JPH06209518A - Insulation-degradation diagnostic apparatus - Google Patents

Insulation-degradation diagnostic apparatus

Info

Publication number
JPH06209518A
JPH06209518A JP243093A JP243093A JPH06209518A JP H06209518 A JPH06209518 A JP H06209518A JP 243093 A JP243093 A JP 243093A JP 243093 A JP243093 A JP 243093A JP H06209518 A JPH06209518 A JP H06209518A
Authority
JP
Japan
Prior art keywords
zero
phase current
insulation deterioration
feeder
insulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP243093A
Other languages
Japanese (ja)
Other versions
JP2958594B2 (en
Inventor
Takayasu Watanabe
能康 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP243093A priority Critical patent/JP2958594B2/en
Publication of JPH06209518A publication Critical patent/JPH06209518A/en
Application granted granted Critical
Publication of JP2958594B2 publication Critical patent/JP2958594B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Relating To Insulation (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE:To obtain an insulation-degradation diagnostic apparatus wherein its cost is low, its reliability is high and the maintenance of its electric installation is easy by providing a processing device which diagnoses the insulation-degradation degree of an insulation-degraded distribution feeder on the basis of a plurality of zero-phase currents. CONSTITUTION:A diagnostic apparatus is provided with a plurality of zero-phase current transformers 14 which measure a zero-phase current at each of individual feeders 12 and with a processing device 2 which takes into individual zero-phase current signals 16 output from the zero-phase current transformers 14 and which judges an insulation-degradation degree by specifying the insulation-degraded distribution feeders on the basis of the zero-phase current signals. When the insulation of an electric installation is degraded, the zero-phase current starts to increase with the time. When the current reaches a predetermined value, breakers 13 are isolated by a protective device, and the supply of electric power to loads 15 is stopped. Since the crest value of the zero-phase currents 16 output from the zero-phase current transformers 14 is actually small in this case, the currents are amplified up to a required crest value by amplifiers 17. As a result, the diagnosing apparatus whose cost is low, whose reliability is high an in which the maintenance of the electric installation is easy is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気設備の絶縁劣化を
検出し、診断する絶縁劣化診断装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insulation deterioration diagnosis device for detecting and diagnosing insulation deterioration of electric equipment.

【0002】[0002]

【従来の技術】電気設備の絶縁劣化は、時間的に進展
し、最終的には地絡事故や短絡事故に至る場合が多い。
絶縁劣化の進展メカニズムは、複雑であるが、概ね次の
ようになる。まず、ケーブル被覆や導体支持絶縁体の傷
や劣化部分から電流が漏れ始め、その漏洩電流により発
生する熱、圧力、イオン等により傷や劣化が進展し、漏
洩電流が増加する。
2. Description of the Related Art Deterioration of insulation of electric equipment often progresses with time and eventually leads to a ground fault or a short circuit.
Although the mechanism of progress of insulation deterioration is complicated, it is generally as follows. First, current begins to leak from the scratches or deteriorated portions of the cable coating and the conductor supporting insulator, and the heat, pressure, ions, etc. generated by the leak currents progress damage and deterioration, and the leak current increases.

【0003】漏洩電流は、絶縁劣化初期には数ミリアン
ペア以下の微少な値であり、負荷電流が流れている状態
で検出する事は、難しい。
The leakage current has a very small value of several milliamperes or less at the early stage of insulation deterioration, and it is difficult to detect it in the state where the load current is flowing.

【0004】しかし、最近の電流設備は、その負荷とし
て、電子計算機等を持つ場合が多く、負荷を停止する事
が容易ではない場合が多い。
However, modern electric current equipment often has an electronic computer or the like as its load, and it is often difficult to stop the load.

【0005】したがって負荷電流を流したままの状態
で、微少漏洩電流を検出して絶縁劣化状態を初期にとら
えることが必要になる。
Therefore, it is necessary to detect the minute leakage current and catch the insulation deterioration state in the initial state while the load current is still flowing.

【0006】従来では、次のような絶縁劣化診断装置
(特開平4ー42726)があった。この絶縁劣化診断
装置は、通常は短絡されているGPT(Ground Potenti
al Transformer)の中性点とアースとの間にスイッチが
設けられており、絶縁劣化の診断時には、このスイッチ
を解放し、解放したスイッチの両端に直流電圧を印加
し、電源設備からアースへの漏洩電流を計測すると共
に、計測完了後、前記スイッチを閉じる。この漏洩電流
を計測した結果、予め定めた基準地を超過している場合
には、電気設備を停止させ、複数の配電フィーダの絶縁
劣化を、個別に検査するように構成されていた。
Conventionally, there is the following insulation deterioration diagnosing device (Japanese Patent Laid-Open No. 4-42726). This insulation deterioration diagnosis device is usually used for GPT (Ground Potenti
A switch is provided between the neutral point and the ground. When diagnosing insulation deterioration, this switch is released, and a DC voltage is applied to both ends of the released switch to connect the power equipment to ground. The leakage current is measured, and the switch is closed after the measurement is completed. As a result of measuring the leakage current, if the predetermined reference site is exceeded, the electric equipment is stopped and the insulation deterioration of the plurality of distribution feeders is individually inspected.

【0007】[0007]

【発明が解決しようとする課題】上述した従来技術で
は、装置の構成上、地絡検出用のGPTが必要不可欠で
あり、装置の価格上昇と装置の大型化を招いていた。
In the above-mentioned conventional technique, the GPT for detecting the ground fault is indispensable in the structure of the device, which causes an increase in the price of the device and an increase in the size of the device.

【0008】また従来の絶縁劣化診断装置では電気設備
全体の絶縁劣化については判断できるが、絶縁劣化が生
じた部分の特定は出来いないため、絶縁劣化状態を検出
した後、電気設備を停止させた上で、改めて各部を切り
離して個々の部分の絶縁抵抗を測定する等の方法が取ら
れており、電気設備の保守に要する労力が大きいという
問題があった。
Although the conventional insulation deterioration diagnosing device can judge the insulation deterioration of the entire electric equipment, since the portion where the insulation deterioration has occurred cannot be identified, the electric equipment is stopped after detecting the insulation deterioration state. In the above, a method of separating each part and measuring the insulation resistance of each part is taken again, and there is a problem that the labor required for maintenance of the electric equipment is large.

【0009】更に、地絡事故発生時にはGPT中性点と
アースとの間に高電圧が発生し、絶縁劣化診断装置が破
壊される可能性があるため、常時、計測を行うことがで
きず、定期的に短時間の診断を実施するに止めざるを得
ないため、急速に進展する絶縁劣化に対処することが困
難であるという問題があった。
Furthermore, when a ground fault occurs, a high voltage may be generated between the GPT neutral point and the ground, and the insulation deterioration diagnostic device may be destroyed. There is a problem that it is difficult to cope with the rapidly progressing insulation deterioration because the diagnosis must be carried out regularly for a short time.

【0010】本発明はこのような事情に鑑みてなされた
ものであり、安価で信頼性が高く電気設備の保全を容易
に行うことができる絶縁劣化診断装置を提供する事を目
的とする。
The present invention has been made in view of the above circumstances, and an object thereof is to provide an insulation deterioration diagnosing device which is inexpensive, highly reliable, and capable of easily maintaining electrical equipment.

【0011】[0011]

【課題を解決するための手段】本発明の絶縁劣化診断装
置は、電気設備における複数の配電フィーダの零相電流
をそれぞれ個別に計測する複数の零相変流器と、前記複
数の零相変流器から出力されたれ零相電流信号を取り込
み、これらの複数の零相電流信号に基づいて絶縁劣化が
生じた配電フィーダを特定し、かつ該特定された配電フ
ィーダの絶縁劣化程度の診断を行う処理装置とを有する
ことを特徴とする。
SUMMARY OF THE INVENTION An insulation deterioration diagnosing device of the present invention comprises a plurality of zero-phase current transformers for individually measuring zero-phase currents of a plurality of distribution feeders in electric equipment, and the plurality of zero-phase transformers. The zero-phase current signal output from the sink is taken in, the distribution feeder with insulation deterioration is specified based on these multiple zero-phase current signals, and the degree of insulation deterioration of the specified distribution feeder is diagnosed. And a processing device.

【0012】また本発明の絶縁劣化診断装置は、前記処
理装置は、前記複数の各零相電流信号を所定のレベルに
個別に増幅する複数の増幅手段と、前記複数の各増幅手
段の出力信号である零相電流の基本波成分を取り出す複
数のバンドパスフィルタと、該複数のバンドパスフィル
タの出力信号を取り込み、これら複数のバンドパスフィ
ルタの出力信号に基づいて絶縁劣化が生じた配電フィー
ダの特定及びその絶縁劣化の程度を判定する演算手段
と、該演算手段の演算出力に基づいて絶縁劣化が生じた
フィーダを示すデータ及びそのフィーダの絶縁劣化の程
度を表示する表示手段とを有することを特徴とする。
Further, in the insulation deterioration diagnosing device of the present invention, the processing device includes a plurality of amplifying means for individually amplifying each of the plurality of zero-phase current signals to a predetermined level, and output signals of the plurality of amplifying means. A plurality of bandpass filters for extracting the fundamental wave component of the zero-phase current, and the output signals of the plurality of bandpass filters, and of the distribution feeder in which insulation deterioration has occurred based on the output signals of the plurality of bandpass filters. And a display unit for displaying the data indicating the feeder having insulation deterioration and the degree of insulation deterioration of the feeder based on the output of the calculation unit. Characterize.

【0013】更に本発明の絶縁劣化診断装置は、前記増
幅手段は、絶縁劣化していない状態におけるフィーダの
零相電流信号のレベルを記憶する記憶部と、現在の零相
電流信号と前記記憶部から出力される非絶縁劣化時の零
相電流信号のレベル差を増幅する差動増幅器とから構成
されることを特徴とする。
Further, in the insulation deterioration diagnosing device of the present invention, the amplifying means stores a level of a zero-phase current signal of the feeder in a state where insulation deterioration is not present, a current zero-phase current signal and the storage part. And a differential amplifier for amplifying the level difference of the zero-phase current signal at the time of non-insulation deterioration output from the.

【0014】また本発明の絶縁劣化診断装置は、前記演
算手段は、絶縁劣化してない状態におけるフィーダの零
相電流信号のレベルを記憶する記憶部を有し、各フィー
ダの現在の零相電流信号と前記記憶部から出力される絶
縁劣化していない状態における零相電流信号との差を演
算する機能を有することを特徴とする。
Further, in the insulation deterioration diagnosing device of the present invention, the arithmetic means has a storage section for storing the level of the zero-phase current signal of the feeder in a state where insulation deterioration has not occurred, and the present zero-phase current of each feeder. It is characterized by having a function of calculating a difference between a signal and a zero-phase current signal output from the storage unit in a state in which insulation is not deteriorated.

【0015】更に本発明の絶縁劣化診断装置は、前記演
算手段は、前記電気設備における基準となる配電フィー
ダの零相電流ベクトルと他の配電フィーダの零相電流ベ
クトルとの内積を求め、この内積の符号に基づいて絶縁
劣化が生じた配電フィーダの特定を行うことを特徴とす
る。
Further, in the insulation deterioration diagnosing device of the present invention, the calculating means obtains the inner product of the zero-phase current vector of the distribution feeder and the zero-phase current vector of another distribution feeder, which is the reference in the electric equipment, and calculates the inner product. It is characterized in that the distribution feeder having the insulation deterioration is specified based on the code.

【0016】また本発明の絶縁劣化診断装置は、前記バ
ンドパスフィルタのQが5以上であることを特徴とす
る。
Further, the insulation deterioration diagnosing device of the present invention is characterized in that the Q of the band pass filter is 5 or more.

【0017】更に本発明の絶縁劣化診断装置は、前記零
相変流器は、1次側に流れる2ミリアンペア程度の零相
電流を計測できるように巻数を大きくしたことを特徴と
する。
Further, the insulation deterioration diagnosing device of the present invention is characterized in that the zero-phase current transformer has a large number of turns so as to measure a zero-phase current of about 2 milliamperes flowing on the primary side.

【0018】[0018]

【作用】上記構成の絶縁劣化診断装置は、絶縁劣化部分
の特定を行うため、母線から各負荷へ電気を配分するフ
ィーダの微少零相電流を計測するための零相変流器を有
している。この零相変流器は、2ミリアンペア程度の微
少零相電流を計測可能なように、巻数を多くしてある。
The insulation deterioration diagnosing device having the above structure has a zero-phase current transformer for measuring a minute zero-phase current of the feeder that distributes electricity from the bus bar to each load in order to identify the insulation deterioration portion. There is. This zero-phase current transformer has a large number of turns so that a minute zero-phase current of about 2 milliamperes can be measured.

【0019】また零相変流器の出力を、増幅器とバンド
パスフィルタを介して演算部に取り込み、零相電流ベク
トル同士の内積を求め、その符号に基づいて絶縁劣化部
分の特定を行う。その際に絶縁劣化していない状態にお
ける零相電流の大きさを個々のフィーダについて記憶し
ておき、現在の零相電流の計測値との差分のみを演算に
使用する。
Further, the output of the zero-phase current transformer is taken into the arithmetic unit via the amplifier and the bandpass filter, the inner product of the zero-phase current vectors is obtained, and the insulation deterioration portion is specified based on the sign. At that time, the magnitude of the zero-phase current in the state where the insulation is not deteriorated is stored for each feeder, and only the difference from the current measured value of the zero-phase current is used for the calculation.

【0020】この結果GPTを使用しなくても絶縁劣化
の診断が可能となり、しかもフィーダ単位での絶縁劣化
部位の判定が可能になる。
As a result, the insulation deterioration can be diagnosed without using the GPT, and the insulation deterioration portion can be determined for each feeder.

【0021】更にノイズや高調波の影響を受けにくくな
るため、安定した絶縁劣化診断を行う事が出来る。
Further, since it is less likely to be affected by noise and higher harmonics, stable insulation deterioration diagnosis can be performed.

【0022】従って、本発明によれば、安価で信頼性が
高く設備の保全が容易な絶縁劣化診断装置を構築するこ
とができる。
Therefore, according to the present invention, it is possible to construct an insulation deterioration diagnosing device which is inexpensive, highly reliable, and easy to maintain.

【0023】[0023]

【実施例】以下、本発明の実施例を図面を参照して説明
する。図1には本発明に係る絶縁劣化診断装置の一実施
例の構成が示されている。この絶縁劣化診断装置の絶縁
劣化診断の対象となる電気設備1の例として、次の設備
を考える。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows the configuration of an embodiment of an insulation deterioration diagnosing device according to the present invention. The following equipment is considered as an example of the electric equipment 1 to be subjected to the insulation deterioration diagnosis of the insulation deterioration diagnosis device.

【0024】図1において電気設備1は、商用電源又は
自家発電機等にその一端が接続される受電部10と、こ
の受電部10の他端に接続される母線11と、母線11
と複数の負荷15を遮断器13を介して接続する複数の
フィーダ12とから構成されている。
In FIG. 1, an electric equipment 1 includes a power receiving section 10 having one end connected to a commercial power source or a private power generator, a bus bar 11 connected to the other end of the power receiving section 10, and a bus bar 11.
And a plurality of feeders 12 that connect a plurality of loads 15 via a circuit breaker 13.

【0025】また上記電気設備1に設置された絶縁劣化
診断装置は、各フィーダ12毎に設けられ各フィーダの
零相電流を計測する複数の零相電流変流器14と、各フ
ィーダ12毎に零相電流変流器14より出力された零相
電流信号16を取り込み、これらの複数の零相電流信号
16に基づいて絶縁劣化が生じた配電フィーダを特定
し、かつ特定された配電フィーダの絶縁劣化程度の判定
を行う処理装置2とを有している。
The insulation deterioration diagnosis device installed in the electric equipment 1 has a plurality of zero-phase current transformers 14 provided for each feeder 12 for measuring the zero-phase current of each feeder, and each feeder 12. The zero-phase current signal 16 output from the zero-phase current transformer 14 is taken in, the distribution feeder having insulation deterioration is specified based on the plurality of zero-phase current signals 16, and the specified distribution feeder is isolated. It has a processing device 2 that determines the degree of deterioration.

【0026】処理装置2は、上記複数の零相電流変流器
14から出力される零相電流信号16を入力信号とする
複数の増幅器17と、この複数の増幅器17の出力信号
を入力信号とするバンドパスフィルタ18と、複数のバ
ンドパスフィルタ18の出力信号を取り込み演算処理す
る演算部19と、演算部19から出力される絶縁劣化し
たフィーダを示す検出信号30、絶縁劣化状態の程度を
示す検出信号31とを受けて診断結果を表示する表示部
20とから構成されている。
The processing device 2 uses a plurality of amplifiers 17 which have the zero-phase current signals 16 output from the plurality of zero-phase current transformers 14 as input signals, and output signals of the plurality of amplifiers 17 as input signals. The band pass filter 18, a calculation unit 19 that receives the output signals of the plurality of band pass filters 18 and performs a calculation process, a detection signal 30 output from the calculation unit 19 indicating a feeder with insulation deterioration, and a degree of the insulation deterioration state. The display unit 20 receives the detection signal 31 and displays the diagnosis result.

【0027】図2に図1に示した電気設備1における各
フィーダ12における零相電流の時間変化の一例を示
す。電気設備の絶縁が劣化すると、図2に示すように零
相電流が時間と共に増加し始める。零相電流が、予め定
められた値I1に達すると、保護装置により遮断器13
が解放され、負荷15への電力供給が停止されることが
判っているときに零相電流が値I1に達する前の値I2
の段階で、電気設備保守者に電気設備1における絶縁劣
化の発生を知らしめることが出来れば、突然の電力供給
停止といった事態は避けられる。そのためには、零相電
流が値I2よりも小さい段階で検出することが必要であ
る。保護装置により遮断器13を解放するときの零相電
流I1の値は、200ミリアンペア程度が一般的であ
り、電気設備の保守者が余裕をもって対処するために
は、零相電流が数十ミリアンペアになった時点で電気設
備の修理を実施する必要がある。
FIG. 2 shows an example of the change over time of the zero-phase current in each feeder 12 in the electric equipment 1 shown in FIG. When the insulation of the electric equipment deteriorates, the zero-phase current starts to increase with time as shown in FIG. When the zero-phase current reaches the predetermined value I1, the protective device causes the circuit breaker 13
I2 before the zero-phase current reaches the value I1 when it is known that the current is released and the power supply to the load 15 is stopped.
At this stage, if it is possible to inform the electric equipment maintainer of the occurrence of insulation deterioration in the electric equipment 1, it is possible to avoid a situation where the power supply is suddenly stopped. For that purpose, it is necessary to detect at the stage where the zero-phase current is smaller than the value I2. The value of the zero-phase current I1 when the breaker 13 is released by the protection device is generally about 200 milliamperes, and the zero-phase current is set to several tens of milliamperes in order for the maintenance person of the electric equipment to deal with it with a margin. It is necessary to repair the electric equipment when it becomes.

【0028】したがって、絶縁劣化診断装置としては、
数ミリアンペア程度の零相電流を検出可能であることが
必要となる。そこで、本実施例における絶縁劣化診断装
置の零相電流変流器14は、従来の零相電流変流器の検
出可能電流は、100ミリアンペア前後であるため、従
来よりも高感度とし、2ミリアンペアまで検出可能なよ
うに、その2次巻線の巻数を多くしてある。これにより
微少な零相電流が計測可能となる。
Therefore, as the insulation deterioration diagnosis device,
It is necessary to be able to detect a zero-phase current of a few milliamperes. Therefore, the zero-phase current transformer 14 of the insulation deterioration diagnosing device in the present embodiment has a higher detectable current than the conventional zero-phase current transformer, since the detectable current is about 100 milliamperes. The number of turns of the secondary winding is increased so that it can be detected up to. This makes it possible to measure a minute zero-phase current.

【0029】一方、実際に零相電流変流器14から出力
される零相電流信号16は、波高値が小さく、そのまま
では、処理装置2の演算部19で演算処理できないた
め、増幅器17により必要な波高値(レベル)まで増幅
する。
On the other hand, the zero-phase current signal 16 actually output from the zero-phase current transformer 14 has a small peak value and cannot be processed by the calculation unit 19 of the processing device 2 as it is. Amplify to a peak value (level).

【0030】しかし、零相電流信号16は、本来の信号
である基本周波数の波形に、高調波やノイズが重畳した
波形になっている。従来の絶縁劣化診断装置では、基本
周波数の波形成分が大きい領域を扱っていたために問題
とならない場合もあるが、本発明による絶縁劣化診断装
置では、基本周波数の波形成分が小さな領域を扱わなけ
ればならないためにバンドパスフィルタの重要性は高
い。図1におけるバンドパスフィルタ18に要求される
性能としては、全ての高調波成分を1%以下にするため
に基本周波数を中心とし、Q=5程度が必要となる。
However, the zero-phase current signal 16 has a waveform in which harmonics and noise are superimposed on the waveform of the fundamental frequency which is the original signal. The conventional insulation deterioration diagnosing device handles a region having a large fundamental frequency waveform component, which may cause no problem, but the insulation deterioration diagnosing device according to the present invention has to handle a region having a small fundamental frequency waveform component. The bandpass filter is important because it does not occur. As the performance required for the bandpass filter 18 in FIG. 1, about Q = 5 is required centering on the fundamental frequency in order to reduce all the harmonic components to 1% or less.

【0031】このようにして零相電流信号16は、増幅
器17により所定の波高値まで増幅され、バンドパスフ
ィルタ18により基本周波数成分が抽出された後、演算
部19に入力される。
In this way, the zero-phase current signal 16 is amplified to a predetermined peak value by the amplifier 17, the fundamental frequency component is extracted by the bandpass filter 18, and then input to the arithmetic unit 19.

【0032】演算部19では複数のバンドパスフィルタ
18の出力信号を取り込み、これら複数のバンドパスフ
ィルタ18の出力信号に基づいて絶縁劣化が生じた配電
フィーダの特定及びその絶縁劣化の程度を判定する。
The computing unit 19 takes in the output signals of the plurality of bandpass filters 18, and identifies the distribution feeder having insulation deterioration and determines the degree of insulation deterioration based on the output signals of the plurality of bandpass filters 18. .

【0033】ここで演算部19において絶縁劣化が生じ
たフィーダの特定を行う原理について図3及び図4を参
照して説明する。図3(a)に示したように、絶縁劣化
が生じてない場合には、各フィーダの零相電流ベクトル
は、任意の方向を向いている。 絶縁劣化が生じていな
い状態で零相電流が各フィーダに流れる原因は、フィー
ダを構成する各相の浮遊容量に不揃いがあるためであ
る。この状態で特定のフィーダに絶縁劣化が発生した場
合、そのフィーダに流れる零相電流ベクトルが、接地電
流により大きくなり、その他のフィーダの零相電流ベク
トルは、絶縁劣化が生じたフィーダの零相電流ベクトル
と、逆方向を示し、図3(b)に示す様相を呈する。
Here, the principle of specifying the feeder in which the insulation deterioration has occurred in the arithmetic unit 19 will be described with reference to FIGS. As shown in FIG. 3A, when insulation deterioration does not occur, the zero-phase current vector of each feeder is oriented in an arbitrary direction. The reason why the zero-phase current flows in each feeder in the state where the insulation deterioration does not occur is that the stray capacitances of the respective phases forming the feeder are not uniform. If insulation deterioration occurs in a particular feeder in this state, the zero-phase current vector that flows in that feeder becomes larger due to the ground current, and the zero-phase current vectors of other feeders become the zero-phase current vector of the feeder with insulation deterioration. The vector and the opposite direction are shown, and the aspect shown in FIG.

【0034】絶縁劣化によりフィーダの零相電流ベクト
ルが図3に示すように変化する原理は、図4により、次
のように説明される。フィーダの絶縁劣化部から大地へ
地絡電流6aが流れると、大地からの帰還電流6bが各
相の浮遊容量8を介して電源側へ流れる。この時の地絡
電流6aと帰還電流6bの関係は次式に示すようにな
る。
The principle that the zero-phase current vector of the feeder changes as shown in FIG. 3 due to insulation deterioration is explained as follows with reference to FIG. When the ground fault current 6a flows from the insulation deterioration part of the feeder to the ground, the return current 6b from the ground flows to the power supply side through the stray capacitance 8 of each phase. The relationship between the ground fault current 6a and the feedback current 6b at this time is as shown in the following equation.

【0035】[0035]

【数1】 6a=Σ6b (1) したがって、絶縁劣化が生じたフィーダの零相電流7a
は、次式に示すように、
## EQU1 ## 6a = .SIGMA.6b (1) Therefore, the zero-phase current 7a of the feeder with insulation deterioration
Is given by

【0036】[0036]

【数2】 7a=6aー2×6b>0 (2) 正の値となり、絶縁劣化が生じていないフィーダの零相
電流7bは、次式に示すように、
## EQU00002 ## 7a = 6a-2.times.6b> 0 (2) A positive value, and the zero-phase current 7b of the feeder with no insulation deterioration is given by the following equation.

【0037】[0037]

【数3】 ー2×6b<0 (3) 負の値となる。したがって、絶縁劣化が生じたフィーダ
の零相電流と絶縁劣化が生じていないフィーダの零相電
流は、ベクトル的には向きが逆方向となる。
[Equation 3] −2 × 6b <0 (3) Negative value. Therefore, the zero-phase current of the feeder in which insulation deterioration has occurred and the zero-phase current of the feeder in which insulation deterioration has not occurred have opposite directions in terms of vector.

【0038】このように絶縁劣化が生じた場合のフィー
ダの零相電流ベクトルが図3に示すように変化すること
を利用して演算部19では、つぎの演算を行う。
The computing unit 19 carries out the following computation by utilizing the fact that the zero-phase current vector of the feeder changes as shown in FIG. 3 when the insulation deterioration occurs in this way.

【0039】まず、いずれかのフィーダの零相電流の絶
対値が、基準値を超えた時点で、演算を開始する。
First, the calculation is started when the absolute value of the zero-phase current of any of the feeders exceeds the reference value.

【0040】次に、基準ベクトルを選定する。基準ベク
トルとしては、どのフィーダの零相電流ベクトルを選定
しても理論上は問題ないが、実際は波高値の大きなもの
を基準とするのが良く、したっがて零相電流の絶対値が
最大となる零相電流ベクトルを使用するのがよい。
Next, the reference vector is selected. As a reference vector, it is theoretically possible to select the zero-phase current vector of any feeder, but in practice it is better to use the one with a large peak value as the reference, so that the absolute value of the zero-phase current is the maximum. It is better to use a zero-phase current vector

【0041】基準となる零相電流ベクトルが選定された
ならば、次に基準零相電流ベクトルと、その他のフィー
ダの零相電流ベクトルとの内積が計算される。この場
合、基準零相電流ベクトルとして選定したフィーダが、
絶縁劣化が生じたフィーダであった場合には上述したベ
クトルの内積の結果は、全て負の値を持つ。何故ならば
上述した状態は、図3(b)において零相電流ベクトル
5eを基準零相電流ベクトルとして選定した場合に相当
し、他のフィーダの零相電流ベクトルが基準ベクトルと
逆方向を向いているため上述した内積結果は、全て負の
値となるからである。
After the reference zero-phase current vector is selected, the inner product of the reference zero-phase current vector and the zero-phase current vectors of the other feeders is calculated. In this case, the feeder selected as the reference zero-phase current vector is
In the case of a feeder with insulation deterioration, the result of the inner product of the above-mentioned vectors all has a negative value. This is because the above-described state corresponds to the case where the zero-phase current vector 5e is selected as the reference zero-phase current vector in FIG. 3B, and the zero-phase current vectors of the other feeders face the opposite direction to the reference vector. Therefore, the above-mentioned inner product results are all negative values.

【0042】また基準零相電流ベクトルとして選定した
フィーダが、絶縁劣化が生じてないフィーダであった場
合には、上述した零相電流ベクトルの内積の結果は、基
準零相電流ベクトルと絶縁劣化が生じたフィーダの零相
電流ベクトルの内積結果のみが負の値となり、それ以外
は正の値となる。何故ならば上述した状態というのは図
3(b)において零相電流ベクトル5e以外、例えば零
相電流ベクトル5bを基準零相電流ベクトルとして選定
した場合に相当する。したがって絶縁劣化が生じたフィ
ーダの零相電流ベクトル以外のフィーダの零相電流ベク
トルが基準ベクトルとなす角度が90度以内となるた
め、上述した内積結果は、基準零相電流ベクトルと絶縁
劣化が生じたフィーダの零相電流ベクトルの内積結果の
みが負の値となり、それ以外は、正の値となる。
When the feeder selected as the reference zero-phase current vector is a feeder in which insulation deterioration does not occur, the result of the inner product of the zero-phase current vector described above is Only the inner product result of the generated zero-phase current vector of the feeder has a negative value, and the others have a positive value. This is because the above-described state corresponds to the case where the zero-phase current vector 5b other than the zero-phase current vector 5e in FIG. 3B is selected as the reference zero-phase current vector, for example. Therefore, since the angle formed by the zero-phase current vector of the feeder other than the zero-phase current vector of the feeder where the insulation deterioration occurs with the reference vector is within 90 degrees, the above-mentioned inner product result shows that the reference zero-phase current vector and the insulation deterioration occur. Only the inner product result of the zero-phase current vector of the feeder has a negative value, and the other products have a positive value.

【0043】したがって、基準零相電流ベクトルと、そ
の他のフィーダの零相電流ベクトルとの内積を計算した
結果から、絶縁劣化が生じたフィーダが、いずれのフィ
ーダであるかを判定できる。
Therefore, from the result of calculating the inner product of the reference zero-phase current vector and the zero-phase current vectors of the other feeders, it is possible to determine which feeder is the feeder with insulation deterioration.

【0044】次に、上述した演算結果により特定された
絶縁劣化が生じたフィーダの零相電流の絶対値から、絶
縁劣化の程度を判定する。絶縁劣化の程度の判定は、絶
縁劣化が生じたフィーダの零相電流の絶対値と、n個の
基準電流値の比較により行う。
Next, the degree of insulation deterioration is determined from the absolute value of the zero-phase current of the feeder in which the insulation deterioration specified by the above calculation result has occurred. The degree of insulation deterioration is determined by comparing the absolute value of the zero-phase current of the feeder with insulation deterioration with n reference current values.

【0045】次に、絶縁劣化が生じたフィーダを特定す
る信号30と、そのフィーダの絶縁劣化の程度をn段階
で示す信号31が演算部19より表示部20に送られ、
表示部20では、絶縁劣化が生じたフィーダの名称又は
番号を示す表示と、そのフィーダの絶縁劣化の程度をn
段階で示す表示がなされる。
Next, a signal 30 for specifying a feeder having insulation deterioration and a signal 31 indicating the degree of insulation deterioration of the feeder in n stages are sent from the arithmetic unit 19 to the display unit 20.
The display unit 20 displays a display showing the name or number of the feeder having insulation deterioration and the degree of insulation deterioration of the feeder by n.
The display shown in stages is made.

【0046】電気設備の保守員は、表示部20の表示内
容に従い、電気設備の修理の計画、実施を行う。
The maintenance staff of the electric equipment plans and executes the repair of the electric equipment according to the contents displayed on the display section 20.

【0047】次に図5に絶縁劣化が生じてない時の各フ
ィーダにおける零相電流を用いて計測時における零相電
流の補正を行った場合の零相電流の変化の状態を示す。
図5(a)、図5(b)の内容は、図3(a)、図3
(b)の内容と同じである。既に図3で説明したよう
に、絶縁劣化がフィーダに生じてない場合でもそのフィ
ーダに零相電流が発生する。この絶縁劣化が生じてない
状態で発生する零相電流が図1における演算部19での
演算処理において、邪魔になる場合がある。即ち、前記
各相の浮遊容量8の不揃いが大きい場合には、図5
(b)において、絶縁劣化が生じてない二つのフィーダ
の零相電流ベクトル例えば、5aと5cとのなす角度が
90度以上となる場合が考えられ、この場合に上述した
演算による絶縁劣化が生じたフィーダの特定が正確に行
われない可能性がある。
Next, FIG. 5 shows the state of change of the zero-phase current when the zero-phase current in each feeder is corrected using the zero-phase current in the case where insulation deterioration does not occur.
The contents of FIGS. 5A and 5B are the same as those of FIGS.
It is the same as the content of (b). As already described with reference to FIG. 3, a zero-phase current is generated in the feeder even when insulation deterioration does not occur in the feeder. The zero-phase current generated in the state where the insulation deterioration does not occur may interfere with the arithmetic processing in the arithmetic unit 19 in FIG. That is, when the irregularities of the stray capacitances 8 of the respective phases are large, FIG.
In (b), the zero-phase current vector of two feeders in which insulation deterioration does not occur, for example, the angle formed by 5a and 5c may be 90 degrees or more. In this case, insulation deterioration due to the above-described calculation occurs. The feeder may not be accurately identified.

【0048】そこで図6に示す補正部により、非絶縁劣
化時に発生する零相電流を、演算部19で処理する前に
取り除き、絶縁劣化発生時の零相電流ベクトルを図5
(c)に示す形にする。
Therefore, the correction unit shown in FIG. 6 removes the zero-phase current generated at the time of non-insulation deterioration before processing by the calculation unit 19, and the zero-phase current vector at the time of insulation deterioration is shown in FIG.
The shape shown in (c) is used.

【0049】図6において補正部は、絶縁劣化が生じて
ない時のフィーダの零相電流信号が記憶される記憶部5
0と、補正前のフィーダの零相電流信号と記憶部50か
ら出力される絶縁劣化が生じてない時のフィーダの零相
電流信号との差を演算する差分演算部51とから構成さ
れる。
In FIG. 6, the correction unit is a storage unit 5 for storing the zero-phase current signal of the feeder when insulation deterioration has not occurred.
0, and a difference calculation unit 51 that calculates the difference between the zero-phase current signal of the feeder before correction and the zero-phase current signal of the feeder output from the storage unit 50 when insulation deterioration has not occurred.

【0050】上記構成においてまず書込指令信号9aに
より絶縁劣化が生じてない状態におけるるフィーダの零
相電流信号が記憶部50に書き込まれ、次いで補正前の
フィーダの零相電流信号5fと記憶部50から読み出さ
れた絶縁劣化が生じてない状態におけるフィーダの零相
電流信号とが差分演算部51で両者の差が求められ、補
正後の零相電流信号5hとして出力される。
In the above structure, the zero-phase current signal of the feeder in the state where insulation deterioration is not generated by the write command signal 9a is written in the storage unit 50, and then the zero-phase current signal 5f of the feeder before correction and the storage unit. The difference calculation unit 51 obtains the difference between the zero-phase current signal of the feeder and the zero-phase current signal of the feeder read out from the circuit 50, and outputs the corrected zero-phase current signal 5h.

【0051】このようにして各フィーダの零相電流が補
正されることにより、絶縁劣化が生じたフィーダの特定
が演算部19において正確に行われることとなる。なお
この補正部は演算部19内に設けてもよいし、また複数
の増幅器17の各々にこの補正部を含めて構成するよう
にしてもよい。
By correcting the zero-phase current of each feeder in this way, the feeder having the insulation deterioration can be accurately specified in the arithmetic unit 19. The correction unit may be provided in the calculation unit 19, or each of the plurality of amplifiers 17 may include the correction unit.

【0052】[0052]

【効果】以上に説明したように、本発明によればGPT
を使用しなくても電気設備の絶縁劣化の診断が可能とな
り、しかもフィーダ単位での絶縁劣化部位の判定が可能
になる。
As described above, according to the present invention, the GPT
It is possible to diagnose the insulation deterioration of electrical equipment without using, and it is also possible to determine the insulation deterioration part for each feeder.

【0053】更にノイズや高調波の影響を受けにくいの
で安定した絶縁劣化の診断を行うことが可能となる。従
って安価で信頼性が高く、かつ電気設備の保全を容易に
することが可能な絶縁劣化診断装置を構築することが可
能となる。
Furthermore, since it is less susceptible to noise and harmonics, it is possible to perform stable insulation deterioration diagnosis. Therefore, it is possible to construct an insulation deterioration diagnosing device that is inexpensive, highly reliable, and that facilitates maintenance of electrical equipment.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る絶縁劣化診断装置の一実施例を示
す構成図である。
FIG. 1 is a configuration diagram showing an embodiment of an insulation deterioration diagnosing device according to the present invention.

【図2】電気設備の零相電流の時間変化の一例を示す特
性図である。
FIG. 2 is a characteristic diagram showing an example of a temporal change of zero-phase current of electric equipment.

【図3】図1における各フィーダの零相電流ベクトル
が、絶縁劣化の有無により変化する状態を示した説明図
である。
FIG. 3 is an explanatory diagram showing a state in which the zero-phase current vector of each feeder in FIG. 1 changes depending on the presence or absence of insulation deterioration.

【図4】図1に示した電気設備における各フィーダにお
いて零相電流が発生する原理を示した説明図である。
FIG. 4 is an explanatory diagram showing a principle that a zero-phase current is generated in each feeder in the electric equipment shown in FIG.

【図5】図1に示した電気設備において非絶縁劣化時の
フィーダの零相電流による補正を行った場合の零相電流
の変化の状態を示す説明図である。
FIG. 5 is an explanatory diagram showing a change state of the zero-phase current when the electric equipment shown in FIG. 1 is corrected by the zero-phase current of the feeder at the time of non-insulated deterioration.

【図6】非絶縁劣化時の零相電流を用いて各フィーダの
計測時における零相電流の補正を行うための補正部の一
実施例の構成を示す回路図である。
FIG. 6 is a circuit diagram showing a configuration of an embodiment of a correction unit for correcting the zero-phase current at the time of measuring each feeder by using the zero-phase current at the time of non-insulation deterioration.

【符号の説明】[Explanation of symbols]

1 電気設備 2 処理装置 10 受電部 11 母線 12 フィーダ 13 遮断器 14 零相電流変流器 15 負荷 17 増幅器 18 バンドパスフィルタ 19 演算部 20 表示部 50 記憶部 51 差分演算部 1 Electrical Equipment 2 Processor 10 Power Receiver 11 Bus 12 Feeder 13 Circuit Breaker 14 Zero-Phase Current Transformer 15 Load 17 Amplifier 18 Bandpass Filter 19 Calculation Section 20 Display Section 50 Storage Section 51 Difference Calculation Section

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 電気設備における複数の配電フィーダの
零相電流をそれぞれ個別に計測する複数の零相変流器
と、 前記複数の零相変流器から出力されたれ零相電流信号を
取り込み、これらの複数の零相電流信号に基づいて絶縁
劣化が生じた配電フィーダを特定し、かつ該特定された
配電フィーダの絶縁劣化程度の判定を行う処理装置とを
有することを特徴とする絶縁劣化診断装置。
1. A plurality of zero-phase current transformers for individually measuring the zero-phase currents of a plurality of distribution feeders in an electric facility, and fetching a leaked zero-phase current signal output from the plurality of zero-phase current transformers, An insulation deterioration diagnosis, comprising: a processing device that specifies a distribution feeder having insulation deterioration based on the plurality of zero-phase current signals, and that determines a degree of insulation deterioration of the specified distribution feeder. apparatus.
【請求項2】 前記処理装置は、前記複数の各零相電流
信号を所定のレベルに個別に増幅する複数の増幅手段
と、 前記複数の各増幅手段の出力信号である零相電流の基本
波成分を取り出す複数のバンドパスフィルタと、 該複数のバンドパスフィルタの出力信号を取り込み、こ
れら複数のバンドパスフィルタの出力信号に基づいて絶
縁劣化が生じた配電フィーダの特定及びその絶縁劣化の
程度を判定する演算手段と、 該演算手段の演算出力に基づいて絶縁劣化が生じたフィ
ーダを示すデータ及びそのフィーダの絶縁劣化の程度を
表示する表示手段とを有することを特徴とする請求項1
に記載の絶縁劣化診断装置。
2. The processing device comprises a plurality of amplifying means for individually amplifying each of the plurality of zero-phase current signals to a predetermined level, and a fundamental wave of a zero-phase current which is an output signal of each of the plurality of amplifying means. A plurality of band-pass filters for extracting components, and output signals of the plurality of band-pass filters are taken in. Based on the output signals of the plurality of band-pass filters, the distribution feeder having insulation deterioration is identified and the degree of insulation deterioration is identified. 2. A calculation means for judging and a display means for displaying data indicating a feeder having insulation deterioration based on a calculation output of the calculation means and a degree of insulation deterioration of the feeder.
The insulation deterioration diagnosis device according to.
【請求項3】 前記増幅手段は、絶縁劣化していない状
態におけるフィーダの零相電流信号のレベルを記憶する
記憶部と、 現在の零相電流信号と前記記憶部から出力される非絶縁
劣化時の零相電流信号のレベル差を増幅する差動増幅器
とから構成されることを特徴とする請求項2に記載の絶
縁劣化診断装置。
3. The amplifying means stores a level of a zero-phase current signal of a feeder in a state where insulation is not deteriorated, a current zero-phase current signal, and a non-insulated deterioration time output from the storage unit. 3. The insulation deterioration diagnosing device according to claim 2, further comprising a differential amplifier that amplifies a level difference of the zero-phase current signal.
【請求項4】 前記演算手段は、絶縁劣化してない状態
におけるフィーダの零相電流信号のレベルを記憶する記
憶部を有し、各フィーダの現在の零相電流信号と前記記
憶部から出力される絶縁劣化していない状態における零
相電流信号との差を演算する機能を有することを特徴と
する請求項2に記載の絶縁劣化診断装置。
4. The calculation means has a storage unit for storing the level of the zero-phase current signal of the feeder in a state where insulation deterioration has not occurred, and the present zero-phase current signal of each feeder and the storage unit outputs the current zero-phase current signal. 3. The insulation deterioration diagnosis device according to claim 2, which has a function of calculating a difference from a zero-phase current signal in a state where insulation deterioration has not occurred.
【請求項5】 前記演算手段は、前記電気設備における
基準となる配電フィーダの零相電流ベクトルと他の配電
フィーダの零相電流ベクトルとの内積を求め、この内積
の符号に基づいて絶縁劣化が生じた配電フィーダの特定
を行うことを特徴とする請求項3または4のいずれかに
記載の絶縁劣化診断装置。
5. The calculation means obtains an inner product of a zero-phase current vector of a distribution feeder and a zero-phase current vector of another distribution feeder, which is a reference in the electrical equipment, and insulation deterioration is caused based on the sign of the inner product. The insulation deterioration diagnostic device according to claim 3, wherein the generated distribution feeder is specified.
【請求項6】 前記バンドパスフィルタのQが5以上で
あることを特徴とする請求項2乃至5のいずれかに記載
の絶縁劣化診断装置。
6. The insulation deterioration diagnosing device according to claim 2, wherein Q of the bandpass filter is 5 or more.
【請求項7】 前記零相変流器は、1次側に流れる2ミ
リアンペア程度の零相電流を計測できるように巻数を多
くしたことを特徴とする請求項1乃至6のいずれかに記
載の絶縁劣化診断装置。
7. The zero-phase current transformer has a large number of turns so that a zero-phase current of about 2 milliamperes flowing on the primary side can be measured. Insulation deterioration diagnostic device.
JP243093A 1993-01-11 1993-01-11 Insulation deterioration diagnosis device Expired - Lifetime JP2958594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP243093A JP2958594B2 (en) 1993-01-11 1993-01-11 Insulation deterioration diagnosis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP243093A JP2958594B2 (en) 1993-01-11 1993-01-11 Insulation deterioration diagnosis device

Publications (2)

Publication Number Publication Date
JPH06209518A true JPH06209518A (en) 1994-07-26
JP2958594B2 JP2958594B2 (en) 1999-10-06

Family

ID=11529052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP243093A Expired - Lifetime JP2958594B2 (en) 1993-01-11 1993-01-11 Insulation deterioration diagnosis device

Country Status (1)

Country Link
JP (1) JP2958594B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980069423A (en) * 1997-02-28 1998-10-26 이대원 Electrical Equipment Fault Diagnosis Device Using Frequency Characteristics and Its Method
WO2019198791A1 (en) * 2018-04-13 2019-10-17 日東工業株式会社 Distribution board
JP2019184480A (en) * 2018-04-13 2019-10-24 日東工業株式会社 Discharge detection structure and discharge detection system
JP2020080618A (en) * 2018-11-13 2020-05-28 日東工業株式会社 Discharge accident detection system
JP2020122669A (en) * 2019-01-29 2020-08-13 日東工業株式会社 Discharge event detection structure
KR102386390B1 (en) * 2022-02-28 2022-04-14 김학민 Electrical equipment for electrical shock protection and fire prevention of insulated electrical equipment

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980069423A (en) * 1997-02-28 1998-10-26 이대원 Electrical Equipment Fault Diagnosis Device Using Frequency Characteristics and Its Method
WO2019198791A1 (en) * 2018-04-13 2019-10-17 日東工業株式会社 Distribution board
JP2019184480A (en) * 2018-04-13 2019-10-24 日東工業株式会社 Discharge detection structure and discharge detection system
US11209499B2 (en) 2018-04-13 2021-12-28 Nitto Kogyo Corporation Distribution board
JP2020080618A (en) * 2018-11-13 2020-05-28 日東工業株式会社 Discharge accident detection system
JP2020122669A (en) * 2019-01-29 2020-08-13 日東工業株式会社 Discharge event detection structure
KR102386390B1 (en) * 2022-02-28 2022-04-14 김학민 Electrical equipment for electrical shock protection and fire prevention of insulated electrical equipment

Also Published As

Publication number Publication date
JP2958594B2 (en) 1999-10-06

Similar Documents

Publication Publication Date Title
EP2730023B1 (en) System for detecting internal winding faults of a synchronous generator, computer program product and method
EP1020729B1 (en) Fault detection for power lines
EP2686691B1 (en) A method for detecting earth faults
US8680872B2 (en) Identification of false positives in high impedance fault detection
US7180300B2 (en) System and method of locating ground fault in electrical power distribution system
US8300369B2 (en) System and method for polyphase ground-fault circuit-interrupters
US5602709A (en) High impedance fault detector
JP2015513881A (en) Method and apparatus for protecting a power transformer from large electromagnetic fluctuations
US20180159310A1 (en) Arc fault circuit interrupter apparatus and methods using symmetrical component harmonic detection
JP2958594B2 (en) Insulation deterioration diagnosis device
JP2912990B2 (en) Insulation diagnostic equipment
Oliveira et al. Application of Park's power components to the differential protection of three-phase transformers
JP2002311061A (en) Processor for electric power
JP4121979B2 (en) Non-grounded circuit insulation monitoring method and apparatus
JP5679480B2 (en) Indirect AC megger measuring instrument and insulation resistance measuring method
JP2010130811A (en) Fine ground fault detector and method of detecting fine ground fault
JPH04220573A (en) Low-voltage system line wire insulation monitoring method
JPH07245869A (en) Insulation deterioration detection device for electric equipment
JP4258386B2 (en) Insulation diagnostic device
JPH0643196A (en) Insulation monitor device in low voltage electric circuit
JPH04212076A (en) Method and device for abnormal diagnostic method of electrical equipment
JPH04368415A (en) Method of detecting insulation deterioration of power system and devices for detecting, discriminating, and monitoring insulation deterioration, grounding generator, and resonance frequency measuring system
JPH0413978A (en) Method and apparatus for measuring current and life diagnosing apparatus for breaking part of switch gear
JPH0894698A (en) Method and system for standardizing intermittent arc ground fault section in high voltage power distribution system with non-grounded neutral point
JP2003161756A (en) Insulation diagnostic apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20070730

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20080730

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100730

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20110730

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20110730

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 14