JPH06213744A - Semiconductor pressure sensor - Google Patents
Semiconductor pressure sensorInfo
- Publication number
- JPH06213744A JPH06213744A JP2085793A JP2085793A JPH06213744A JP H06213744 A JPH06213744 A JP H06213744A JP 2085793 A JP2085793 A JP 2085793A JP 2085793 A JP2085793 A JP 2085793A JP H06213744 A JPH06213744 A JP H06213744A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- gauge
- sensor
- differential pressure
- piezoresistive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Pressure Sensors (AREA)
- Measuring Fluid Pressure (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は差圧あるいは圧力を検出
する半導体圧力センサに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor pressure sensor for detecting a differential pressure or pressure.
【0002】[0002]
【従来の技術】従来、この種の半導体圧力センサとして
はSi(シリコン)半導体ダイヤフラムを利用したもの
が知られている。このSiダイヤフラム型半導体圧力セ
ンサは、半導体基板の表面に不純物の拡散もしくはイオ
ン打ち込み技術によりピエゾ抵抗領域として作用するゲ
ージを形成すると共に、Alの蒸着等によりリードを形
成し、裏面の一部をエッチングによって除去することに
より厚さ20μm〜50μm程度の薄肉部、すなわちダ
イヤフラムを形成して構成したもので、ダイヤフラムの
表裏面に測定圧力をそれぞれ加えると、ダイヤフラムの
変形に伴いゲージの比抵抗が変化し、この時の抵抗変化
に伴う出力電圧を検出し、差圧または圧力を測定するも
のである。また、最近では温度や静圧により生じるセン
サの零点変化を防止するため、静圧および温度を検出
し、これらの検出信号により差圧または圧力信号を補正
することにより、差圧または圧力をより高精度に測定し
得るようにした複合機能型半導体圧力センサが知られて
いる(例:特開平4−113239号公報)。特に、温
度補償は、半導体基板の不純物濃度が低くなるとピエゾ
抵抗係数の温度依存性が大きくなることから重要であ
る。2. Description of the Related Art Conventionally, as a semiconductor pressure sensor of this type, one using a Si (silicon) semiconductor diaphragm is known. In this Si diaphragm type semiconductor pressure sensor, a gauge acting as a piezoresistive region is formed on the surface of a semiconductor substrate by an impurity diffusion or ion implantation technique, and a lead is formed by vapor deposition of Al and a part of the back surface is etched. It is configured by forming a thin portion having a thickness of about 20 μm to 50 μm, that is, a diaphragm by removing it by applying a pressure. When the measured pressure is applied to the front and back surfaces of the diaphragm, the specific resistance of the gauge changes with the deformation of the diaphragm. The output voltage accompanying the resistance change at this time is detected to measure the differential pressure or pressure. Recently, in order to prevent the zero point change of the sensor caused by temperature or static pressure, the static pressure and temperature are detected, and the differential pressure or pressure signal is corrected by these detection signals to increase the differential pressure or pressure. There is known a multi-function type semiconductor pressure sensor capable of performing accurate measurement (eg, Japanese Patent Laid-Open No. 4-113239). In particular, temperature compensation is important because the temperature dependence of the piezoresistive coefficient increases as the impurity concentration of the semiconductor substrate decreases.
【0003】図4および図5はこのような複合機能型半
導体圧力センサの従来例を示すもので、1はバックプレ
ートで、このバックプレート1は半導体基板2と線膨張
係数が近似したパイレックスガラス、セラミックス等に
よって形成され、上下面に貫通する圧力導入孔3を有
し、上面に半導体基板2が静電接合されている。半導体
基板2は、(001)面のn型単結晶Siからなり、裏
面側に設けられた凹部4のため薄肉部を形成する部分が
円板状の差圧感圧用ダイヤフラム5を形成し、このダイ
ヤフラム5の表面側には4つからなり差圧または圧力を
検出する差圧検出用ゲージ6が設けられ、さらにダイヤ
フラム5の外側で半導体基板2の表面外周部には同じく
4つからなり温度を検出する温度補償用ゲージ8が設け
られている。半導体基板2の裏面側に設けられた凹部4
は圧力導入孔3と連通し、測定圧力の一方P1 が導かれ
る。差圧検出用ゲージ6は、不純物の拡散もしくはイオ
ン打ち込み技術により形成されてピエゾ抵抗領域(ピエ
ゾ抵抗素子)として作用し、Alの蒸着等により形成さ
れたリード9によりホイールストーンブリッジを構成す
ることによりダイヤフラム5の表裏面に加えられた測定
すべき圧力P1 ,P2の差圧信号を差動的に出力する。
測定差圧または圧力はそれぞれ最大140Kgf/cm
2 ,420Kgf/cm2 程度である。FIGS. 4 and 5 show a conventional example of such a multi-function type semiconductor pressure sensor, in which 1 is a back plate, which is a Pyrex glass whose linear expansion coefficient is similar to that of the semiconductor substrate 2. A pressure introducing hole 3 is formed of ceramics or the like and penetrates the upper and lower surfaces, and the semiconductor substrate 2 is electrostatically bonded to the upper surface. The semiconductor substrate 2 is made of (001) -faced n-type single crystal Si, and since the recessed portion 4 provided on the back surface forms a thin portion, a diaphragm 5 for differential pressure sensing is formed. A differential pressure detecting gauge 6 for detecting a differential pressure or pressure is provided on the surface side of 5 and a differential pressure detecting gauge 6 for detecting the pressure is further provided, and the temperature is also formed on the outer peripheral portion of the semiconductor substrate 2 outside the diaphragm 5 for detecting the differential pressure. A temperature compensating gauge 8 is provided. Recessed portion 4 provided on the back surface side of the semiconductor substrate 2
Communicates with the pressure introducing hole 3 and one of the measured pressures P1 is introduced. The differential pressure detection gauge 6 is formed by an impurity diffusion or ion implantation technique and acts as a piezoresistive region (piezoresistive element), and a wheelstone bridge is formed by the leads 9 formed by vapor deposition of Al or the like. The differential pressure signals of the pressures P1 and P2 to be measured applied to the front and back surfaces of the diaphragm 5 are differentially output.
Maximum measured differential pressure or pressure is 140 Kgf / cm
2 , about 420 Kgf / cm 2 .
【0004】差圧検出用ゲージ6のピエゾ抵抗係数はp
型、n型共に半導体基板への不純物のドーピング量が多
くなるにつれて低下する。このため、差圧検出用ゲージ
6の比抵抗の変化率を大きくして、圧力に対する感度を
上げ大きな出力電圧を得るには不純物濃度を低く設定す
る。また、ピエゾ抵抗係数は、p型と,n型で異なり、
p型のほうがより大きく、このためn型半導体上にp型
抵抗層を設けるのが一般的である。差圧検出用ゲージ6
の出力電圧は、ダイヤフラムの形状、肉厚、差圧検出用
ゲージ6の形成位置、ゲージ自体の向き等によっても異
なる。例えば、差圧検出用ゲージ6の向きについていえ
ば、結晶面方位(001)のSi上にゲージを設ける場
合、ピエゾ抵抗係数が最大になる向きは<110>の結
晶軸方向であるため、この方向に差圧検出用ゲージ6を
形成することが望ましい。The piezoresistive coefficient of the differential pressure detecting gauge 6 is p
For both the n-type and the n-type, it decreases as the doping amount of impurities into the semiconductor substrate increases. Therefore, in order to increase the rate of change of the specific resistance of the differential pressure detection gauge 6 to increase the sensitivity to pressure and obtain a large output voltage, the impurity concentration is set low. Also, the piezoresistance coefficient differs between p-type and n-type,
The p-type is larger, and therefore it is common to provide the p-type resistance layer on the n-type semiconductor. Differential pressure gauge 6
The output voltage depends on the shape of the diaphragm, the wall thickness, the formation position of the differential pressure detection gauge 6, the orientation of the gauge itself, and the like. For example, regarding the direction of the differential pressure detection gauge 6, when the gauge is provided on Si having a crystal plane orientation (001), the direction in which the piezoresistance coefficient is maximum is the <110> crystal axis direction. It is desirable to form the differential pressure detection gauge 6 in the direction.
【0005】温度補償用ゲージ8は、前記差圧検出用ゲ
ージ6と同様、不純物の拡散もしくはイオン打ち込み技
術により形成されてピエゾ抵抗領域(ピエゾ抵抗素子)
として作用し、Alの蒸着等により形成されたリード
(図示せず)によりホイールストーンブリッジを構成す
ることにより、温度を検出する。そして、このゲージ8
はダイヤフラム5の表裏面に加えられた測定すべき圧力
P1 ,P2 に感応しないよう、半導体基板2の厚肉部表
面上に、結晶面方位(001)におけるピエゾ抵抗係数
の最小感度を示す向き<010>(もしくは<100
>)軸方向に形成される。Like the differential pressure detecting gauge 6, the temperature compensating gauge 8 is formed by an impurity diffusion or ion implantation technique to form a piezoresistive region (piezoresistive element).
The temperature is detected by forming a wheelstone bridge with a lead (not shown) formed by vapor deposition of Al or the like. And this gauge 8
Is a direction showing the minimum sensitivity of the piezoresistance coefficient in the crystal plane orientation (001) on the surface of the thick portion of the semiconductor substrate 2 so as not to be sensitive to the pressures P1 and P2 to be measured applied to the front and back surfaces of the diaphragm 5. 010> (or <100
>) It is formed in the axial direction.
【0006】図6はSiダイヤフラムの結晶面(00
1)に関するp型ピエゾ抵抗素子のピエゾ抵抗係数πl
,πt の分布を示す図である。FIG. 6 shows a crystal plane (00
Piezoresistance coefficient πl of p-type piezoresistive element for 1)
3 is a diagram showing the distribution of .pi.t.
【0007】[0007]
【発明が解決しようとする課題】上記した従来の半導体
圧力センサにおいて、温度補償用ゲージ8は圧力に感応
しないよう、結晶面方位(001)におけるピエゾ抵抗
係数が最小となる結晶軸方向(<010>もしくは<1
00>軸方向)に揃えて形成される必要がある。しかし
ながら、ゲージ形成時のアライメント誤差により温度補
償用ゲージ8を正確にピエゾ抵抗係数が最小となる結晶
軸方向に揃えて形成することは難しく、多少でも結晶軸
方向からずれると、図6から明らかなようにその場所に
生じる応力に感応して出力電圧に誤差が生じ、差圧また
は圧力信号を高精度に補正することができないという問
題があった。In the conventional semiconductor pressure sensor described above, the temperature compensating gauge 8 is insensitive to the pressure so that the piezoresistance coefficient in the crystal plane orientation (001) is the minimum (<010 > Or <1
00> axial direction). However, it is difficult to accurately form the temperature compensating gauge 8 in the crystal axis direction in which the piezoresistive coefficient is minimized due to an alignment error during gauge formation. As described above, there is a problem that an error occurs in the output voltage in response to the stress generated at that location, and the differential pressure or the pressure signal cannot be corrected with high accuracy.
【0008】したがって、本発明は上記したような従来
の問題点に鑑みてなされたもので、その目的とするとこ
ろは、温度補償用ゲージの向きがピエゾ抵抗係数が最小
となる結晶軸方向から多少ずれていても応力に対して感
応せず、差圧または圧力信号を高精度に補正することが
できるようにした半導体圧力センサを提供することにあ
る。Therefore, the present invention has been made in view of the above-mentioned conventional problems, and an object thereof is that the orientation of the temperature compensating gauge is slightly from the crystal axis direction in which the piezoresistive coefficient is the minimum. It is an object of the present invention to provide a semiconductor pressure sensor that is insensitive to stress even if it is deviated and is capable of correcting a differential pressure or a pressure signal with high accuracy.
【0009】[0009]
【課題を解決するための手段】上記目的を解決するため
本発明は、半導体基板に薄肉部を形成し、この薄肉部の
一方の面にピエゾ抵抗領域として作用するゲージを設け
た半導体圧力センサにおいて、前記半導体基板の厚肉部
表面に、互いに直交しそれぞれピエゾ抵抗係数が最小と
なる結晶軸方向の2つの微少線分をジグザグ形状に接続
してなる温度補償用ピエゾ抵抗領域を設けたものであ
る。To solve the above problems, the present invention provides a semiconductor pressure sensor in which a thin portion is formed on a semiconductor substrate and a gauge acting as a piezoresistive region is provided on one surface of the thin portion. A temperature compensating piezoresistive region is formed on the surface of the thick portion of the semiconductor substrate by connecting two minute line segments that are orthogonal to each other and are in a crystal axis direction having a minimum piezoresistive coefficient in a zigzag shape. is there.
【0010】[0010]
【作用】温度補償用ピエゾ抵抗領域を形成する互いに直
交する2つの微少線分はピエゾ抵抗係数が最小となる結
晶軸方向からずれていると、ピエゾ抵抗係数が零になら
ず、応力が生じると、それに応じた出力信号を生じる。
この出力信号は、2つ微少成分が互いに直交することか
ら相殺され、結果として温度補償用ピエゾ抵抗領域の出
力は零となり、圧力に感応しないゲージを形成する。If the two minute line segments forming the temperature compensating piezoresistive region that are orthogonal to each other deviate from the crystal axis direction in which the piezoresistive coefficient is the minimum, the piezoresistive coefficient does not become zero and stress occurs. , Produce an output signal accordingly.
This output signal is canceled because the two minute components are orthogonal to each other, and as a result, the output of the temperature compensating piezoresistive region becomes zero, forming a gauge that is insensitive to pressure.
【0011】[0011]
【実施例】以下、本発明を図面に示す実施例に基づいて
詳細に説明する。図1は本発明に係る半導体圧力センサ
の一実施例を示す平面図、図2は図1のII−II線断面図
である。なお、図4および図5と同一構成部材のものに
対しては同一符号をもって示す。本実施例は差圧または
圧力に加えて静圧および温度を検出し、静圧および温度
の検出信号により、差圧または圧力信号を補正すること
により、差圧または圧力をより高精度に測定し得るよう
にした複合機能型半導体圧力センサに適用した場合を示
す。また、図における各部の厚み、大きさは理解を容易
にするため誇張して示しており、実際の寸法とは異な
る。バックプレート1は、半導体基板2と熱膨張係数が
近似したパイレックスガラス、セラミックス等によって
形成され、上面に前記半導体基板2が静電接合によって
一体的に接合されている。半導体基板2は(001)面
のn型単結晶Siからなり、その裏面中央部を除去され
ることにより差圧または圧力に感応する薄肉円板状の差
圧または圧力検出用感圧ダイヤフラム5を有し、また同
じくエッチングによりその裏面で前記感圧ダイヤフラム
5の外側に周方向に等間隔をおいて除去されることによ
り静圧に感応する4つの静圧検出用感圧ダイヤフラム1
1を備えている。一方、半導体基板2の表面側には差圧
または圧力を検出する差圧検出用ゲージ6と静圧を検出
する静圧検出用ゲージ12が前記差圧または圧力検出用
感圧ダイヤフラム5と各静圧検出用感圧ダイヤフラム1
1上にそれぞれ位置づけられて設けられ、さらに肉厚部
の表面外周寄りには温度を検出する温度補償用ゲージ8
が設けられている。前記バックプレート1の中央には前
記半導体基板2の裏面中央に形成された凹部4を介して
ダイヤフラム5の裏面側に測定すべき圧力の一方P1 を
導く圧力導入孔3が形成されている。各静圧検出用感圧
ダイヤフラム11の形成に伴って半導体基板2の裏面側
に形成された4つの凹部14は、バックプレート1によ
って密閉されることにより、基準室を形成しており、真
空または大気圧に保持されている。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the embodiments shown in the drawings. 1 is a plan view showing an embodiment of a semiconductor pressure sensor according to the present invention, and FIG. 2 is a sectional view taken along line II-II of FIG. The same components as those in FIGS. 4 and 5 are designated by the same reference numerals. In this embodiment, static pressure and temperature are detected in addition to differential pressure or pressure, and the differential pressure or pressure signal is corrected by the detection signal of static pressure and temperature to measure the differential pressure or pressure with higher accuracy. The case where the present invention is applied to the multi-functional semiconductor pressure sensor thus obtained is shown. Further, the thickness and size of each part in the drawing are exaggerated for ease of understanding, and are different from actual dimensions. The back plate 1 is formed of Pyrex glass, ceramics, or the like having a thermal expansion coefficient similar to that of the semiconductor substrate 2, and the semiconductor substrate 2 is integrally bonded to the upper surface by electrostatic bonding. The semiconductor substrate 2 is made of (001) -faced n-type single crystal Si, and a thin disk-shaped differential pressure-sensitive or pressure-sensitive diaphragm 5 for pressure detection which is sensitive to differential pressure or pressure by removing the central portion of the back surface thereof. Four static pressure detection pressure sensitive diaphragms 1 which are also provided and which are sensitive to static pressure by being removed on the outer surface of the pressure sensitive diaphragm 5 at regular intervals in the circumferential direction by etching.
1 is provided. On the other hand, on the surface side of the semiconductor substrate 2, a differential pressure detecting gauge 6 for detecting a differential pressure or pressure and a static pressure detecting gauge 12 for detecting a static pressure are provided with the differential pressure or pressure detecting pressure sensitive diaphragm 5 and each static pressure. Pressure-sensitive diaphragm for pressure detection 1
1. The temperature compensating gauges 8 are respectively positioned and provided on the outer peripheral surface of the thick portion 1 and near the outer surface of the thick portion for detecting temperature.
Is provided. At the center of the back plate 1 is formed a pressure introducing hole 3 for guiding one of the pressures P1 to be measured to the back surface side of the diaphragm 5 through a recess 4 formed at the center of the back surface of the semiconductor substrate 2. The four recesses 14 formed on the back surface side of the semiconductor substrate 2 along with the formation of each static pressure detection pressure-sensitive diaphragm 11 are sealed by the back plate 1 to form a reference chamber, which is a vacuum or Maintained at atmospheric pressure.
【0012】前記差圧検出用ゲージ6は、前記感圧ダイ
ヤフラム5の上面で差圧または圧力の印加時にダイヤフ
ラム5に発生する半径方向と周方向の応力が最大となる
周縁部寄りに拡散またはイオン打ち込み法によって4つ
形成されており、ホイールストーンブリッジに結線され
ることで差圧信号を差動的に出力する。The differential pressure detecting gauge 6 is diffused or ionized near the peripheral portion where the stress in the radial direction and the circumferential direction generated on the diaphragm 5 at the time of applying a differential pressure or pressure on the upper surface of the pressure sensitive diaphragm 5 is maximum. Four of them are formed by the driving method, and the differential pressure signals are differentially output by being connected to the wheelstone bridge.
【0013】前記静圧検出用ゲージ12は、前記差圧検
出用ゲージ6の外側に位置するよう半導体基板2の表面
側で前記各静圧検出用感圧ダイヤフラム11上にそれぞ
れ位置づけられて形成されており、ホイールストーンブ
リッジに結線されることで静圧信号を差動的に出力す
る。The static pressure detecting gauges 12 are formed on the front surface side of the semiconductor substrate 2 on the static pressure detecting pressure sensitive diaphragms 11 so as to be located outside the differential pressure detecting gauges 6, respectively. The static pressure signal is output differentially by being connected to the wheelstone bridge.
【0014】前記温度補償用センサ8は、前記静圧検出
用ゲージ12の外側に位置するよう半導体基板2の厚肉
部15の上面外周部に拡散またはイオン打ち込み法によ
って形成された、所定の長さおよび抵抗値を有しピエゾ
領域として作用するゲージ部で構成されている。この場
合、センサ8を形成するゲージ部は、同一長さで同一の
抵抗を有して互いに直交しそれぞれ結晶面方位(00
1)におけるピエゾ抵抗係数の最小感度を示す向き<0
10>軸方向と<100>軸方向の2つの微少線分8
a,8bをジグザグ形状に接続して形成されており、こ
れによって圧力に感応しない温度センサを構成してい
る。すなわち、温度補償用センサ8を形成する互いに直
交する2つの微少線分8a,8bは、ピエゾ抵抗係数が
最小となる<010>軸方向と<100>軸方向と一致
するよう正しく形成されている場合、図6から明かなよ
うにピエゾ抵抗係数πl ,πt が零であるため、応力が
生じてもセンサとして出力を生じることはない。一方、
2つの微少線分8a,8bが、ピエゾ抵抗係数が最小と
なる<010>軸方向と<100>軸方向から角度θず
れていると、ピエゾ抵抗係数πl ,πt が零にならず、
そのため応力が生じた場合、それに応じて抵抗値が変化
し出力電圧を生じる。ここで、各微少線分8a,8bの
抵抗値をΔRa,ΔRb、ゲージ全体の抵抗値をR、ピ
エゾ抵抗係数をπ(πl ,πt )、微少線分8a,8b
付近における<100>軸方向の応力をσ1 、<010
>軸方向の応力をσ2 とすると、微少線分8aのΔRa
/Rは、 ΔRa/R=π(σ2 −σ1 ) 微少線分8bのΔRb/Rは、 ΔRb/R=π(σ1 −σ2 ) となる。ΔRa/RとΔRb/Rは互いに符号が反対で
同じ値であるため、互いに相殺し合って出力を生じるこ
とはない。したがって、ピエゾ抵抗係数πが零でなくて
も、また応力が零でなくても、温度補償用センサ8とし
て圧力に感応しないセンサを構成することができる。The temperature compensating sensor 8 is formed on the outer peripheral portion of the upper surface of the thick portion 15 of the semiconductor substrate 2 by a diffusion or ion implantation method so as to be located outside the static pressure detecting gauge 12 and has a predetermined length. And a resistance value and a gauge portion that acts as a piezo region. In this case, the gauge portions forming the sensor 8 have the same length and the same resistance, are orthogonal to each other, and have crystal plane orientations (00
Orientation showing the minimum sensitivity of the piezoresistive coefficient in 1) <0
Two minute line segments 8 in the 10> axis direction and the <100> axis direction
It is formed by connecting a and 8b in a zigzag shape, thereby forming a temperature sensor that is insensitive to pressure. That is, the two minute line segments 8a and 8b that are orthogonal to each other and form the temperature compensating sensor 8 are correctly formed so as to coincide with the <010> axial direction and the <100> axial direction in which the piezoresistance coefficient is the minimum. In this case, as apparent from FIG. 6, the piezoresistance coefficients πl and πt are zero, so that even if stress occurs, no output is produced as a sensor. on the other hand,
When the two minute line segments 8a and 8b are deviated by an angle θ from the <010> axis direction and the <100> axis direction where the piezoresistance coefficient is the minimum, the piezoresistance coefficients πl and πt do not become zero,
Therefore, when a stress is generated, the resistance value changes accordingly and an output voltage is generated. Here, the resistance values of the minute line segments 8a and 8b are ΔRa and ΔRb, the resistance value of the entire gauge is R, the piezoresistance coefficient is π (πl, πt), and the minute line segments 8a and 8b.
The stress in the vicinity of the <100> axis is σ1, <010
> If the stress in the axial direction is σ2, ΔRa of the minute line segment 8a
/ R is ΔRa / R = π (σ 2 −σ 1), and ΔRb / R of the minute line segment 8 b is ΔRb / R = π (σ 1 −σ 2). Since ΔRa / R and ΔRb / R have opposite signs and the same value, they do not cancel each other out to generate an output. Therefore, even if the piezoresistive coefficient π is not zero and the stress is not zero, it is possible to configure the temperature compensating sensor 8 that is insensitive to pressure.
【0015】図3(a)、(b)はそれぞれ温度補償用
センサの微少線分をジグザグに接続した他の実施例を示
す図である。2つの微少線分8a,8bの方向がピエゾ
抵抗係数が最小となる<010>軸方向と<100>軸
方向と一致していれば、どのようにジグザグに接続され
るものであってもよい。3 (a) and 3 (b) are views showing other embodiments in which minute line segments of the temperature compensation sensor are connected in a zigzag manner. As long as the directions of the two minute line segments 8a and 8b coincide with the <010> axial direction and the <100> axial direction where the piezoresistance coefficient is the minimum, they may be connected in a zigzag manner. .
【0016】図1において、20はリード、21は差圧
検出兼静圧検出用電源端子部、22は差圧信号取出し用
端子部、23は静圧信号取出し用端子部、24温度補償
用電源端子部である。In FIG. 1, 20 is a lead, 21 is a power source terminal for differential pressure detection and static pressure detection, 22 is a terminal for differential pressure signal extraction, 23 is a terminal for static pressure signal extraction, and 24 is a power source for temperature compensation. It is a terminal part.
【0017】なお、上記実施例は半導体基板2をn型シ
リコン、ピエゾ抵抗領域であるゲージ6,8,12をp
型シリコンによって構成した場合について説明したが、
これはp型シリコンからなるピエゾ抵抗体を用いた方
が、n型に比較して圧力−抵抗のリニアリティがよく、
ピエゾ抵抗係数が最大となる(001)面、<110>
結晶軸方向において対称性の良好な正逆両方向の出力が
取り出せるからであるが、本発明はこれに何等特定され
るものではなく、p型の基板にn型のピエゾ領域を形成
してもよいことは勿論である。In the above embodiment, the semiconductor substrate 2 is made of n-type silicon, and the gauges 6, 8, 12 which are piezoresistive regions are made of p.
I explained about the case that it is composed of type silicon,
This is because using a piezoresistor made of p-type silicon has better pressure-resistance linearity than n-type,
The (001) plane with the maximum piezoresistive coefficient, <110>
This is because it is possible to take out the outputs in both the forward and reverse directions with good symmetry in the crystal axis direction, but the present invention is not limited to this, and an n-type piezo region may be formed on a p-type substrate. Of course.
【0018】[0018]
【発明の効果】以上説明したように本発明に係る半導体
圧力センサは、温度補償用ピエゾ抵抗素子を、互いに直
交しそれぞれピエゾ抵抗係数が最小となる結晶軸方向の
2つの微少線分をジグザグ形状に接続して形成したの
で、前記結晶軸方向からずれていても応力に感応しない
温度センサを得ることができ、差圧または圧力信号を高
精度に補正することができる。As described above, in the semiconductor pressure sensor according to the present invention, the temperature compensating piezoresistive elements are zigzag-shaped with two minute line segments in the crystal axis direction which are orthogonal to each other and each have a minimum piezoresistive coefficient. Since it is formed by being connected to the temperature sensor, it is possible to obtain a temperature sensor that is insensitive to stress even if it is deviated from the crystal axis direction, and it is possible to accurately correct the differential pressure or the pressure signal.
【図1】本発明に係る半導体圧力センサの一実施例を示
す平面図である。FIG. 1 is a plan view showing an embodiment of a semiconductor pressure sensor according to the present invention.
【図2】同センサの図1II−II線断面図である。FIG. 2 is a sectional view of the same sensor taken along the line II-II of FIG.
【図3】(a)、(b)はそれぞれ温度補償用センサの
他の実施例を示す図である。3 (a) and 3 (b) are diagrams showing other embodiments of the temperature compensation sensor, respectively.
【図4】従来の半導体圧力センサの平面図である。FIG. 4 is a plan view of a conventional semiconductor pressure sensor.
【図5】同センサの断面図である。FIG. 5 is a sectional view of the sensor.
【図6】Siダイヤフラムの結晶面(001)に関する
p型ピエゾ抵抗素子のピエゾ抵抗係数πl ,πt の分布
を示す図である。FIG. 6 is a diagram showing distributions of piezoresistance coefficients πl and πt of a p-type piezoresistive element with respect to a crystal plane (001) of a Si diaphragm.
1 バックプレート 2 半導体基板 5 ダイヤフラム 6 差圧検出用ゲージ 8 温度補償用ゲージ 12 静圧検出用ゲージ 8a,8b 微少線分 1 Back Plate 2 Semiconductor Substrate 5 Diaphragm 6 Differential Pressure Detection Gauge 8 Temperature Compensation Gauge 12 Static Pressure Detection Gauge 8a, 8b Fine Line Segment
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成6年2月7日[Submission date] February 7, 1994
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】特許請求の範囲[Name of item to be amended] Claims
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【特許請求の範囲】[Claims]
【手続補正2】[Procedure Amendment 2]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0009[Correction target item name] 0009
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0009】[0009]
【課題を解決するための手段】上記目的を解決するため
本発明は、半導体基板に薄肉部を形成し、この薄肉部の
一方の面にピエゾ抵抗領域として作用するゲージを設け
た半導体圧力センサにおいて、前記半導体基板の厚肉部
表面に、互いに直交する2つの微少線分をジグザグ形状
に接続してなる温度補償用ピエゾ抵抗領域を設けたもの
である。To solve the above problems, the present invention provides a semiconductor pressure sensor in which a thin portion is formed on a semiconductor substrate and a gauge acting as a piezoresistive region is provided on one surface of the thin portion. A temperature compensating piezoresistive region formed by connecting two minute line segments orthogonal to each other in a zigzag shape is provided on the surface of the thick portion of the semiconductor substrate.
【手続補正3】[Procedure 3]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0014[Correction target item name] 0014
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0014】前記温度補償用センサ8は、前記静圧検出
用ゲージ12の外側に位置するよう半導体基板2の厚肉
部15の上面外周部に拡散またはイオン打ち込み法によ
って形成された、所定の長さおよび抵抗値を有しピエゾ
領域として作用するゲージ部で構成されている。この場
合、センサ8を形成するゲージ部は、同一長さで同一の
抵抗を有して互いに直交しそれぞれ結晶面方位(00
1)におけるピエゾ抵抗係数の最小感度を示す向き<0
10>軸方向と<100>軸方向の2つの微少線分8
a,8bをジグザグ形状に接続して形成されており、こ
れによって圧力に感応しない温度センサを構成してい
る。すなわち、温度補償用センサ8を形成する互いに直
交する2つの微少線分8a,8bは、ピエゾ抵抗係数が
最小となる<010>軸方向と<100>軸方向と一致
するよう正しく形成されている場合、図6から明かなよ
うにピエゾ抵抗係数πl,πtが零であるため、応力が
生じてもセンサとして出力を生じることはない。一方、
2つの微少線分8a,8bが、ピエゾ抵抗係数が最小と
なる<010>軸方向と<100>軸方向から角度θず
れていると、ピエゾ抵抗係数πl,πtが零にならず、
そのため応力が生じた場合、それに応じて抵抗値が変化
し出力電圧を生じる。ここで、各微少線分8a,8bの
抵抗値を△Ra,△Rb、ゲージ全体の抵抗値をR、ピ
エゾ抵抗係数をπ(πl,πt)、微少線分8a,8b
付近における<100>軸方向の応力をσ1、<010
>軸方向の応力をσ2とすると、微少線分8aの△Ra
/Rは、 △Ra/R=π(σ2−σ1) 微少線分8bの△Rb/Rは、 △Rb/R=π(σ1−σ2) となる。△Ra/Rと△Rb/Rは互いに符号が反対で
同じ値であるため、互いに相殺し合って出力を生じるこ
とはない。したがって、ピエゾ抵抗係数πが必ずしも零
でなくても、また応力が零でなくても、温度補償用セン
サ8として圧力に感応しないセンサを構成することがで
きる。つまり、本発明における温度補償用センサ8は、
基本的には互いに直交する2つの微少線分8a,8bを
ジグザグに接続したものであればよく、かならずしも<
010>軸方向と<100>軸方向と一致するものでな
くてもよい。但し、<010>軸方向と<100>軸方
向からずれると感度が低下し、誤差が大きくなるため、
望ましくは一致するように製作することが好ましい。 The temperature compensating sensor 8 is formed on the outer peripheral portion of the upper surface of the thick portion 15 of the semiconductor substrate 2 by a diffusion or ion implantation method so as to be located outside the static pressure detecting gauge 12 and has a predetermined length. And a resistance value and a gauge portion that acts as a piezo region. In this case, the gauge portions forming the sensor 8 have the same length and the same resistance, are orthogonal to each other, and have crystal plane orientations (00
Orientation showing the minimum sensitivity of the piezoresistive coefficient in 1) <0
Two minute line segments 8 in the 10> axis direction and the <100> axis direction
It is formed by connecting a and 8b in a zigzag shape, thereby forming a temperature sensor that is insensitive to pressure. That is, the two minute line segments 8a and 8b that are orthogonal to each other and form the temperature compensating sensor 8 are correctly formed so as to coincide with the <010> axial direction and the <100> axial direction in which the piezoresistance coefficient is the minimum. In this case, as apparent from FIG. 6, since the piezo resistance coefficients πl and πt are zero, even if stress occurs, no output is produced as a sensor. on the other hand,
When the two minute line segments 8a and 8b deviate from the <010> axis direction and the <100> axis direction where the piezoresistance coefficient is the minimum by the angle θ, the piezoresistance coefficients πl and πt do not become zero,
Therefore, when a stress is generated, the resistance value changes accordingly and an output voltage is generated. Here, the resistance values of the minute line segments 8a and 8b are ΔRa and ΔRb, the resistance value of the entire gauge is R, the piezo resistance coefficient is π (πl, πt), and the minute line segments 8a and 8b.
The stress in the <100> axis direction in the vicinity is σ1, <010
> If the stress in the axial direction is σ2, ΔRa of the minute line segment 8a
/ R is ΔRa / R = π (σ2-σ1) and ΔRb / R of the minute line segment 8b is ΔRb / R = π (σ1-σ2). Since ΔRa / R and ΔRb / R have opposite signs and the same value, they do not cancel each other out to produce an output. Therefore, even if the piezo resistance coefficient π is not always zero and the stress is not zero, it is possible to configure the temperature compensation sensor 8 that is insensitive to pressure. That is, the temperature compensation sensor 8 according to the present invention is
Basically, two minute line segments 8a and 8b which are orthogonal to each other
Anything connected in zigzag will do, and always <
010> axis direction and <100> axis direction
You don't have to. However, <010> axial direction and <100> axial direction
If it deviates from the direction, the sensitivity will decrease and the error will increase,
It is preferable to manufacture them so as to match each other.
【手続補正4】[Procedure amendment 4]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0018[Correction target item name] 0018
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0018】[0018]
【発明の効果】以上説明したように本発明に係る半導体
圧力センサは、温度補償用ピエゾ抵抗素子を、互いに直
交する2つの微少線分をジグザグ形状に接続して形成し
たので、前記結晶軸方向からずれていても応力に感応し
ない温度センサを得ることができ、差圧または圧力信号
を高精度に補正することができる。As described above, in the semiconductor pressure sensor according to the present invention, the temperature compensating piezoresistive elements are directly connected to each other.
Since two minute line segments intersecting each other are formed by connecting in a zigzag shape, a temperature sensor that is insensitive to stress can be obtained even if deviated from the crystal axis direction, and the differential pressure or pressure signal is corrected with high accuracy. be able to.
Claims (1)
部の一方の面にピエゾ抵抗領域として作用するゲージを
設けた半導体圧力センサにおいて、 前記半導体基板の厚肉部表面に、互いに直交しそれぞれ
ピエゾ抵抗係数が最小となる結晶軸方向の2つの微少線
分をジグザグ形状に接続してなる温度補償用ピエゾ抵抗
領域を設けたことを特徴とする半導体圧力センサ。1. A semiconductor pressure sensor in which a thin portion is formed on a semiconductor substrate, and a gauge acting as a piezoresistive region is provided on one surface of the thin portion, the thick portion of the semiconductor substrate being perpendicular to each other. A semiconductor pressure sensor comprising a temperature-compensating piezoresistive region formed by connecting two minute line segments in a crystal axis direction having a minimum piezoresistive coefficient in a zigzag shape.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2085793A JP2694593B2 (en) | 1993-01-14 | 1993-01-14 | Semiconductor pressure sensor |
US08/178,085 US5432372A (en) | 1993-01-14 | 1994-01-06 | Semiconductor pressure sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2085793A JP2694593B2 (en) | 1993-01-14 | 1993-01-14 | Semiconductor pressure sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06213744A true JPH06213744A (en) | 1994-08-05 |
JP2694593B2 JP2694593B2 (en) | 1997-12-24 |
Family
ID=12038790
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2085793A Expired - Fee Related JP2694593B2 (en) | 1993-01-14 | 1993-01-14 | Semiconductor pressure sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2694593B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005351901A (en) * | 2004-06-11 | 2005-12-22 | Samsung Electronics Co Ltd | Combined sensor and its manufacturing method |
KR100622704B1 (en) * | 2004-08-26 | 2006-09-14 | 주식회사 케이이씨 | Pressure sensor for measuring multi-pressure |
EP1764599A2 (en) * | 2005-09-14 | 2007-03-21 | Robert Bosch Gmbh | Sensor system, in particular for pressure or force sensing, and method for manufacturing a sensor system |
WO2013057689A1 (en) | 2011-10-21 | 2013-04-25 | Ecole Polytechnique Federale De Lausanne (Epfl) | SiC HIGH TEMPERATURE PRESSURE TRANSDUCER |
-
1993
- 1993-01-14 JP JP2085793A patent/JP2694593B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005351901A (en) * | 2004-06-11 | 2005-12-22 | Samsung Electronics Co Ltd | Combined sensor and its manufacturing method |
KR100622704B1 (en) * | 2004-08-26 | 2006-09-14 | 주식회사 케이이씨 | Pressure sensor for measuring multi-pressure |
EP1764599A2 (en) * | 2005-09-14 | 2007-03-21 | Robert Bosch Gmbh | Sensor system, in particular for pressure or force sensing, and method for manufacturing a sensor system |
EP1764599A3 (en) * | 2005-09-14 | 2010-01-06 | Robert Bosch Gmbh | Sensor system, in particular for pressure or force sensing, and method for manufacturing a sensor system |
WO2013057689A1 (en) | 2011-10-21 | 2013-04-25 | Ecole Polytechnique Federale De Lausanne (Epfl) | SiC HIGH TEMPERATURE PRESSURE TRANSDUCER |
Also Published As
Publication number | Publication date |
---|---|
JP2694593B2 (en) | 1997-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2544435B2 (en) | Multi-function sensor | |
US8384170B2 (en) | Pressure sensor | |
KR20040079323A (en) | Semiconductor pressure sensor having diaphragm | |
EP0083496A2 (en) | Semiconductor pressure transducer | |
US5432372A (en) | Semiconductor pressure sensor | |
EP0111640B1 (en) | Pressure sensor with semi-conductor diaphragm | |
JPH06213743A (en) | Semiconductor pressure sensor | |
JPH09304206A (en) | Semiconductor pressure transducer | |
JP2002277337A (en) | Differential pressure/pressure sensor | |
JP2694593B2 (en) | Semiconductor pressure sensor | |
KR20030053501A (en) | Pressure sensor | |
JP2895262B2 (en) | Composite sensor | |
US20220316973A1 (en) | Differential pressure sensor | |
JPH04178533A (en) | Semiconductor pressure sensor | |
JPH0554708B2 (en) | ||
JPH0755619A (en) | Semiconductor pressure sensor | |
JP2813721B2 (en) | Capacitive pressure sensor | |
JP2512220B2 (en) | Multi-function sensor | |
JPH0875581A (en) | Semiconductor pressure converter | |
JP3120388B2 (en) | Semiconductor pressure transducer | |
JPH06213746A (en) | Semiconductor pressure sensor | |
JP2573540Y2 (en) | Semiconductor pressure sensor | |
JPH06207873A (en) | Semiconductor pressure sensor and manufacture thereof | |
JPH0712940U (en) | Semiconductor pressure sensor | |
JP3071932B2 (en) | Semiconductor pressure sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |