 9). Then, for example, Al on the entire surface
After depositing the film, patterning is performed to form a bit line 19 extending in a direction orthogonal to the transfer gate electrode 10 to manufacture a MOSDRAM (FIG. 10).

【0015】しかして、図10に示したMOSDRAM
は基板1表面に形成された溝2の側壁にゲート酸化膜6
を介してトランスファゲート電極10を形成しているの
で、平面における単位セル面積のうち転送トランジスタ
の占有する面積を非常に小さくすることができ、ひいて
は単位セル面積自体を縮小化することができる。また、
ソース,ドレイン領域となるn型不純物領域11,12
はトランスファゲート電極10の近傍のn- 型不純物領
域及びこれに隣接するn+ 型不純物領域からなるいわゆ
るLDD(Lightly Doped Drain
and Source)構造となっているためドレイン
領域近傍のチャネル領域における電界集中を緩和するこ
とができ、ホットキャリアの発生によるトランジスタの
信頼性低下を防止することができる。
Therefore, the MOSDRAM shown in FIG.
Is the gate oxide film 6 on the sidewall of the groove 2 formed on the surface of the substrate 1.
Since the transfer gate electrode 10 is formed through the transfer gate electrode 10, the area occupied by the transfer transistor in the unit cell area on the plane can be made extremely small, and the unit cell area itself can be reduced. Also,
N-type impurity regions 11 and 12 serving as source and drain regions
Is a so-called LDD (Lightly Doped Drain) composed of an n type impurity region near the transfer gate electrode 10 and an n + type impurity region adjacent to the n type impurity region.
Since it has an and source structure, electric field concentration in the channel region in the vicinity of the drain region can be mitigated, and deterioration in reliability of the transistor due to generation of hot carriers can be prevented.

【0016】また、上記実施例の方法によれば、図4の
工程における低ドーズイオン注入と図5の工程における
トランスファゲート電極10をマスクとする高ドーズイ
オン注入だけで、自己整合的にいわゆるLDD構造のソ
ース,ドレイン領域となるn型不純物領域11,12を
形成することができ、通常のMOSトランジスタにLD
D構造のソース,ドレイン領域を形成する場合のように
ゲート電極の側壁に例えばCVD酸化膜からなる高ドー
ズイオン注入のマスクとなるスペーサを形成する工程は
必要ない。また、転送トランジスタのチャネル長は図1
の工程で形成される溝2の深さによって決定されるが、
チャネル長を長く(すなわち溝2を深く)しても平面に
おける単位セル面積は増大しないので、短チャネル化に
伴うサブスレッショルド特性の悪化による電荷の漏洩を
防止することができ、DRAMの信頼性低下を防止する
ことができる。更に、図10の工程でn+ 型不純物領域
11bとビット線19とのコンタクトをとるために、図
示しないホトレジストパターンをマスクとしてn+ 型不
純物領域11b上の酸化膜を除去するが、この写真蝕刻
工程のマスク合わせ精度はそれほど必要でないので、ビ
ット線19とn+ 型不純物領域11bとの自己整合的接
続(Self Align Contact)が可能で
ある。以上述べたように極めて簡便な工程でセル面積を
大幅に減少できるとともにDRAMの信頼性を向上する
ことができる。
Further, according to the method of the above embodiment, only the low dose ion implantation in the step of FIG. 4 and the high dose ion implantation using the transfer gate electrode 10 as a mask in the step of FIG. It is possible to form the n-type impurity regions 11 and 12 to be the source and drain regions of the structure, and LD
Unlike the case of forming the source and drain regions of the D structure, there is no need to form a spacer on the sidewall of the gate electrode, which is a mask of high dose ion implantation made of, for example, a CVD oxide film. The channel length of the transfer transistor is shown in FIG.
Is determined by the depth of the groove 2 formed in the step of
Since the unit cell area on the plane does not increase even if the channel length is made long (that is, the groove 2 is made deep), it is possible to prevent the leakage of charges due to the deterioration of the subthreshold characteristics due to the shortening of the channel, and the reliability of the DRAM is deteriorated. Can be prevented. Further, in order to make contact between the n + type impurity region 11b and the bit line 19 in the process of FIG. 10, the oxide film on the n + type impurity region 11b is removed using a photoresist pattern (not shown) as a mask. Since the mask alignment accuracy in the process is not so required, the self alignment connection (Self Align Contact) between the bit line 19 and the n + type impurity region 11b is possible. As described above, the cell area can be greatly reduced and the reliability of the DRAM can be improved by an extremely simple process.

【0017】尚、上記実施例では溝周辺の基板表面のn
型不純物領域を用いてセルキャパシタを形成し、溝底部
の基板表面のn型不純物領域をビット線と接続させた
が、この構成を逆にして溝周辺の基板表面のn型不純物
領域をビット線と接続させ、溝底部の基板表面のn型不
純物領域を用いてセルキャパシタを形成してもよい。こ
の様なMOSDRAMを図12乃至図15に示す製造方
法を併記して説明する。
In the above embodiment, n on the substrate surface around the groove is
Although the cell capacitor was formed using the type impurity region and the n-type impurity region on the substrate surface at the bottom of the groove was connected to the bit line, this configuration is reversed, and the n-type impurity region on the substrate surface around the groove is changed to the bit line. And the cell capacitor may be formed by using the n-type impurity region on the substrate surface at the bottom of the groove. Such a MOS DRAM will be described with the manufacturing method shown in FIGS.

【0018】まず、図1乃至図3に対応する工程でp型
シリコン基板21表面を溝22及び素子分離用溝23を
形成した後、素子分離用溝23にのみ例えばCVD酸化
膜を埋設してフィールド酸化膜24を形成する。この段
階で溝22の周辺部(溝22と溝22との間の突出部)
はフィールド酸化膜24によって囲まれた2ビット分の
メモリセル領域の中央に位置している(図12)。次
に、図4乃至図7に対応する工程でゲート酸化膜25の
形成、n型不純物の低ドーズイオン注入、溝22側壁で
のトランスファゲート電極26の形成、n型不純物の高
ドーズイオン注入等の工程により、溝22底部の基板2
1表面にトランスファゲート電極26近傍のn- 型不純
物領域27aとこれらの領域に隣接するn+ 型不純物領
域27bとからなるn型不純物領域27を、溝22周辺
の基板21表面にトランスファゲート電極26近傍のn
- 型不純物領域28aとこれらの領域に隣接するn+
不純物領域28bとからなるn型不純物領域28をそれ
ぞれ形成する。つづいて、トランスファゲート電極26
を覆うように層間絶縁膜29を形成する(図13)。次
いで、図8及び図9に対応する工程でキャパシタ酸化膜
30を形成した後、全面に例えば多結晶シリコン膜を堆
積し、これをパターニングして溝22底部のn型不純物
領域27上に、キャパシタ酸化膜30を介してキャパシ
タ電極31を形成する。つづいて、キャパシタ電極31
表面に層間絶縁膜32を形成した後、溝22周辺のn型
不純物領域28表面の酸化膜を選択的にエッチングして
n型不純物領域28を露出させる(図14)。次いで、
図10に対応する工程で全面に例えばAl膜を蒸着した
後、パターニングして溝22周辺のn型不純物領域28
と接続するビット線33を形成し、MOSDRAMを製
造する(図15)。
First, after forming the groove 22 and the element isolation groove 23 on the surface of the p-type silicon substrate 21 in a step corresponding to FIGS. 1 to 3, for example, a CVD oxide film is buried only in the element isolation groove 23. A field oxide film 24 is formed. At this stage, the peripheral portion of the groove 22 (protruding portion between the groove 22)
Is located in the center of the memory cell area for 2 bits surrounded by the field oxide film 24 (FIG. 12). Next, in steps corresponding to FIGS. 4 to 7, formation of the gate oxide film 25, low-dose ion implantation of n-type impurities, formation of the transfer gate electrode 26 on the sidewall of the groove 22, high-dose ion implantation of n-type impurities, etc. By the process of
An n-type impurity region 27 composed of an n -type impurity region 27a near the transfer gate electrode 26 and an n + -type impurity region 27b adjacent to these regions is formed on one surface, and the transfer gate electrode 26 is formed on the surface of the substrate 21 around the groove 22. Neighborhood n
The n-type impurity regions 28 each including the −-type impurity regions 28a and the n + -type impurity regions 28b adjacent to these regions are formed. Then, the transfer gate electrode 26
An interlayer insulating film 29 is formed so as to cover (FIG. 13). Next, after forming a capacitor oxide film 30 in a process corresponding to FIGS. 8 and 9, for example, a polycrystalline silicon film is deposited on the entire surface and is patterned to form a capacitor on the n-type impurity region 27 at the bottom of the groove 22. A capacitor electrode 31 is formed via the oxide film 30. Next, the capacitor electrode 31
After forming the interlayer insulating film 32 on the surface, the oxide film on the surface of the n-type impurity region 28 around the groove 22 is selectively etched to expose the n-type impurity region 28 (FIG. 14). Then
In the process corresponding to FIG. 10, for example, an Al film is vapor-deposited on the entire surface and then patterned to form an n-type impurity region 28 around the groove 22.
A bit line 33 connected to is formed and a MOSDRAM is manufactured (FIG. 15).

【0019】しかして、図15に示したMOSDRAM
及び図12乃至図15に示した方法も上記実施例と同様
な効果を得ることができる。但し、図15に示したMO
SDRAMでは2個の転送トランジスタ間の相互干渉を
防ぐために、溝22周辺のn型不純物領域28の横幅を
広くすることが望ましい。
Therefore, the MOSDRAM shown in FIG.
Also, the method shown in FIGS. 12 to 15 can obtain the same effect as that of the above embodiment. However, the MO shown in FIG.
In the SDRAM, it is desirable to widen the lateral width of the n-type impurity region 28 around the groove 22 in order to prevent mutual interference between the two transfer transistors.

【0020】尚、以上の説明ではフィールド絶縁膜を形
成するのに素子分離用溝に絶縁膜を埋設する方法を用い
たが、表面の平坦性のよい微細素子分離法であれば選択
酸化法でもよい。
In the above description, the method of burying the insulating film in the element isolation groove is used to form the field insulating film. However, if it is a fine element isolation method having a good surface flatness, a selective oxidation method may be used. Good.

【0021】また、実施例では図5の工程で基板1表面
全体にゲート酸化膜6が存在する状態でAs+ の高ドー
ズイオン注入を行ったが、この高ドーズイオン注入はト
ランスファゲート電極10をマスクとしてゲート酸化膜
6の露出した部分をエッチングした後に行ってもよい。
Further, in the embodiment, high dose ion implantation of As.sup. + Was performed in the state of the gate oxide film 6 on the entire surface of the substrate 1 in the process of FIG. 5, but this high dose ion implantation was performed on the transfer gate electrode 10. It may be performed after etching the exposed portion of the gate oxide film 6 as a mask.

【0022】更に、実施例ではトランスファゲート電極
材料及びキャパシタ電極材料として多結晶シリコンを用
いたが、これに限らず金属あるいは金属ケイ化物を用い
てもよい。
Further, although polycrystalline silicon is used as the material of the transfer gate electrode and the material of the capacitor electrode in the embodiment, the material is not limited to this, and metal or metal silicide may be used.

【0023】[0023]

【発明の効果】以上詳述した如く本発明によれば、大容
量かつ素子特性の良好な半導体装置及びこの様な半導体
装置を簡便な工程で製造し得る方法を提供できるもので
ある。
As described in detail above, according to the present invention, it is possible to provide a semiconductor device having a large capacity and good element characteristics, and a method capable of manufacturing such a semiconductor device in a simple process.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の半導体装置の製造工程
FIG. 1 is a manufacturing process diagram of a semiconductor device according to a first embodiment of the present invention.

【図2】本発明の第1の実施例の半導体装置の製造工程
FIG. 2 is a manufacturing process diagram of a semiconductor device according to a first embodiment of the present invention.

【図3】本発明の第1の実施例の半導体装置の製造工程
FIG. 3 is a manufacturing process diagram of the semiconductor device according to the first embodiment of the present invention.

【図4】本発明の第1の実施例の半導体装置の製造工程
FIG. 4 is a manufacturing process diagram of the semiconductor device according to the first embodiment of the present invention.

【図5】本発明の第1の実施例の半導体装置の製造工程
FIG. 5 is a manufacturing process diagram of the semiconductor device according to the first embodiment of the present invention.

【図6】本発明の第1の実施例の半導体装置の製造工程
FIG. 6 is a manufacturing process diagram of the semiconductor device according to the first embodiment of the present invention.

【図7】本発明の第1の実施例の半導体装置の製造工程
FIG. 7 is a manufacturing process diagram of the semiconductor device according to the first embodiment of the present invention.

【図8】本発明の第1の実施例の半導体装置の製造工程
FIG. 8 is a manufacturing process diagram of the semiconductor device according to the first embodiment of the present invention.

【図9】本発明の第1の実施例の半導体装置の製造工程
FIG. 9 is a manufacturing process diagram of the semiconductor device according to the first embodiment of the present invention.

【図10】本発明の第1の実施例の半導体装置の製造工
程図
FIG. 10 is a manufacturing process diagram of the semiconductor device according to the first embodiment of the present invention.

【図11】本発明の第1の実施例の半導体装置の平面図FIG. 11 is a plan view of the semiconductor device according to the first embodiment of the present invention.

【図12】本発明の第2の実施例の半導体装置の製造工
程図
FIG. 12 is a manufacturing process diagram of a semiconductor device according to a second embodiment of the present invention.

【図13】本発明の第2の実施例の半導体装置の製造工
程図
FIG. 13 is a manufacturing process diagram of a semiconductor device according to a second embodiment of the present invention.

【図14】本発明の第2の実施例の半導体装置の製造工
程図
FIG. 14 is a manufacturing process diagram of a semiconductor device according to a second embodiment of the present invention.

【図15】本発明の第2の実施例の半導体装置の製造工
程図
FIG. 15 is a manufacturing process diagram of a semiconductor device according to a second embodiment of the present invention.

【図16】従来の半導体装置の断面図FIG. 16 is a sectional view of a conventional semiconductor device.

【図17】従来の半導体装置の断面図FIG. 17 is a sectional view of a conventional semiconductor device.

【符号の説明】[Explanation of symbols]

1、21 p型シリコン基板 2、22 溝 3、13 CVD酸化膜 4、23 素子分離用溝 5、24 フィールド酸化膜 6、25 ゲート酸化膜 7、8 n- 型不純物領域 9 多結晶シリコン膜 10、26 トランスファゲー
ト電極 11a、12a、27a、28a n- 型不純物領域 11b、12b、27b、28b n+ 型不純物領域 11、12、27、28 n型不純物領域 14、18、29、32 層間絶縁膜 15、30 キャパシタ酸化膜 16 多結晶シリコン膜 17、31 キャパシタ電極 19、33 ビット線
1, 21 p-type silicon substrate 2, 22 groove 3, 13 CVD oxide film 4, 23 element isolation groove 5, 24 field oxide film 6, 25 gate oxide film 7, 8 n - type impurity region 9 polycrystalline silicon film 10 , 26 transfer gate electrodes 11a, 12a, 27a, 28a n type impurity regions 11b, 12b, 27b, 28b n + type impurity regions 11, 12, 27, 28 n type impurity regions 14, 18, 29, 32 interlayer insulating film 15, 30 Capacitor oxide film 16 Polycrystalline silicon film 17, 31 Capacitor electrode 19, 33 Bit line

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 7377−4M H01L 29/78 301 M ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location 7377-4M H01L 29/78 301 M

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一導電型の半導体基板表面に形成された
溝の両側壁にゲート絶縁膜を介して形成され、前記溝底
部で分離された独立制御可能な複数のゲート電極と、 前記溝底部及び溝周辺の基板表面の複数の領域に形成さ
れた、前記ゲート電極近傍の低濃度不純物領域及び低濃
度不純物領域に隣接する高濃度不純物領域からなる基板
と逆導電型の不純物領域と、 前記溝底部の基板表面の不純物領域上にキャパシタ絶縁
膜を介して形成されたキャパシタ電極とを具備したこと
を特徴とする半導体装置。
1. A plurality of independently controllable gate electrodes formed on both side walls of a groove formed on a surface of a semiconductor substrate of one conductivity type with a gate insulating film interposed therebetween, and independently controllable. And an impurity region of a conductivity type opposite to that of the substrate, which is formed in a plurality of regions on the surface of the substrate around the trench, the impurity region having a low concentration impurity region near the gate electrode and a high concentration impurity region adjacent to the low concentration impurity region, and the trench. A semiconductor device comprising: a capacitor electrode formed on the impurity region of the substrate surface at the bottom via a capacitor insulating film.
【請求項2】 一導電型の半導体基板表面を異方性エッ
チングによりエッチングして溝を形成する工程と、 基板表面にゲート絶縁膜を形成する工程と、 基板と逆導電型の不純物を低ドーズ量でイオン注入する
工程と、 全面にゲート電極材料を堆積した後、異方性エッチング
により該ゲート電極材料をエッチングして、前記溝側壁
にゲート絶縁膜を介して独立制御可能な複数のゲート電
極を形成する工程と、 該ゲート電極をマスクとして基板と逆導電型の不純物を
高ドーズ量でイオン注入し、前記溝底部及び溝周辺の複
数の領域にゲート電極近傍の低濃度不純物領域及び該低
濃度不純物領域に隣接する高濃度不純物領域からなる基
板と逆導電型の不純物領域を形成する工程と、 全面に絶縁膜を堆積した後、異方性エッチングにより該
絶縁膜をエッチングし、前記ゲート電極を覆うように絶
縁膜を残存させる工程と、 前記ゲート電極が形成された領域以外の基板表面にキャ
パシタ絶縁膜を形成する工程と、 全面にキャパシタ電極材料を堆積した後、その一部をエ
ッチングして、溝底部の基板表面の不純物領域上にキャ
パシタ絶縁膜を介してキャパシタ電極を形成する工程と
を具備したことを特徴とする半導体装置の製造方法。
2. A step of forming a groove by etching the surface of a semiconductor substrate of one conductivity type by anisotropic etching, a step of forming a gate insulating film on the surface of the substrate, and a low dose of impurities of a conductivity type opposite to that of the substrate. A step of implanting a large amount of ions, and after the gate electrode material is deposited on the entire surface, the gate electrode material is etched by anisotropic etching, and a plurality of gate electrodes that can be independently controlled on the sidewalls of the trench via a gate insulating film. And a low-concentration impurity region near the gate electrode and the low-concentration impurity region near the gate electrode in a plurality of regions near the groove bottom and around the groove by ion-implanting impurities of a conductivity type opposite to that of the substrate with the gate electrode as a mask. A step of forming an impurity region of a conductivity type opposite to that of the substrate composed of a high-concentration impurity region adjacent to the high-concentration impurity region; and, after depositing an insulating film on the entire surface, anisotropically etching the insulating film. Etching, leaving an insulating film to cover the gate electrode, forming a capacitor insulating film on the substrate surface other than the region where the gate electrode is formed, and after depositing a capacitor electrode material on the entire surface, And a step of etching a part thereof to form a capacitor electrode on the impurity region on the substrate surface at the bottom of the groove with a capacitor insulating film interposed therebetween.
【請求項3】 溝を形成した後に、更に基板の一部を選
択的にエッチングして素子分離用溝を形成し、該素子分
離用溝に絶縁膜を埋設することを特徴とする請求項2記
載の半導体装置の製造方法。
3. After forming the groove, a part of the substrate is further selectively etched to form a groove for element isolation, and an insulating film is embedded in the groove for element isolation. A method for manufacturing a semiconductor device as described above.
JP5040661A 1993-02-05 1993-02-05 Semiconductor device and manufacturing method thereof Expired - Lifetime JPH0831576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5040661A JPH0831576B2 (en) 1993-02-05 1993-02-05 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5040661A JPH0831576B2 (en) 1993-02-05 1993-02-05 Semiconductor device and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP58244089A Division JPS60136369A (en) 1983-12-26 1983-12-26 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPH0621389A true JPH0621389A (en) 1994-01-28
JPH0831576B2 JPH0831576B2 (en) 1996-03-27

Family

ID=12586720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5040661A Expired - Lifetime JPH0831576B2 (en) 1993-02-05 1993-02-05 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0831576B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6423618B1 (en) * 1999-10-01 2002-07-23 Analog And Power Electronics Corp. Method of manufacturing trench gate structure
JP2006190952A (en) * 2004-12-30 2006-07-20 Hynix Semiconductor Inc Manufacturing method of semiconductor element
JP2010251678A (en) * 2009-04-20 2010-11-04 Unisantis Electronics Japan Ltd Method of manufacturing semiconductor device
US8697511B2 (en) 2012-05-18 2014-04-15 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device and semiconductor device
US8759178B2 (en) 2011-11-09 2014-06-24 Unisantis Electronics Singapore Pte. Ltd. Method for manufacturing semiconductor device and semiconductor device
US8829601B2 (en) 2012-05-17 2014-09-09 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US8877578B2 (en) 2012-05-18 2014-11-04 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device and semiconductor device
US9012981B2 (en) 2012-05-17 2015-04-21 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9166043B2 (en) 2012-05-17 2015-10-20 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US10438836B2 (en) 2011-11-09 2019-10-08 Unisantis Electronics Singapore Pte. Ltd. Method for manufacturing a semiconductor device

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6423618B1 (en) * 1999-10-01 2002-07-23 Analog And Power Electronics Corp. Method of manufacturing trench gate structure
JP2006190952A (en) * 2004-12-30 2006-07-20 Hynix Semiconductor Inc Manufacturing method of semiconductor element
JP4634877B2 (en) * 2004-12-30 2011-02-16 株式会社ハイニックスセミコンダクター Manufacturing method of semiconductor device
JP2010251678A (en) * 2009-04-20 2010-11-04 Unisantis Electronics Japan Ltd Method of manufacturing semiconductor device
US8080458B2 (en) 2009-04-20 2011-12-20 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device and manufacturing method thereof
US8519475B2 (en) 2009-04-20 2013-08-27 Unisantis Electronics Singapore Pte Ltd. Semiconductor device
US10438836B2 (en) 2011-11-09 2019-10-08 Unisantis Electronics Singapore Pte. Ltd. Method for manufacturing a semiconductor device
US8759178B2 (en) 2011-11-09 2014-06-24 Unisantis Electronics Singapore Pte. Ltd. Method for manufacturing semiconductor device and semiconductor device
US9691896B2 (en) 2011-11-09 2017-06-27 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9614075B2 (en) 2011-11-09 2017-04-04 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9048315B2 (en) 2012-05-17 2015-06-02 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9299786B2 (en) 2012-05-17 2016-03-29 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9012981B2 (en) 2012-05-17 2015-04-21 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US8829601B2 (en) 2012-05-17 2014-09-09 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US8890236B1 (en) 2012-05-17 2014-11-18 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9166043B2 (en) 2012-05-17 2015-10-20 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9153660B2 (en) 2012-05-17 2015-10-06 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9437732B2 (en) 2012-05-18 2016-09-06 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9054085B2 (en) 2012-05-18 2015-06-09 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9246001B2 (en) 2012-05-18 2016-01-26 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9252276B2 (en) 2012-05-18 2016-02-02 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US8877578B2 (en) 2012-05-18 2014-11-04 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device and semiconductor device
US9406768B2 (en) 2012-05-18 2016-08-02 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9202922B2 (en) 2012-05-18 2015-12-01 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9466683B2 (en) 2012-05-18 2016-10-11 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9666712B2 (en) 2012-05-18 2017-05-30 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9029923B2 (en) 2012-05-18 2015-05-12 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9601618B2 (en) 2012-05-18 2017-03-21 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9666728B2 (en) 2012-05-18 2017-05-30 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US8823066B2 (en) 2012-05-18 2014-09-02 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device and semiconductor device
US8697511B2 (en) 2012-05-18 2014-04-15 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device and semiconductor device

Also Published As

Publication number Publication date
JPH0831576B2 (en) 1996-03-27

Similar Documents

Publication Publication Date Title
US6998676B2 (en) Double-gate structure fin-type transistor
US6448618B1 (en) Semiconductor device and method for manufacturing the same
US8633529B2 (en) Vertical transistors
US6037194A (en) Method for making a DRAM cell with grooved transfer device
US7381612B2 (en) Method for manufacturing semiconductor device with recess channels and asymmetrical junctions
US20040150037A1 (en) Trench DRAM with double-gated transistor and method of manufacturing the same
US5006910A (en) Semiconductor memory device and method for producing the same
JP2002208631A (en) Trench element isolation type semiconductor device filled with conducting layer and its forming method
JPH07321228A (en) Semiconductor device and its manufacture
JPH05218451A (en) Non-volatile semiconductor memory device and manufacture thereof
JP3902831B2 (en) Semiconductor memory device and manufacturing method thereof
JPS6145390B2 (en)
JP2006073813A (en) Direct tunneling semiconductor memory and manufacturing method thereof
JPH0621389A (en) Semiconductor device and its manufacture
US7358575B2 (en) Method of fabricating SRAM device
US6274441B1 (en) Method of forming bitline diffusion halo under gate conductor ledge
US7071068B2 (en) Transistor and method for fabricating the same
JP3093575B2 (en) Semiconductor device and manufacturing method thereof
US6798014B2 (en) Semiconductor memory cell and semiconductor component as well as manufacturing methods therefore
JPS6340362A (en) Semiconductor storage device
JP3120633B2 (en) Semiconductor memory device and manufacturing method thereof
JP3691966B2 (en) Manufacturing method of semiconductor device
KR20050083305A (en) Method for manufacturing fin field effect transistor
KR20020061871A (en) Semiconductor Memory Device with Cellpad and Method for fabricating the same
JPS63291459A (en) Manufacture of memory device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term