JPH0621339A - Manufacture of semiconductor memory and recording method for semiconductor memory - Google Patents
Manufacture of semiconductor memory and recording method for semiconductor memoryInfo
- Publication number
- JPH0621339A JPH0621339A JP4174124A JP17412492A JPH0621339A JP H0621339 A JPH0621339 A JP H0621339A JP 4174124 A JP4174124 A JP 4174124A JP 17412492 A JP17412492 A JP 17412492A JP H0621339 A JPH0621339 A JP H0621339A
- Authority
- JP
- Japan
- Prior art keywords
- film
- electrode
- semiconductor memory
- pzt
- ferroelectric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 33
- 238000000034 method Methods 0.000 title claims abstract description 25
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- 230000010287 polarization Effects 0.000 claims abstract description 23
- 230000007704 transition Effects 0.000 claims abstract description 14
- 239000000758 substrate Substances 0.000 claims abstract description 12
- 230000005684 electric field Effects 0.000 claims abstract description 9
- 239000003990 capacitor Substances 0.000 claims description 7
- 238000003860 storage Methods 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 abstract description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 4
- 229910052710 silicon Inorganic materials 0.000 abstract description 4
- 239000010703 silicon Substances 0.000 abstract description 4
- 235000012239 silicon dioxide Nutrition 0.000 abstract description 2
- 239000000377 silicon dioxide Substances 0.000 abstract description 2
- 239000010408 film Substances 0.000 description 44
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 24
- 229910004298 SiO 2 Inorganic materials 0.000 description 10
- 239000000126 substance Substances 0.000 description 7
- 239000000470 constituent Substances 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 239000013078 crystal Substances 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 239000011229 interlayer Substances 0.000 description 3
- 230000002269 spontaneous effect Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- WNUPENMBHHEARK-UHFFFAOYSA-N silicon tungsten Chemical compound [Si].[W] WNUPENMBHHEARK-UHFFFAOYSA-N 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Semiconductor Integrated Circuits (AREA)
- Semiconductor Memories (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、主にダイナミック・ラ
ンダム・アクセス・メモリ(DRAM)に用いられる強
誘電体キャパシタの製造方法及び記録方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a manufacturing method and a recording method of a ferroelectric capacitor mainly used in a dynamic random access memory (DRAM).
【0002】[0002]
【従来の技術】従来、例えばアイ・トリプル・イー・エ
レクトロン・デバイス・レターズ(IEEE ELEC
TRON DEVICE LETTERS)1990
年、第11巻、第10号、454項〜456項に記載さ
れていた様に、強誘電体を電荷蓄積コンデンサとして用
いたDRAMの読みだし/書き込み特性には、信頼性上
問題があった。2. Description of the Related Art Conventionally, for example, eye triple e-electron device letters (IEEE ELEC)
TRON DEVICE LETTERS) 1990
As described in Vol. 11, No. 10, Item 454 to Item 456, the read / write characteristics of a DRAM using a ferroelectric as a charge storage capacitor had a problem in reliability. .
【0003】すなわち、従来の製造方法では、強誘電体
膜が多結晶からなり製造中に分極処理(ポーリング)を
施していないので、製造直後の強誘電体膜中の各々の分
域(ドメイン)は、双極子モーメントを持っているが、
お互いにランダムに向いているため、全体の分極、すな
わち自発分極は0である。That is, in the conventional manufacturing method, since the ferroelectric film is made of polycrystal and is not subjected to the polarization treatment (poling) during the manufacturing, each domain (domain) in the ferroelectric film immediately after the manufacturing. Has a dipole moment, but
Since they are oriented randomly with respect to each other, the total polarization, that is, the spontaneous polarization is zero.
【0004】その後、DRAMとして使うとき、強誘電
体膜に電界をかけるので、各々の分域で、双極子モーメ
ントの向きがそろい、強誘電体膜全体として、分極が生
じる。After that, when used as a DRAM, an electric field is applied to the ferroelectric film, so that the directions of the dipole moments are aligned in each domain, and polarization occurs in the entire ferroelectric film.
【0005】[0005]
【発明が解決しようとする課題】しかし、従来の製造方
法で作成した半導体記憶装置をDRAMとして動作させ
ると、以下のような問題があった。However, when the semiconductor memory device manufactured by the conventional manufacturing method is operated as a DRAM, there are the following problems.
【0006】強誘電体の場合上記分極は、極性の異なる
構成原子間の相対位置が変位することによって起こり、
これが原因で、PZT中に空間電荷が発生し、分極反転
を利用した不揮発性メモリでは、残留分極の劣化が発生
すると言う問題を有しているが、一方分極反転を用いな
いDRAMの場合においても、キャパシタンスの劣化が
あると言う問題点を有していた。In the case of a ferroelectric substance, the above-mentioned polarization is caused by displacement of relative positions between constituent atoms having different polarities,
Due to this, there is a problem that space charge is generated in the PZT and a non-volatile memory using polarization reversal causes deterioration of remanent polarization. On the other hand, even in the case of a DRAM not using polarization reversal. However, there is a problem that the capacitance is deteriorated.
【0007】図2のバイアス電圧に対するキャパシタン
スのグラフを基に従来例を説明する。A conventional example will be described based on the graph of capacitance against bias voltage in FIG.
【0008】図2の実線は、初期の単位面積当りのキャ
パシタンスの電圧依存性を示し、破線は、1010回読み
出し/書き込み後の単位面積当りのキャパシタンスの電
圧依存性を示す。The solid line in FIG. 2 shows the voltage dependence of the capacitance per unit area at the initial stage, and the broken line shows the voltage dependence of the capacitance per unit area after 10 10 read / write operations.
【0009】図中の矢印は、電圧を上げたとき及び電圧
を下げたときに対応する。The arrows in the figure correspond to when the voltage is raised and when the voltage is lowered.
【0010】このように、例えば昇圧時、3Vで比較す
ると、100fC/μm2から80fC/μm2へと20
%のキャパシタンスの減少が見られる。In this way, for example, when the voltage is boosted and compared at 3 V, it is changed from 100 fC / μm 2 to 80 fC / μm 2 by 20.
A decrease in% capacitance is seen.
【0011】そこで、本発明は従来のこの様な課題を解
決しようとするもので、その目的とするところは、半導
体記憶装置製造中に於て、既に分極処理を行ない、分極
処理後の製造中に各分域の双極子モーメントの反転を行
なわないこと及び、DRAM動作時においても、1度も
各分域の双極子モーメントの反転、すなわち極性の異な
る構成原子間の変位を行なわないことにより、強誘電体
薄膜内の空間電荷の発生を抑制し、読み出し/書き込み
を1015回としても、キャパシタンスの減少のほとんど
ない強誘電体記憶装置の製造方法を提供し、且つ記録方
法を提供することである。Therefore, the present invention is intended to solve such a conventional problem, and an object of the present invention is to perform a polarization process during the manufacture of a semiconductor memory device and to perform the process after the polarization process. By not reversing the dipole moment of each domain, and by never reversing the dipole moment of each domain even during DRAM operation, that is, by not displacing between constituent atoms having different polarities, To provide a method for manufacturing a ferroelectric memory device that suppresses the generation of space charges in a ferroelectric thin film and shows almost no decrease in capacitance even when reading / writing is performed 10 15 times, and a recording method. is there.
【0012】[0012]
【課題を解決するための手段】本発明の半導体記憶装置
の製造方法は、 (1) 半導体基板上に、電極を形成する工程と、前記
電極上に強誘電体膜を形成する工程と、前記強誘電体膜
表面と前記電極の間に電界を加えることにより、前記強
誘電体膜を分極させる工程を備え、前記強誘電体膜の転
移温度未満の温度で、前記強誘電体膜を分極させる工程
以降の工程を行なうことを特徴とする。A method of manufacturing a semiconductor memory device according to the present invention comprises: (1) forming an electrode on a semiconductor substrate; forming a ferroelectric film on the electrode; A step of polarizing the ferroelectric film by applying an electric field between the surface of the ferroelectric film and the electrode, and polarizing the ferroelectric film at a temperature lower than the transition temperature of the ferroelectric film. It is characterized in that the process after the process is performed.
【0013】(2) 半導体基板上に第1電極を形成す
る工程と、前記第1電極上に強誘電体膜を形成する工程
と、前記強誘電体膜上に第2電極を形成する工程と、前
記第1電極と前記第2電極の間に電界を加えることによ
り前記強誘電体膜を分極させる工程と、前記第2電極を
除去する工程を備え、前記強誘電体膜の転移温度未満の
温度で前記第2電極を除去する工程以降の工程を行なう
ことを特徴とする。(2) A step of forming a first electrode on a semiconductor substrate, a step of forming a ferroelectric film on the first electrode, and a step of forming a second electrode on the ferroelectric film. A step of polarizing the ferroelectric film by applying an electric field between the first electrode and the second electrode, and a step of removing the second electrode, the temperature being less than a transition temperature of the ferroelectric film. It is characterized in that the steps after the step of removing the second electrode at a temperature are performed.
【0014】本発明の半導体記憶装置の記録方法は、 (3) 請求項1及び2記載の半導体記憶装置の強誘電
体膜の分極方向と同じ向きに電界を印加することにより
前記強誘電体膜を電荷蓄積コンデンサとして動作させる
ことを特徴とする。According to another aspect of the present invention, there is provided a recording method for a semiconductor memory device, wherein the ferroelectric film is applied by applying an electric field in the same direction as a polarization direction of the ferroelectric film of the semiconductor memory device. Is operated as a charge storage capacitor.
【0015】[0015]
【実施例】本発明の第1実施例を図1(a)〜図1
(c)の製造工程断面図に基づいて説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention is shown in FIGS.
A description will be given based on the sectional view of the manufacturing step in (c).
【0016】図1(a)に示すよう、シリコン基板10
1上に層間絶縁膜として、二酸化珪素膜(SiO2)1
02を形成した後、密着層のTi103を介して下部電
極のPt104を形成し、その上に強誘電体特性を示す
多結晶のチタン酸ジルコン酸鉛Pb(Zr0.5Ti0.5)
O3、略してPZT105を積層する。As shown in FIG. 1A, a silicon substrate 10
On top of which a silicon dioxide film (SiO 2 ) 1 is formed as an interlayer insulating film.
02 is formed, then Pt104 of the lower electrode is formed through Ti103 of the adhesion layer, and polycrystalline lead zirconate titanate Pb (Zr 0.5 Ti 0.5 ) showing ferroelectric characteristics is formed thereon.
O 3, laminating the PZT105 for short.
【0017】SiO2102は、テトラ・エチル・オル
ト・シリケート(TEOS)のプラズマ化学気相成長法
で形成し、その膜厚を5000Åとした。The SiO 2 102 was formed by the plasma chemical vapor deposition method of tetra ethyl ortho silicate (TEOS), and its film thickness was 5000 Å.
【0018】Ti及びPtは、直流スパッタ法により成
膜し、その膜厚はそれぞれ200Å、5000Åとし
た。Ti and Pt were formed by a DC sputtering method, and the film thickness was set to 200 Å and 5000 Å, respectively.
【0019】PZT105は、例えばPbOを10%過
剰に含むPb1.1(Zr0.5Ti0.5)O3.1をターゲット
に用いた高周波マグネトロンスパッタ法により堆積し、
その後、強誘電体特性を得るために酸素雰囲気中、50
0℃で1時間熱処理する。The PZT 105 is deposited, for example, by a high frequency magnetron sputtering method using Pb 1.1 (Zr 0.5 Ti 0.5 ) O 3.1 containing 10% excess of PbO as a target,
Then, in order to obtain the ferroelectric characteristics, in an oxygen atmosphere, 50
Heat treatment at 0 ° C. for 1 hour.
【0020】この熱処理により、膜厚5000Åのペロ
ブスカイト結晶構造を有する多結晶のPZTを得ること
が出来た。By this heat treatment, a polycrystalline PZT having a perovskite crystal structure with a film thickness of 5000 Å could be obtained.
【0021】図1(a)に、多結晶のグレインとその双
極子モーメントの向きを示す。FIG. 1 (a) shows the direction of polycrystal grains and their dipole moments.
【0022】粒径は約2000Åである。The particle size is about 2000Å.
【0023】ここでは、簡単のため、1グレインが1分
域をもつと仮定した。Here, for simplicity, it is assumed that one grain has one domain.
【0024】このように熱処理により結晶化した各分域
は、各々様々な方向を向いているので、PZT薄膜全体
の分極の値は0である。Since the domains crystallized by the heat treatment are oriented in various directions, the polarization value of the entire PZT thin film is 0.
【0025】次に、図1(b)に示すように空気中でコ
ロナ放電を用いて、PZT膜105に電界をかける。Next, as shown in FIG. 1B, an electric field is applied to the PZT film 105 by using corona discharge in air.
【0026】外部電圧106を、Pt104と対向する
針107にかけ、電圧計108でPZT膜105にかか
る電圧が5Vになるよう外部電圧106を制御する。The external voltage 106 is applied to the needle 107 facing the Pt 104, and the voltmeter 108 controls the external voltage 106 so that the voltage applied to the PZT film 105 becomes 5V.
【0027】5Vは半導体記憶装置製造後に、PZTキ
ャパシタにかかる電圧と同じである。 ここで、針10
7とPZT膜105の表面との距離を20mmとした。5V is the same as the voltage applied to the PZT capacitor after the semiconductor memory device is manufactured. Where the needle 10
The distance between 7 and the surface of the PZT film 105 was set to 20 mm.
【0028】その結果、図1(c)に示すように各分域
の双極子モーメントが、バイアス電圧の方向にそろい、
PZT膜105が分極する。As a result, as shown in FIG. 1 (c), the dipole moments in each domain are aligned in the bias voltage direction,
The PZT film 105 is polarized.
【0029】その後、PZT膜の転移温度未満の温度で
その後の工程を行ない、半導体記憶装置を製造する。Then, the subsequent steps are performed at a temperature lower than the transition temperature of the PZT film to manufacture a semiconductor memory device.
【0030】ここで言う転移温度は、強誘電体から常誘
電体へ結晶構造が変化する温度のことであり、転移温度
以上に温度を上げてしまうと、各分域の双極子モーメン
トの向きが様々な方向に戻ってしまい、残留分極が0と
なる。The transition temperature referred to here is the temperature at which the crystal structure changes from a ferroelectric substance to a paraelectric substance, and if the temperature is raised above the transition temperature, the dipole moment in each domain will be oriented. It returns to various directions, and the remanent polarization becomes zero.
【0031】ここでは、例えばPZTの転移温度が42
0℃であるので分極処理後のプロセス、例えばSiO2
等の層間絶縁膜の形成、配線用アルミのスパッタ、エッ
チング、SiO2、窒化珪素膜(Si3N4)等パシベー
ション膜の形成等を420℃未満で行なう必要がある。Here, for example, the transition temperature of PZT is 42.
Since the temperature is 0 ° C., the process after polarization treatment, for example, SiO 2
It is necessary to perform the formation of an interlayer insulating film such as the above, the sputtering of aluminum for wiring, the etching, the formation of a passivation film such as SiO 2 , a silicon nitride film (Si 3 N 4 ) and the like at less than 420 ° C.
【0032】望ましくは、温度は低い方がよく、300
℃以下であることが更に良い。Desirably, the temperature should be low, 300
It is even more preferable that the temperature is ℃ or less.
【0033】上記実施例では、針107を1本として説
明したが、針の本数は何本でも構わないし、PZT膜1
05との距離を一定に保ちつつ針107をウエハ面内で
走査させても良い。In the above embodiment, the number of the needles 107 is one, but the number of the needles may be any number and the PZT film 1 may be used.
The needle 107 may be scanned within the wafer surface while maintaining a constant distance from 05.
【0034】次に本発明の第2実施例を図3(a)〜図
3(d)の製造工程断面図に基づいて説明する。Next, a second embodiment of the present invention will be described based on the manufacturing process sectional views of FIGS. 3 (a) to 3 (d).
【0035】図3(a)は、図1(a)に示す工程の
後、PZT膜105上にPt上部電極109を形成した
後の断面構造図である。FIG. 3A is a sectional structural view after the Pt upper electrode 109 is formed on the PZT film 105 after the step shown in FIG. 1A.
【0036】Pt上部電極109は、直流スパッタ法に
より形成し、その膜厚を5000Åとした。The Pt upper electrode 109 was formed by the DC sputtering method and had a film thickness of 5000 Å.
【0037】次に、図3(b)に示すように上部電極1
09と下部電極104の間に、5Vの電圧を印加して、
PZT膜105の分極処理を行ない、その結果図3
(c)に示すように各分域の双極子モーメントが、バイ
アス電圧の方向にそろう。Next, as shown in FIG. 3B, the upper electrode 1
09 and the lower electrode 104, by applying a voltage of 5V,
The PZT film 105 is polarized, and the result is shown in FIG.
As shown in (c), the dipole moment of each domain aligns with the direction of the bias voltage.
【0038】次に、図3(d)に示すようにPt上部電
極109を例えば、アルゴンをガスに用いたイオン・ミ
リングで除去する。Next, as shown in FIG. 3D, the Pt upper electrode 109 is removed by, for example, ion milling using argon as a gas.
【0039】この時、基板を冷却しながら行ない、基板
温度が転移温度以上に上昇しないことに注意を払う。At this time, it should be noted that the temperature of the substrate does not rise above the transition temperature while cooling the substrate.
【0040】ここで、一度上部電極109を取り除くの
は、PZT膜105の分極によるストレスを解放するた
めである。Here, the reason why the upper electrode 109 is once removed is to release the stress due to the polarization of the PZT film 105.
【0041】その後、再びPt上部電極109をPZT
膜の転移温度以下で直流スパッタ法により形成した後、
引き続きPZT膜の転移温度以下の温度でその後の工程
を行ない、半導体記憶装置を製造するのは、実施例1と
同様である。After that, the Pt upper electrode 109 is again made into PZT.
After forming by the DC sputtering method below the transition temperature of the film,
Similar to the first embodiment, the semiconductor memory device is manufactured by subsequently performing the subsequent steps at a temperature equal to or lower than the transition temperature of the PZT film.
【0042】次に本発明の第1及び第2実施例の製造工
程を用いて、実際に能動素子の形成された半導体基板上
にPZTを集積化した半導体記憶装置の断面構造図を図
4に示す。Next, FIG. 4 is a sectional structural view of a semiconductor memory device in which PZT is integrated on a semiconductor substrate on which active elements are actually formed by using the manufacturing process of the first and second embodiments of the present invention. Show.
【0043】101がシリコン基板、401がイオン注
入と熱処理によって形成された拡散層であり、402が
SiO2からなるゲート酸化膜、403が、多結晶シリ
コンとタングステンシリサイド(WSi)によって形成
されたゲート電極であり、電界効果型トランジスタの主
要部を形成している。101 is a silicon substrate, 401 is a diffusion layer formed by ion implantation and heat treatment, 402 is a gate oxide film made of SiO 2 , and 403 is a gate formed of polycrystalline silicon and tungsten silicide (WSi). It is an electrode and forms the main part of the field effect transistor.
【0044】404は、SiO2よりなる層間絶縁膜、
405はアルミ配線であり、上部電極109と拡散層4
01を接続している。404 is an interlayer insulating film made of SiO 2 .
Reference numeral 405 is an aluminum wiring, which is used for the upper electrode 109 and the diffusion layer 4.
01 is connected.
【0045】この実施例の場合、分極処理後のプロセス
として、PZT膜105の転移温度未満の温度で以下の
プロセスを行なう必要である。In the case of this embodiment, as the process after the polarization treatment, it is necessary to perform the following process at a temperature lower than the transition temperature of the PZT film 105.
【0046】上部電極109の堆積工程、上部電極10
9、PZT膜105、下部電極104及びTi103の
エッチング工程、SiO2404の堆積工程、SiO24
04及び102のエッチング工程、アルミ配線405の
堆積工程、及びエッチング工程。Step of depositing upper electrode 109, upper electrode 10
9, PZT film 105, lower electrode 104 and Ti 103 etching step, SiO 2 404 deposition step, SiO 2 4
04 and 102 etching process, aluminum wiring 405 deposition process, and etching process.
【0047】次に本発明の第1及び第2実施例で示した
製造方法を用いて作成した半導体記憶装置の記録方法を
図5(a)、(b)の断面構造図に基づいて説明する。Next, a recording method of a semiconductor memory device manufactured by using the manufacturing method shown in the first and second embodiments of the present invention will be described with reference to the sectional structural views of FIGS. 5A and 5B. .
【0048】図5(a)がDRAM動作前のPZT膜の
分域の双極子モーメントの向きを示す。FIG. 5A shows the direction of the dipole moment in the domain of the PZT film before the operation of the DRAM.
【0049】いま、双極子モーメントは、下を向いてい
る。Now, the dipole moment points downward.
【0050】この双極子モーメントは、強誘電体の自発
分極によるものである。This dipole moment is due to the spontaneous polarization of the ferroelectric substance.
【0051】次にDRAM動作時には、図5(b)に示
すように、分極の向きに、すなわち下向きに5Vのバイ
アス電圧を加えて、データの書き込みを行なう。Next, during the DRAM operation, as shown in FIG. 5B, data is written by applying a bias voltage of 5 V in the direction of polarization, that is, downward.
【0052】図5(b)のPZT膜105と上下の電極
109、104の間に書かれているプラス(+)/マイ
ナス(−)は、電子分極であり、バイアス電圧を取り除
いた後、ショートすると消滅してしまう電荷であり、D
RAM動作時のデータとなる。The plus (+) / minus (-) written between the PZT film 105 and the upper and lower electrodes 109 and 104 in FIG. 5B is electronic polarization, which is short-circuited after removing the bias voltage. Then, the electric charge disappears, and D
It becomes the data at the time of RAM operation.
【0053】一方、強誘電体の自発分極は、DRAM動
作に関係なく反転せず保持されたままであるので、PZ
Tの極性の異なる構成原子間の相対位置の変位が無いた
め、信頼性特性に優れている。On the other hand, the spontaneous polarization of the ferroelectric substance is not inverted and is maintained regardless of the DRAM operation, so that the PZ
Since there is no displacement of the relative position between the constituent atoms of T having different polarities, the reliability characteristics are excellent.
【0054】本実施例では、双極子モーメントの向きを
下向きとして説明したが、もちろん双極子モーメントの
向きが上向きの場合においても、DRAM動作時のバイ
アス電圧を上向きとすれば良いことは自明である。In the present embodiment, the direction of the dipole moment has been described as downward, but it is obvious that the bias voltage during DRAM operation may be upward even when the direction of dipole moment is upward. .
【0055】図6に本実施例で作成した半導体記憶装置
のバイアス電圧に対するキャパシタンスのグラフを示
す。FIG. 6 shows a graph of the capacitance against the bias voltage of the semiconductor memory device manufactured in this embodiment.
【0056】実線は、初期の単位面積当りのキャパシタ
ンスの電圧依存性を示し、破線は、1010回読み出し/
書き込み後の単位面積当りのキャパシタンスの電圧依存
性を示す。The solid line shows the voltage dependence of the capacitance per unit area in the initial stage, and the broken line shows 10 10 readings / reading.
The voltage dependence of the capacitance per unit area after writing is shown.
【0057】このように、本発明の製造方法及び記録方
法を用いることにより、半導体記憶装置の実使用時に於
いて、強誘電体の極性の異なる構成原子間の相対位置の
変位が1度も無いため、1010回の読み出し/書き込み
後に於いても、キャパシタンスの減少はほとんど見られ
なかった。As described above, by using the manufacturing method and the recording method of the present invention, when the semiconductor memory device is actually used, the relative position between the constituent atoms of the ferroelectric substance having different polarities is never displaced. Therefore, even after 10 10 times of reading / writing, the capacitance was hardly reduced.
【0058】以上本実施例では、強誘電体膜としてPZ
Tを用いて説明したが、PbTiO3、KNbO3、Pb
(MnNb)O3等他のペロブスカイト結晶構造を有す
る酸化物強誘電体でもよい。As described above, in this embodiment, PZ is used as the ferroelectric film.
Although described using T, PbTiO 3 , KNbO 3 , Pb
It may be an oxide ferroelectric having another perovskite crystal structure such as (MnNb) O 3 .
【0059】又、それらに、ランタン(La)、ネオジ
ウム(Nd)、ビスマス(Bi)、ナイオビウム(N
b)、アンチモン(Sb)、タンタル(Ta)等をドー
パントとして用いてもよい。In addition, lanthanum (La), neodymium (Nd), bismuth (Bi), niobium (N
b), antimony (Sb), tantalum (Ta) or the like may be used as a dopant.
【0060】[0060]
【発明の効果】本発明の半導体記憶装置の製造方法及び
記録方法は、以上説明したように実使用時に、強誘電体
の極性の異なる構成原子間の相対位置の変位が1度も無
いため、分極反転によって通常観察される空間電荷は発
生せず、1015回の読み出し/書き込み後に於いても、
キャパシタンスの減少はほとんどなく、信頼性に優れた
半導体記憶装置を提供すると言った効果を有し、更に本
発明の半導体記憶装置の製造方法に用いた強誘電体膜
は、誘電率が1000以上と大きいため256メガビッ
ト以上の高集積DRAMには、非常に有効となる。As described above, the semiconductor memory device manufacturing method and the recording method according to the present invention have no displacement of the relative position between the constituent atoms of the ferroelectric substance having different polarities in actual use. The space charge that is normally observed due to polarization inversion does not occur, and even after 10 15 times of reading / writing,
There is almost no reduction in capacitance, and it has the effect of providing a highly reliable semiconductor memory device. Furthermore, the ferroelectric film used in the method for manufacturing a semiconductor memory device of the present invention has a dielectric constant of 1000 or more. Since it is large, it is very effective for a highly integrated DRAM having 256 Mbits or more.
【図1】本発明の第1実施例の半導体記憶装置の製造工
程断面図である。FIG. 1 is a cross-sectional view of a manufacturing process of a semiconductor memory device according to a first embodiment of the present invention.
【図2】従来の半導体記憶装置に用いられるキャパシタ
のバイアス電圧に対するキャパシタンスのグラフであ
る。FIG. 2 is a graph of capacitance versus bias voltage of a capacitor used in a conventional semiconductor memory device.
【図3】本発明の第2実施例の半導体記憶装置の製造工
程断面図である。FIG. 3 is a cross-sectional view of the manufacturing process of the semiconductor memory device according to the second embodiment of the present invention.
【図4】本発明の半導体記憶装置の断面構造図である。FIG. 4 is a sectional structural view of a semiconductor memory device of the present invention.
【図5】本発明の半導体記憶装置の記録方法を示す断面
構造図である。FIG. 5 is a sectional structural view showing a recording method of the semiconductor memory device of the present invention.
【図6】本発明の半導体記憶装置に用いられるキャパシ
タのバイアス電圧に対するキャパシタンスのグラフであ
る。FIG. 6 is a graph of a capacitance versus a bias voltage of a capacitor used in the semiconductor memory device of the present invention.
101 シリコン基板 102 SiO2 103 Ti 104 Pt 105 PZT 106 外部電圧 107 針 108 電圧計 109 上部電極 401 拡散層 402 ゲート酸化膜 403 ゲート電極 404 SiO2 405 アルミ配線101 Silicon Substrate 102 SiO 2 103 Ti 104 Pt 105 PZT 106 External Voltage 107 Needle 108 Voltmeter 109 Upper Electrode 401 Diffusion Layer 402 Gate Oxide Film 403 Gate Electrode 404 SiO 2 405 Aluminum Wiring
Claims (3)
と、前記電極上に強誘電体膜を形成する工程と、前記強
誘電体膜表面と前記電極の間に電界を加えることによ
り、前記強誘電体膜を分極させる工程を備え、前記強誘
電体膜の転移温度未満の温度で、前記強誘電体膜を分極
させる工程以降の工程を行なうことを特徴とする半導体
記憶装置の製造方法。1. A method of forming an electrode on a semiconductor substrate, a step of forming a ferroelectric film on the electrode, and applying an electric field between the surface of the ferroelectric film and the electrode, A method of manufacturing a semiconductor memory device, comprising the step of polarizing a ferroelectric film, and performing the steps after the step of polarizing the ferroelectric film at a temperature lower than the transition temperature of the ferroelectric film.
と、前記第1電極上に強誘電体膜を形成する工程と、前
記強誘電体膜上に第2電極を形成する工程と、前記第1
電極と前記第2電極の間に電界を加えることにより前記
強誘電体膜を分極させる工程と、前記第2電極を除去す
る工程を備え、前記強誘電体膜の転移温度未満の温度で
前記第2電極を除去する工程以降の工程を行なうことを
特徴とする半導体記憶装置の製造方法。2. A step of forming a first electrode on a semiconductor substrate, a step of forming a ferroelectric film on the first electrode, and a step of forming a second electrode on the ferroelectric film. The first
A step of polarizing the ferroelectric film by applying an electric field between the electrode and the second electrode; and a step of removing the second electrode, wherein the temperature is lower than the transition temperature of the ferroelectric film. A method of manufacturing a semiconductor memory device, comprising performing the steps after the step of removing the two electrodes.
強誘電体膜の分極方向と同じ向きに電界を印加すること
により、前記強誘電体膜を電荷蓄積コンデンサとして動
作させることを特徴とする半導体記憶装置の記録方法。3. The ferroelectric film of the semiconductor memory device according to claim 1, wherein the ferroelectric film is operated as a charge storage capacitor by applying an electric field in the same direction as the polarization direction of the ferroelectric film. Recording method for semiconductor memory device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17412492A JP3168706B2 (en) | 1992-07-01 | 1992-07-01 | Method for manufacturing semiconductor memory device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17412492A JP3168706B2 (en) | 1992-07-01 | 1992-07-01 | Method for manufacturing semiconductor memory device |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18756999A Division JP3332014B2 (en) | 1999-07-01 | 1999-07-01 | Method for manufacturing semiconductor memory device |
JP11187570A Division JP2000082790A (en) | 1999-07-01 | 1999-07-01 | Method for reading or writing semiconductor memory device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0621339A true JPH0621339A (en) | 1994-01-28 |
JP3168706B2 JP3168706B2 (en) | 2001-05-21 |
Family
ID=15973077
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17412492A Expired - Lifetime JP3168706B2 (en) | 1992-07-01 | 1992-07-01 | Method for manufacturing semiconductor memory device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3168706B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100277845B1 (en) * | 1998-01-14 | 2001-02-01 | 김영환 | Nonvolatile ferroelectric memory device and method for manufacturing the same |
-
1992
- 1992-07-01 JP JP17412492A patent/JP3168706B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100277845B1 (en) * | 1998-01-14 | 2001-02-01 | 김영환 | Nonvolatile ferroelectric memory device and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JP3168706B2 (en) | 2001-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6649957B2 (en) | Thin film polycrystalline memory structure | |
JP3212930B2 (en) | Capacity and manufacturing method thereof | |
JP4539844B2 (en) | Dielectric capacitor, method of manufacturing the same, and semiconductor device | |
US6674633B2 (en) | Process for producing a strontium ruthenium oxide protective layer on a top electrode | |
US6190924B1 (en) | Apparatus and method to form ferroelectric capacitors having low dielectric loss | |
JP2003258202A (en) | Method for manufacturing semiconductor device | |
US6727156B2 (en) | Semiconductor device including ferroelectric capacitor and method of manufacturing the same | |
US20010023103A1 (en) | Method for manufacturing a semiconductor memory device incorporating a capacitor therein | |
JP4445091B2 (en) | Ferroelectric memory element | |
US6080593A (en) | Method of manufacturing ferroelectric memory | |
US6495412B1 (en) | Semiconductor device having a ferroelectric capacitor and a fabrication process thereof | |
JP3641142B2 (en) | Ferroelectric memory | |
US6855973B2 (en) | Semiconductor memory device including a capacitor an upper electrode of which being resistant of exfoliation | |
US6441415B1 (en) | Ferroelectric and paraelectric thin film devices using dopants which eliminate ferroelectricity | |
JP3168706B2 (en) | Method for manufacturing semiconductor memory device | |
JP3332014B2 (en) | Method for manufacturing semiconductor memory device | |
JP2006108291A (en) | Ferroelectric capacitor and its manufacturing method, and ferroelectric memory device | |
JP3232661B2 (en) | Semiconductor storage device | |
JP4289843B2 (en) | Capacitor manufacturing method for semiconductor device | |
JP3239852B2 (en) | High dielectric constant capacitor and method of manufacturing the same | |
KR20050002989A (en) | Method for forming ferroelectric capacitor capable of improving adhesion between bottom electrode and ferroelectric layer | |
JPH0624222B2 (en) | Method of manufacturing thin film capacitor | |
JPH1022463A (en) | Multilayer structure, its manufacture, capacitor structure, and non-volatile memory | |
JP2000082790A (en) | Method for reading or writing semiconductor memory device | |
JPH10270651A (en) | Semiconductor storage device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080316 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090316 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090316 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100316 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100316 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110316 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120316 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120316 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130316 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130316 Year of fee payment: 12 |