JPH06207221A - Production of grain-oriented silicon steel sheet excellent in surface characteristic - Google Patents

Production of grain-oriented silicon steel sheet excellent in surface characteristic

Info

Publication number
JPH06207221A
JPH06207221A JP1707293A JP1707293A JPH06207221A JP H06207221 A JPH06207221 A JP H06207221A JP 1707293 A JP1707293 A JP 1707293A JP 1707293 A JP1707293 A JP 1707293A JP H06207221 A JPH06207221 A JP H06207221A
Authority
JP
Japan
Prior art keywords
slab
annealing
steel sheet
silicon steel
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1707293A
Other languages
Japanese (ja)
Inventor
Toshito Takamiya
俊人 高宮
Yoshihiro Ozaki
芳宏 尾崎
Mineo Muraki
峰男 村木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1707293A priority Critical patent/JPH06207221A/en
Publication of JPH06207221A publication Critical patent/JPH06207221A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a grain-oriented silicon steel sheet excellent in surface characteristics by applying a C-containing material or the mixture of this material and a specific carburizing accelerator to the surface of a silicon-containing steel slab prior to hot rolling at the time of producing a silicon steel sheet by subjecting a silicon-containing steel slab to hot rolling, cold rolling, and annealing. CONSTITUTION:A C-containing material, such as graphite powder and petroleum coke powder, is applied to the surface of a high silicon steel slab, or the mixture prepared by further mixing, as carburizing accelerator, the powder of alkali metal carbonate or alkaline earth metal carbonate, such as Na2CO3 and CaCO3, with the C-containing material is applied to the surface of the steel slab. Then the slab is heated up to a hot rolling temp. Since the coarsening of crystalline grains due to decarburization by heating is prevented in the steel slab, the slab is formed to the final sheet thickness by means of subsequent hot rolling and cold rolling and successively subjected to decarburizing and primary recrystallization annealing, and, after the application of a separation agent at annealing, composed essentially of MgO, finish annealing is performed. Thus, the grain-oriented silicon steel sheet free from cracking at the time of rolling, due to the coarsening of crystalline grains, can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、方向性けい素鋼板の
製造方法に関し、特に含けい素鋼スラブの加熱方法に工
夫を加えることにより、表面性状に優れかつ優れた磁気
特性を有する方向性けい素鋼板を得ようとするものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain-oriented silicon steel sheet, and in particular, a grain-oriented material having excellent surface properties and excellent magnetic properties by adding a device to a method for heating a silicon-steel-containing slab. It is intended to obtain a silicon steel sheet.

【0002】[0002]

【従来の技術】方向性けい素鋼板は、主に変圧器や発電
機の鉄心材料として使用される。近年、省エネルギーに
対する強い要請を反映して、磁気特性の優れた方向性け
い素鋼板の安価な供給が望まれている。特に磁束密度が
高く鉄損が低い鋼板を安定して得ることが望まれ、さら
に最近では、長時間の使用に耐え得る信頼性の確保が重
要な問題となってきた。
2. Description of the Related Art Grain-oriented silicon steel sheets are mainly used as core materials for transformers and generators. In recent years, reflecting the strong demand for energy saving, inexpensive supply of grain-oriented silicon steel sheets having excellent magnetic properties has been desired. In particular, it is desired to stably obtain a steel sheet having a high magnetic flux density and a low iron loss, and more recently, it has become an important issue to secure reliability that can withstand long-term use.

【0003】磁気特性の優れた方向性電磁鋼板を得るに
は、基本的に{110}〈001〉方位、いわゆるゴス
方位に高度に集積した二次再結晶組織を得ることが必要
である。上述のゴス方位二次再結晶組織を発達させるた
めには、粒界移動を適度に抑制する分散析出相、いわゆ
るインヒビターの存在が必要であり、かようなインヒビ
ターとしてMnSe, MnS, AlNなどが一般的に利用されてい
る。インヒビターの作用を十分に発揮させるためには、
熱延に先立つスラブ加熱時にMnSe, MnS, AlNなどを十分
に解離固溶させた後、適切な条件で熱間圧延を施し、冷
却を行なって、インヒビターを微細かつ均一に分散析出
させることが非常に重要であり、かかるMnSe, MnS, AlN
等の固溶解離のためには高いスラブ加熱温度が必要であ
るとされている。
In order to obtain a grain-oriented electrical steel sheet having excellent magnetic properties, it is basically necessary to obtain a secondary recrystallized structure highly integrated in the {110} <001> orientation, the so-called Goss orientation. In order to develop the above Goss orientation secondary recrystallized structure, the presence of a so-called inhibitor, which is a dispersed precipitation phase that moderately suppresses grain boundary migration, is required.MnSe, MnS, AlN, etc. are generally used as such inhibitors. Is being used for In order to fully exert the action of the inhibitor,
It is very important to dissociate MnSe, MnS, AlN, etc. sufficiently during slab heating prior to hot rolling, and then hot-roll under appropriate conditions and cool to disperse and precipitate the inhibitor finely and uniformly. It is important to take such MnSe, MnS, AlN
It is said that a high slab heating temperature is required for solid dissolution separation of the above.

【0004】そのため従来から、スラブ加熱温度を高く
確保するために、数多くの改善努力が払われている。最
近、上記の高温スラブ加熱が可能な方法として、誘導加
熱方式による加熱方法が開発された。かかる誘導加熱方
式を利用した加熱炉は、十分に高い温度まで高精度で加
熱できるため、磁気特性の改善にとって極めて有効であ
ることが確認されている。
Therefore, many improvement efforts have been conventionally made in order to secure a high slab heating temperature. Recently, a heating method using an induction heating method has been developed as a method capable of heating the high temperature slab. It has been confirmed that a heating furnace utilizing such an induction heating system can be heated to a sufficiently high temperature with high accuracy and is extremely effective for improving magnetic characteristics.

【0005】その一方でスラブの高温加熱に伴い、いく
つかの不都合が生じてきた。特に高温加熱による表面性
状の悪化は問題であり、かかる表面欠陥を防止する目的
でいくつかの技術が提案されている。例えば特開昭60−
145318号公報には、高温加熱時にはスラブ表面に大量の
ノロが生成し、加熱炉の操業性を損なうばかりではなく
表面疵発生をもたらすことから、それを防止する方法と
して、スラブ表面温度が1250℃以上において、加熱雰囲
気中のO2濃度を1%以下にすること、またガス燃焼型炉
での加熱温度の上限を1230℃にすべきことが提案されて
いる。
On the other hand, with the high temperature heating of the slab, some disadvantages have occurred. In particular, the deterioration of the surface properties due to high temperature heating is a problem, and several techniques have been proposed for the purpose of preventing such surface defects. For example, JP-A-60-
In 145318 publication, a large amount of slag is generated on the surface of the slab during high temperature heating, which not only impairs the operability of the heating furnace but also causes surface defects, so as a method of preventing it, the slab surface temperature is 1250 ° C. It has been proposed above that the O 2 concentration in the heating atmosphere should be 1% or less, and that the upper limit of the heating temperature in the gas combustion furnace should be 1230 ° C.

【0006】また特開昭61−69927 号公報では、ノロの
大量発生による炉壁溶損や歩留り低下、高温加熱中のス
ラブ表面の粒界酸化によるホットコイルの耳荒れ、スラ
ブ表面の脱炭に起因する最終製品の磁気特性劣化、さら
にはスラブ柱状晶の粗大化などの防止を目的として、電
気的加熱炉での加熱は、温度を1310〜1350℃、雰囲気は
非酸化性に限定すること、そして、燃料燃焼炉での均熱
温度の上限は1250℃にすべきことが提案されている。
Further, in Japanese Patent Laid-Open No. 61-69927, melting of the furnace wall and reduction of yield due to generation of large amount of slag, roughening of hot coil due to grain boundary oxidation of slab surface during high temperature heating, decarburization of slab surface For the purpose of preventing the deterioration of the magnetic properties of the final product due to it, and further the coarsening of the slab columnar crystals, the heating in the electric heating furnace, the temperature is 1310 ~ 1350 ℃, the atmosphere is limited to non-oxidizing, It has been proposed that the upper limit of the soaking temperature in the fuel combustion furnace should be 1250 ° C.

【0007】さらに特開昭61−69924 号公報では、誘導
加熱方式でスラブを高温加熱した場合、スラブ表面温度
が1235℃を超えると溶損が始まるので、1235℃以上では
O2濃度を10%以下に制御すべきであることを提案してい
る。そしてその実施例には、加熱温度:1350℃でO2
度:10%以下および加熱温度:1370℃でO2濃度:1%以
下の例が示されている。
Further, in Japanese Patent Laid-Open No. 61-69924, when the slab is heated at a high temperature by the induction heating method, melting loss starts when the slab surface temperature exceeds 1235 ° C.
It is proposed that the O 2 concentration should be controlled below 10%. In the examples, examples are shown in which the heating temperature is 1350 ° C. and the O 2 concentration is 10% or less and the heating temperature is 1370 ° C. and the O 2 concentration is 1% or less.

【0008】また、さらに特開昭62−130219号では、歩
留まり低下や加熱炉操業に重大な支障を来す溶融状態の
スラグの発生を防止するために、雰囲気中のO2濃度を次
式 O2 (%) =36.4−5.0 lnT (℃) 以下にすることを提案している。そしてその具体的な値
としては1300℃で0.36%以下、1400℃で0.18%以下の範
囲が示されている。しかし、この明細書の技術はO2濃度
を温度に応じて下げれば溶融スラグが発生しにくくなる
という熱力学的常識を単純に数式化したもので、それ以
上の知見をなんら与えるものではない。
Further, in JP-A-62-130219, in order to prevent the generation of molten slag, which causes a decrease in yield and seriously hinders the operation of a heating furnace, the O 2 concentration in the atmosphere is changed to the following formula O 2 (%) = 36.4-5.0 lnT (° C) or less is proposed. Further, as specific values, a range of 0.36% or less at 1300 ° C and 0.18% or less at 1400 ° C is shown. However, the technique of this specification is simply a mathematical formula of thermodynamic common sense that molten slag is less likely to be generated when the O 2 concentration is lowered according to temperature, and does not give any further knowledge.

【0009】[0009]

【発明が解決しようとする課題】上述したように、従来
から誘導加熱炉等を利用した高温加熱技術の改良につい
て種々の検討が続けられているが、従来提案されている
方法に共通する点は、高温加熱に伴う大量のノロ発生を
いかに防止するかを眼目とするところにある。確かに高
温加熱に伴う大量のノロ発生は、歩留まりや操業能率の
低下を来すので好ましくないことではあるが、加熱方式
を誘導加熱に変更させることによって新たに生じた問題
ではない。単に高温にすることにより酸化の反応速度が
速くなったため、ノロの発生量が増加したに過ぎない。
したがってノロを防止するためには、O2濃度を下げた
り、加熱温度の上限を下げたりすることが有効であるこ
とは容易に推定できる。
As described above, various studies have been continued on the improvement of the high temperature heating technique using an induction heating furnace or the like, but the common points to the conventionally proposed methods are as follows. The purpose is to prevent the generation of a large amount of slag due to high temperature heating. Certainly, the generation of a large amount of slag due to the high temperature heating is not preferable because it lowers the yield and the operation efficiency, but it is not a new problem caused by changing the heating method to induction heating. Since the reaction rate of oxidation was increased simply by raising the temperature, the amount of slag produced increased only.
Therefore, in order to prevent slag, it can be easily estimated that lowering the O 2 concentration or lowering the upper limit of the heating temperature is effective.

【0010】ところで最近になって、熱延板表面に発生
する1mm程度の疵が問題になってきている。この問題に
対して、上述したいずれの技術を適用しても、疵の抑制
にはほとんど寄与しなかった。これらの疵は、スラブ加
熱の高温化に伴い顕在化したものであるが、冷間圧延に
よって伸び、製品板表面では20mm程度になる。ここに近
年、表面外観に対する要求がより厳格になっていて、こ
の程度の疵でも製品不良とされ、出荷が困難となってい
る。
By the way, recently, a flaw of about 1 mm generated on the surface of a hot rolled sheet has become a problem. Application of any of the above-mentioned techniques to this problem hardly contributed to the suppression of defects. These flaws became apparent as the slab heating temperature increased, but they were stretched by cold rolling and became about 20 mm on the surface of the product sheet. In recent years, the demands on the surface appearance have become more strict, and even a flaw of this degree is regarded as a defective product, which makes shipment difficult.

【0011】この発明は、かかるスラブの高温加熱に伴
う表面欠陥の発生を効果的に防止でき、しかも安定して
良好な磁気特性が得られる、表面性状の優れた方向性け
い素鋼板の製造方法を提案することを目的とする。
The present invention is a method for producing a grain-oriented silicon steel sheet having excellent surface properties, which can effectively prevent the generation of surface defects due to high temperature heating of the slab, and can stably obtain good magnetic characteristics. The purpose is to propose.

【0012】[0012]

【課題を解決するための手段】すなわちこの発明は、含
けい素鋼スラブを加熱した後、熱間圧延を施し、次いで
1回又は中間焼鈍をはさむ2回の冷間圧延を施して最終
板厚とした後、脱炭・一次再結晶焼鈍を施し、次いで鋼
板表面に焼鈍分離剤を塗布してから仕上焼鈍を施す一連
の工程による方向性けい素鋼板の製造方法において、上
記熱間圧延に先立つスラブ加熱に際し、あらかじめスラ
ブの表面にカーボンを含有する物質を塗布し、しかる後
に加熱することを特徴とする表面性状の優れた方向性け
い素鋼板の製造方法(第一発明)である。
Means for Solving the Problems That is, according to the present invention, after heating a silicon-containing steel slab, it is hot-rolled and then cold-rolled once or twice with intermediate annealing to obtain a final plate thickness. In the method for producing a grain-oriented silicon steel sheet by a series of steps of performing decarburization / primary recrystallization annealing, then applying an annealing separator on the steel sheet surface and then performing finish annealing, prior to the hot rolling. In the slab heating, a carbon-containing substance is applied on the surface of the slab in advance, and then the slab is heated, which is a method for producing a grain-oriented silicon steel sheet having excellent surface properties (first invention).

【0013】また、この発明は、含けい素鋼スラブを加
熱した後、熱間圧延を施し、次いで1回又は中間焼鈍を
はさむ2回の冷間圧延を施して最終板厚とした後、脱炭
・一次再結晶焼鈍を施し、次いで鋼板表面に焼鈍分離剤
を塗布してから仕上焼鈍を施す一連の工程による方向性
けい素鋼板の製造方法において、上記熱間圧延に先立つ
スラブ加熱に際し、あらかじめスラブの表面にカーボン
を含有する物質並びにアルカリ金属又はアルカリ土類金
属の炭酸塩を塗布し、しかる後に加熱することを特徴と
する表面性状の優れた方向性けい素鋼板の製造方法(第
二発明)である。
Further, according to the present invention, after heating the silicon steel slab, it is hot-rolled and then cold-rolled once or twice with intermediate annealing to obtain the final thickness, and then de-rolled. In the method for producing a grain-oriented silicon steel sheet by a series of steps of performing charcoal / primary recrystallization annealing, then applying an annealing separator to the steel sheet surface and then applying finish annealing, in advance of the slab heating prior to the hot rolling, A method for producing a grain-oriented silicon steel sheet having an excellent surface property, which comprises applying a carbon-containing substance and a carbonate of an alkali metal or an alkaline earth metal on the surface of a slab, and then heating. ).

【0014】以下この発明を得るに至った発明者らの詳
細な調査及び実験結果について説明する。C:0.07wt
%、Si:3.3 wt%、Mn:0.07wt%、Se:0.02wt%を含有
し、残部実質的にFeの組成になる鋼スラブを、酸素濃度
1%の雰囲気中で1400℃以上の超高温に加熱した後、熱
間粗圧延、次いで仕上圧延を施して板厚2.0mm の熱延板
とした。ここにおいて、加熱後のスラブ表面、粗圧延シ
ートバーの表面及び熱延板の表面を詳細に観察した。そ
の結果、熱延板における表面割れ発生部位と表相組織と
には密接な関係があるたことがわかった。すなわち、熱
間圧延に先だって行われるスラブ加熱において、表面に
生じた脱炭層部分で結晶粒が粗大化し、仕上圧延での割
れの起点となっていることが判明したのである。
The detailed investigations and experimental results by the inventors who arrived at the present invention will be described below. C: 0.07wt
%, Si: 3.3 wt%, Mn: 0.07 wt%, Se: 0.02 wt%, the balance is a steel slab with a substantial Fe composition, at an ultrahigh temperature of 1400 ° C or higher in an atmosphere with an oxygen concentration of 1%. After being heated to 0, it was subjected to hot rough rolling and then finish rolling to obtain a hot rolled sheet having a sheet thickness of 2.0 mm. Here, the surface of the slab after heating, the surface of the roughly rolled sheet bar, and the surface of the hot rolled sheet were observed in detail. As a result, it was found that there was a close relationship between the surface crack initiation site and the surface phase structure in the hot rolled sheet. That is, it was found that in the slab heating performed prior to the hot rolling, the crystal grains coarsened in the decarburized layer portion generated on the surface, which became the starting point of cracks in the finish rolling.

【0015】そこでスラブ加熱における表面脱炭を防止
すべく、スラブ表面にあらかじめカーボン(平均粒径5
mmの粉末)及びCaCO3 をそれぞれ90wt%、10wt%の割合
で混合したのち、この混合粉を水に分散させてスプレー
で塗布量30g/m2で塗布した後、1440℃で30分間のスラブ
加熱を行ってみた。加熱後のスラブ組織を観察すると脱
炭は抑制され、さらにはより浸炭していることがわかっ
た。それに伴い、表層の組織の微細化も確保できた。図
1にかかるスラブ断面を金属組織写真で示す。
Therefore, in order to prevent surface decarburization during slab heating, carbon (average particle size 5
mm powder) and CaCO 3 in the proportions of 90 wt% and 10 wt% respectively, and then this mixed powder is dispersed in water and spray-applied at a coating amount of 30 g / m 2 and then a slab for 30 minutes at 1440 ° C. I tried heating. When the slab structure after heating was observed, it was found that decarburization was suppressed and further carburization was performed. Along with this, it was possible to secure the refinement of the surface structure. A slab cross section according to FIG. 1 is shown by a metallographic photograph.

【0016】次に、上述したようにスラブ表面にあらか
じめカーボン及びカーボンとCaCO3を塗布した後、スラ
ブ加熱し、その後は通常の手法に従い、熱間圧延を施し
て板厚2.0mm とし、次いで 950℃、1分間の熱延板焼鈍
を施したのち一次冷間圧延により板厚1.5mm とし、次い
で1050℃、1分間の中間焼鈍を挟んで二次冷間圧延によ
り最終板厚0.2mm とした。その後 840℃、2分の一次再
結晶焼鈍を施してから焼鈍分離剤を塗布して1200℃、4
時間の二次再結晶焼鈍を行なって得た最終製品板を得
た。この最終製品板の表面外観、磁気特性を調査した。
また比較のためにスラブ表面にカーボン及びCaCO3 を塗
布しない例についても調べてみた。これらの結果を表1
に示す。
Next, as described above, carbon and carbon and CaCO 3 are applied to the surface of the slab in advance, the slab is heated, and then hot rolling is performed to a plate thickness of 2.0 mm according to a usual method, and then 950 After hot-rolled sheet annealing at 1 ° C for 1 minute, primary cold rolling was performed to a sheet thickness of 1.5 mm, and then intermediate annealing at 1050 ° C for 1 minute was sandwiched to obtain a final sheet thickness of 0.2 mm. After that, 840 ℃, 2 minutes primary recrystallization annealing, and then apply annealing separator,
A final product plate obtained by performing secondary recrystallization annealing for a time was obtained. The surface appearance and magnetic properties of this final product plate were investigated.
For comparison, we also examined the case where carbon and CaCO 3 were not applied to the slab surface. These results are shown in Table 1.
Shown in.

【0017】[0017]

【表1】 [Table 1]

【0018】図1から、カーボン及びCaCO3 を塗布する
ことにより、塗布しない比較材に比し、表面疵が減少し
かつ磁気特性は同等以上のものが得られることがわかっ
た。また、浸炭促進剤は必ずしも必要ではないが、促進
剤を塗布すると必要なカーボンが少なくてすむことから
わかった。また、浸炭促進剤をCaCO3 からNa2CO3やK2CO
3 やBaCO3 やSrCO3 やLi2CO3に変えて同様の実験を行な
ったところ、これらのいずれを用いてもスラブ表面は浸
炭し、スラブ加熱時の粒成長を抑制することができた。
From FIG. 1, it was found that by coating carbon and CaCO 3 , surface defects were reduced and magnetic characteristics were equal to or higher than those of the comparative material which was not coated. Further, although it is not always necessary to use a carburizing accelerator, it was found that the coating of the accelerator requires less carbon. In addition, the carburizing accelerator is changed from CaCO 3 to Na 2 CO 3 or K 2 CO.
Similar experiments were conducted using 3 or BaCO 3 , SrCO 3 or Li 2 CO 3 , and any of these could carburize the slab surface and suppress grain growth during slab heating.

【0019】[0019]

【作用】この発明の出発材である含けい素鋼としては、
従来公知の成分組成のもののいずれもが適合するが、代
表組成を掲げると次のとおりである。 C:0.01〜0.10wt% Cは、熱間圧延、冷間圧延中の組織の均一微細化のみな
らず、ゴス方位結晶粒の発達に有用な成分であり、少な
くとも0.01wt%の添加が好ましい。しかしながら0.10wt
%を超えて含有させるとかえってゴス方位に乱れが生じ
るので上限は0.10wt%程度が望ましい。 Si:2.0 〜4.5 wt% Siは、鋼板の比抵抗を高め鉄損の低減に有効に寄与する
が、4.5 wt%を上回ると冷延性が損なわれ、一方2.0 wt
%に満たないと比抵抗が低下するだけでなく、二次再結
晶・純化のために行われる、最終高温焼鈍中にα−γ変
態によって結晶方位のランダム化を生じ、十分な鉄損改
善効果が得られないので、Si量は2.0 〜4.5 wt%とする
のが好ましい。 Mn:0.02〜0.12wt% Mnは、熱間ぜい化を防止するため少なくとも0.02wt%程
度を必要とするが、あまりに多過ぎると磁気特性を劣化
させるので上限は0.12wt%程度に定めるのが好ましい。
The silicon-containing steel which is the starting material of the present invention,
Although any of the conventionally known component compositions are suitable, the representative compositions are as follows. C: 0.01 to 0.10 wt% C is a component useful not only for making the structure uniform and fine during hot rolling and cold rolling but also for developing Goss-oriented crystal grains, and addition of at least 0.01 wt% is preferable. However 0.10 wt
%, The Goss orientation is rather disordered, so the upper limit is preferably about 0.10 wt%. Si: 2.0-4.5 wt% Si increases the resistivity of the steel sheet and effectively contributes to the reduction of iron loss, but if it exceeds 4.5 wt%, the cold ductility is impaired, while 2.0 wt%
If the content is less than%, not only the specific resistance decreases, but also the crystal orientation is randomized by α-γ transformation during the final high temperature annealing performed for secondary recrystallization and purification, and the iron loss improving effect is sufficient. Therefore, the Si content is preferably 2.0 to 4.5 wt%. Mn: 0.02 to 0.12wt% Mn requires at least about 0.02wt% to prevent hot embrittlement, but if it is too much, the magnetic properties deteriorate, so the upper limit should be set to about 0.12wt%. preferable.

【0020】インヒビターとしては、いわゆるMnS, MnS
e 系とAlN 系とがある。MnS, MnSe系の場合は、S、Se
の1種又は2種:0.005 〜0.06wt% S、Seはいずれも、方向性けい素鋼板の二次再結晶を制
御するインヒビターとして有用な成分である。かかる抑
制力確保の観点からは、少なくとも0.005 wt%程度を必
要とするが、0.06wt%を超えるとその効果が損なわれる
ので、その下限、上限はそれぞれ0.005 wt%、0.06wt%
程度とするのが好ましい。
As the inhibitor, so-called MnS, MnS
There are e type and AlN type. In case of MnS, MnSe system, S, Se
1 or 2 of the above: 0.005 to 0.06 wt% S and Se are both useful components as inhibitors for controlling the secondary recrystallization of grain-oriented silicon steel sheets. From the viewpoint of securing such suppression power, at least about 0.005 wt% is required, but if it exceeds 0.06 wt%, its effect will be impaired, so the lower and upper limits are 0.005 wt% and 0.06 wt%, respectively.
It is preferably about the same.

【0021】AlN 系の場合は、 Al:0.005 〜0.10wt%、N:0.004 〜0.015 wt% Al及びNは、上記したMnS, MnSe 系の場合と同様に方向
性けい素鋼板の二次再結晶を制御するインヒビターとし
て有用な成分である。かかる抑制力確保の観点からは、
少なくともAl:0.005wt %、N:0.004 wt%程度を必要
とするが、Al:0.10wt%、N:0.015 wt%を超えるとそ
の効果が損なわれるので、その下限、上限はAl:0.005
〜0.10wt%、N:0.004 〜0.015 wt%程度とするのが好
ましい。ここに上記したMnS, MnSe 系およびAlN 系はそ
れぞれ併用が可能である。
In the case of AlN system, Al: 0.005 to 0.10 wt%, N: 0.004 to 0.015 wt% Al and N are the secondary recrystallisation of grain-oriented silicon steel sheets as in the case of MnS and MnSe systems described above. It is a useful component as an inhibitor that regulates. From the viewpoint of securing such restraint power,
At least Al: 0.005 wt% and N: 0.004 wt% are required, but if Al: 0.10 wt% and N: 0.015 wt% are exceeded, the effect will be impaired, so the lower and upper limits are Al: 0.005.
.About.0.10 wt% and N: 0.004 to 0.015 wt% are preferable. The above-mentioned MnS, MnSe and AlN systems can be used together.

【0022】インヒビター成分としては上記したS,S
e, Alの他、Cu, Sn, Cr, Ge, Sb, Mo, Te, BiおよびP
なども有利に適合するので、それぞれ少量を併せて含有
することもできる。ここに上記成分の好適添加範囲はそ
れぞれ、Cu, Sn, Cr:0.01〜0.15wt%、Ge, Sb, Mo, T
e, Bi:0.005 〜0.1 wt%、P:0.01〜0.2 wt%であ
り、これらの各インヒビター成分についても、単独使用
および複合使用のいずれもが可能である。
As the inhibitor component, S and S described above are used.
e, Al, Cu, Sn, Cr, Ge, Sb, Mo, Te, Bi and P
Etc. are advantageously suited, so that a small amount can be contained together. The preferred addition ranges of the above components are Cu, Sn, Cr: 0.01 to 0.15 wt%, Ge, Sb, Mo, T, respectively.
e, Bi: 0.005 to 0.1 wt%, P: 0.01 to 0.2 wt%, and each of these inhibitor components can be used alone or in combination.

【0023】なおスラブは、連続鋳造されたもの、もし
くはインゴットより分塊されたものを対象とするが、連
続鋳造されたのちに、分塊再圧されたスラブも対象に含
まれることはいうまでもない。
The slab is intended to be continuously cast, or slab crushed from an ingot, but it goes without saying that slab re-pressed in lump after continuous casting is also included in the target. Nor.

【0024】この発明では、スラブ加熱に先立って、ス
ラブ表面にカーボンもしくは、カーボン並びにSrCO3, L
i2CO3, K2CO3, CaCO3 ,Na2CO3及びBaCO3 のうちから選
ばれた1種又は2種以上を塗布することが肝要である。
これらの塗布により、スラブ表面が加熱中に脱炭するこ
とが抑制され、さらには積極的に表面から浸炭する。こ
れらにより表面割れの発生が防止でき、ひいては表面疵
の発生が防止できる。
In the present invention, prior to heating the slab, carbon or carbon and SrCO 3 , L are added to the surface of the slab.
It is essential to apply one or more selected from i 2 CO 3 , K 2 CO 3 , CaCO 3 , Na 2 CO 3 and BaCO 3 .
These coatings suppress decarburization of the slab surface during heating, and further positively carburize the surface. These can prevent the occurrence of surface cracks, which in turn can prevent the occurrence of surface defects.

【0025】カーボン含有物質としては、黒鉛、カーボ
ンブラック、グラファイト、コークス、有機樹脂、石油
コークス、有機樹脂、木炭などが挙げられ、液状あるい
は粒径1μm 〜0.5mm 程度の粉末状のものが好適である
が、塊状のものであってもよい。
Examples of the carbon-containing substance include graphite, carbon black, graphite, coke, organic resin, petroleum coke, organic resin, and charcoal, and liquid or powdery particles having a particle size of about 1 μm to 0.5 mm are preferable. However, it may be a lump.

【0026】また、カーボン含有物質のみを塗布する第
一発明では、カーボンと鋼の反応速度が遅く、系外にカ
ーボンが失われる量がや多くなる。したがって第2発明
では、カーボンに加え、浸炭促進剤としてアルカリ金属
又はアルカリ土類金属の炭酸塩を塗布する。炭酸塩、な
かでもCaCO3 ,K2CO3, Li2CO3, SrCO3, Na2CO3及びBaCO
3 のうちから選ばれた1種又は2種以上が好適である。
CaCO3 ,K2CO3, Li2CO 3, SrCO3, Na2CO3及びBaCO3 は、
いずれもカーボンが鋼と反応するとき触媒作用があり、
これらを塗布することにより、浸炭が促進される。なお
これら以外の炭酸塩は、あまり反応を促進させないもし
くは高価という不都合がある。
Further, the first application of only the carbon-containing substance
In one invention, the reaction rate between carbon and steel is slow, and it is
The amount of carbon lost is a little higher. Therefore, the second invention
Then, in addition to carbon, alkali metal as a carburizing accelerator
Alternatively, apply an alkaline earth metal carbonate. Carbonate
But CaCO3, K2CO3, Li2CO3, SrCO3, Na2CO3And BaCO
3One or two or more selected from the above are preferable.
CaCO3, K2CO3, Li2CO 3, SrCO3, Na2CO3And BaCO3Is
Both have catalytic action when carbon reacts with steel,
By applying these, carburization is promoted. Note that
Carbonates other than these do not accelerate the reaction too much.
However, it is expensive.

【0027】カーボンの塗布量は、鋼板表面あたり10〜
1000g/m2程度とするのが好ましく、また炭酸塩の塗布量
は、鋼板表面あたり1〜100g/m2 程度とするのが望まし
い。上記したカーボン並びにアルカリ金属又はアルカリ
土類金属の炭酸塩のうちから選ばれた1種又は2種以上
の塗布を混合して行う場合に、その混合割合は、上述し
た塗布量を満足するような割合にすればよく、具体的に
は、1 〜20wt%程度とするのが好ましい。
The coating amount of carbon is 10 to 10 per steel plate surface.
The amount of carbonate is preferably about 1000 g / m 2, and the amount of carbonate applied is preferably about 1 to 100 g / m 2 per steel plate surface. When one or more coating materials selected from the above-mentioned carbon and carbonates of alkali metals or alkaline earth metals are mixed and applied, the mixing ratio is such that the coating amount described above is satisfied. The ratio may be set, and specifically, it is preferably about 1 to 20 wt%.

【0028】また具体的な塗布方法としては、スプレー
による塗布、ロールによる塗布法などがあり、カーボン
並びにCaCO3 ,NaCO3 及びBaCO3 が粉末状である場合
に、分散媒としては水、アルコール等がある。
Specific coating methods include spray coating and roll coating. When carbon, CaCO 3 , NaCO 3 and BaCO 3 are in powder form, the dispersion medium is water, alcohol or the like. There is.

【0029】カーボンと浸炭促進剤との塗布時期は、加
熱のために誘導加熱炉へスラブを装入する前である。ま
た、ガス炉を経てから、誘導加熱炉にて加熱する場合に
は、ガス炉への装入前にカーボンと浸炭促進剤とを塗布
することが望ましいが、誘導加熱炉装入前でも構わな
い。また、ガス炉装入前に塗布した場合に、ガス炉内で
十分浸炭が行われれば、不要となった残余のカーボンと
浸炭促進剤とを、誘導加熱炉装入前に高圧水等を用いて
除去することもできる。
The application time of the carbon and the carburizing accelerator is before charging the slab into the induction heating furnace for heating. Further, when heating in an induction heating furnace after passing through a gas furnace, it is desirable to apply carbon and a carburizing accelerator before charging into the gas furnace, but it may be before charging into the induction heating furnace. . In addition, if it is applied before charging in a gas furnace, and if sufficient carburization is carried out in the gas furnace, the residual carbon that is no longer needed and the carburizing accelerator are used with high-pressure water before charging the induction heating furnace. It can also be removed.

【0030】塗布後のスラブを加熱した後は、熱間圧延
をし、必要に応じて熱延板焼鈍を行った後、1回ないし
は中間焼鈍を挟む2回の冷間圧延により最終板厚の冷延
板を得る。この最終冷延後に脱炭焼鈍を行った後、鋼板
表面に焼鈍分離剤を塗布してから、仕上焼鈍を行う。そ
の後絶縁コーティング好ましくは張力をも付与する絶縁
コーティングを施して製品とする。
After the coated slab is heated, it is hot-rolled, hot-rolled sheet is annealed if necessary, and then cold-rolled once or twice with an intermediate anneal to obtain the final sheet thickness. Obtain a cold rolled sheet. After the final cold rolling, decarburization annealing is performed, an annealing separator is applied to the surface of the steel sheet, and then finish annealing is performed. Thereafter, an insulating coating, preferably an insulating coating which also gives tension, is applied to obtain a product.

【0031】[0031]

【実施例】【Example】

実施例1 表2に示した成分の溶鋼から連続鋳造法によって幅1000
mm、厚み230mm のサイズのスラブを作製した。
Example 1 A width of 1000 was obtained by continuous casting from molten steel having the components shown in Table 2.
A slab having a size of mm and a thickness of 230 mm was produced.

【0032】[0032]

【表2】 [Table 2]

【0033】このスラブの表面にカーボン(木炭粒)と
Na2CO3との混合物(混合比1:9)をロールによる塗布
法により50g/m2で塗布した後、通常のガス加熱炉で1200
℃まで加熱し、30分保定した後、ただちに電磁誘導加熱
炉に装入して1420℃までを50分間で昇温し、1420℃で15
分間均熱した。次いで該スラブを誘導加熱炉から抽出し
て粗圧延に供し、厚み40mmのシートバーとした後、仕上
げタンデムミルで厚み3.0 mmの熱延鋼板とした。その後
この熱延鋼板を酸洗し、一次冷延により厚み1.8mm とし
てから1150℃、2分の中間焼鈍を施し、さらに二次冷延
により厚み0.30mmの製品板厚に仕上げた。その後 830
℃、3分の脱炭焼鈍を施したのち、MgO を主成分とする
焼鈍分離剤を塗布してから、二次再結晶および純化を目
的とする1200℃、3.5 時間の仕上焼鈍工程を経て最終製
品とした。かくして得られた製品の表面欠陥と磁気特性
とについて調べた結果を、表3に示す。なお比較のため
に、スラブ表面にカーボンとNa2CO3との混合物を塗布し
なかった例についても表3に示す。
On the surface of this slab, carbon (charcoal grains)
After coating a mixture with Na 2 CO 3 (mixing ratio 1: 9) at 50 g / m 2 by a roll coating method, use a normal gas heating furnace for 1200
After heating to ℃ and holding for 30 minutes, immediately put it in the electromagnetic induction heating furnace and raise the temperature to 1420 ℃ in 50 minutes,
Soaked for minutes. Next, the slab was extracted from the induction heating furnace and subjected to rough rolling to form a sheet bar having a thickness of 40 mm, and then a finishing tandem mill was used to form a hot rolled steel sheet having a thickness of 3.0 mm. After that, the hot rolled steel sheet was pickled, first cold rolled to a thickness of 1.8 mm, then subjected to intermediate annealing at 1150 ° C. for 2 minutes, and then secondary cold rolled to a product sheet thickness of 0.30 mm. Then 830
After decarburization annealing for 3 minutes at ℃, apply an annealing separator containing MgO as the main component, then finish annealing after finishing annealing at 1200 ℃ for 3.5 hours for the purpose of secondary recrystallization and purification. Made as a product. Table 3 shows the results of examining the surface defects and the magnetic properties of the product thus obtained. For comparison, Table 3 also shows an example in which the mixture of carbon and Na 2 CO 3 was not applied to the slab surface.

【0034】[0034]

【表3】 [Table 3]

【0035】同表から明らかなように、カーボンと浸炭
促進剤とを塗布した適合例は表面外観が向上している。
As is apparent from the table, the surface appearance is improved in the conforming example in which carbon and the carburizing accelerator are applied.

【0036】実施例2 表4に示した成分の溶鋼から連続鋳造法より、幅1200m
m、厚み200mm のサイズのスラブを作製した。
Example 2 From the molten steel having the components shown in Table 4, a width of 1200 m was obtained by the continuous casting method.
A slab with a size of m and a thickness of 200 mm was produced.

【0037】[0037]

【表4】 [Table 4]

【0038】このスラブの表面にカーボン(石油コーク
ス)とBaCO3 との混合物(混合比2:8)をスプレによ
る塗布法により300g/m2 で塗布した後、通常のガス加熱
炉で1200℃まで加熱し、30分保定した後、ただちに電磁
誘導加熱炉に装入して1380℃までを30分間で昇温し、13
80℃で15分間均熱した。次いで該スラブを誘導加熱炉か
ら抽出して粗圧延に供し、厚み30mmのシートバーとした
後、仕上げタンデムミルで厚み2.6 mmの熱延鋼板とし
た。その後この熱延鋼板を酸洗し、一次冷延により厚み
1.6mm としてから 950℃、3分の中間焼鈍を施し、さら
に二次冷延により厚み0.27mmの製品板厚に仕上げた。そ
の後 840℃、3分の脱炭焼鈍を施したのち、MgO を主成
分とする焼鈍分離剤を塗布してから、二次再結晶および
純化を目的とする1180℃、5時間の仕上焼鈍工程を経て
最終製品とした。かくして得られた製品の表面欠陥と磁
気特性とについて調べた結果を、表5に示す。なお比較
のために、スラブ表面にカーボンとBaCO3 との混合物を
塗布しなかった例についても表5に示す。
A mixture of carbon (petroleum coke) and BaCO 3 (mixing ratio 2: 8) was coated on the surface of this slab at a rate of 300 g / m 2 by a spray coating method and then heated to 1200 ° C. in a normal gas heating furnace. After heating and holding for 30 minutes, immediately put it in the electromagnetic induction heating furnace and raise the temperature to 1380 ° C in 30 minutes,
It was soaked at 80 ° C for 15 minutes. Next, the slab was extracted from the induction heating furnace and subjected to rough rolling to form a sheet bar having a thickness of 30 mm, and then a finishing tandem mill was used to form a hot rolled steel sheet having a thickness of 2.6 mm. After that, the hot rolled steel sheet is pickled and the thickness is reduced by primary cold rolling.
After it was made 1.6 mm, it was subjected to intermediate annealing at 950 ° C for 3 minutes, and was further cold-rolled to a product plate thickness of 0.27 mm. After decarburization annealing at 840 ° C for 3 minutes, apply an annealing separator containing MgO as the main component, and then perform a finishing annealing process of 5 hours at 1180 ° C for the purpose of secondary recrystallization and purification. After that, it became the final product. Table 5 shows the results of examining the surface defects and the magnetic properties of the product thus obtained. For comparison, Table 5 also shows an example in which the mixture of carbon and BaCO 3 was not applied to the surface of the slab.

【0039】[0039]

【表5】 [Table 5]

【0040】同表から明らかなように、カーボンと浸炭
促進剤を塗布した実施例は、表面外観が向上している。
As is clear from the table, the surface appearance is improved in the examples in which carbon and the carburizing accelerator are applied.

【0041】実施例3 表6に示した成分の溶鋼から連続鋳造法によって幅1000
mm、厚み230mm のサイズのスラブを作製した。
Example 3 A molten steel having the components shown in Table 6 was used to obtain a width of 1000 by continuous casting.
A slab having a size of mm and a thickness of 230 mm was produced.

【0042】[0042]

【表6】 [Table 6]

【0043】このスラブの表面にカーボン(コークス)
とCaCO3 との混合物(混合比1:9)をロールによる塗
布法により500g/m2 で塗布した後、通常のガス加熱炉で
1200℃まで加熱し、30分保定した後、ただちに電磁誘導
加熱炉に装入して1440℃までを50分間で昇温し、1440℃
で15分間均熱した。次いで該スラブを誘導加熱炉から抽
出して粗圧延に供し、厚み40mmのシートバーとした後、
仕上げタンデムミルで厚み2.0 mmの熱延鋼板とした。そ
の後この熱延鋼板を酸洗し、一次冷延により厚み0.9mm
としてから1070℃、1分の中間焼鈍を施し、さらに二次
冷延により厚み0.20mmの製品板厚に仕上げた。その後 8
20℃、3分の脱炭焼鈍を施したのち、MgO を主成分とす
る焼鈍分離剤を塗布してから、二次再結晶および純化を
目的とする1210℃、3時間仕上げ焼鈍工程を経て最終製
品とした。かくして得られた製品の表面欠陥と磁気特性
とについて調べた結果を、表7に示す。なお比較のため
に、スラブ表面にカーボンとCaCO3 との混合物を塗布し
なかった例についても表7に示す。
The surface of this slab is carbon (coke)
After coating the mixture of CaCO 3 and CaCO 3 (mixing ratio 1: 9) at 500 g / m 2 by the roll coating method, in a normal gas heating furnace
After heating to 1200 ° C and holding for 30 minutes, immediately put it in an electromagnetic induction heating furnace and raise the temperature to 1440 ° C in 50 minutes.
Heat soaked for 15 minutes. Then, the slab was extracted from the induction heating furnace and subjected to rough rolling to obtain a sheet bar having a thickness of 40 mm,
A hot rolled steel sheet with a thickness of 2.0 mm was produced using a finishing tandem mill. After that, the hot-rolled steel sheet is pickled, and the thickness is 0.9 mm by primary cold rolling.
Then, intermediate annealing was performed at 1070 ° C. for 1 minute, and secondary cold rolling was performed to finish the product sheet thickness to 0.20 mm. Then 8
After performing decarburization annealing at 20 ℃ for 3 minutes, apply an annealing separator containing MgO as the main component, then finish annealing at 1210 ℃ for 3 hours for the purpose of secondary recrystallization and purification. Made as a product. Table 7 shows the results of examining the surface defects and the magnetic properties of the product thus obtained. For comparison, Table 7 also shows an example in which the mixture of carbon and CaCO 3 was not applied to the slab surface.

【0044】[0044]

【表7】 [Table 7]

【0045】同表から明らかなように、カーボンと浸炭
促進材とを塗布して実施例は表面外観が向上している。
As is clear from the table, the surface appearance is improved in the examples by applying carbon and the carburizing accelerator.

【0046】実施例4 表8に示した成分の溶鋼から連続鋳造法によって幅1200
mm、厚み230mm のサイズのスラブを作製した。
Example 4 A molten steel having the components shown in Table 8 was used to obtain a width of 1200 by continuous casting.
A slab having a size of mm and a thickness of 230 mm was produced.

【0047】[0047]

【表8】 [Table 8]

【0048】このスラブの表面にカーボン(グラファイ
ト)とアルカリ金属の炭酸塩との混合物(混合比1:
9)をスプレー法により300g/m2 で塗布した後、通常の
ガス加熱炉で1200℃まで加熱し、30分保定した後、ただ
ちに電磁誘導加熱炉に装入して1440℃までを50分間で昇
温し、1440℃で15分間均熱した。次いで該スラブを誘導
加熱炉から抽出して粗圧延に供し、厚み40mmのシートバ
ーとした後、仕上げタンデムミルで厚み2.0 mmの熱延鋼
板とした。その後この熱延鋼板を酸洗し、一次冷延によ
り厚み1.0mm としてから1000℃、1分の中間焼鈍を施
し、さらに二次冷延により厚み0.20mmの製品板厚に仕上
げた。その後 820℃、2分の脱炭焼鈍を施したのち、Mg
O を主成分とする焼鈍分離剤を塗布してから、二次再結
晶および純化を目的とする1180℃、4時間仕上げ焼鈍工
程を経て最終製品とした。かくして得られた製品の表面
欠陥と磁気特性とについて調べた結果を、表9に示す。
なお比較のために、スラブ表面にカーボンを塗布しなか
った例についても表9に示す。
A mixture of carbon (graphite) and an alkali metal carbonate (mixing ratio 1:
9) was applied at 300 g / m 2 by the spray method, then heated to 1200 ° C in a normal gas heating furnace and held for 30 minutes, then immediately charged into an electromagnetic induction heating furnace and heated to 1440 ° C in 50 minutes. The temperature was raised and soaked at 1440 ° C. for 15 minutes. Then, the slab was extracted from the induction heating furnace and subjected to rough rolling to obtain a sheet bar having a thickness of 40 mm, and then a finishing tandem mill to obtain a hot rolled steel sheet having a thickness of 2.0 mm. After that, the hot rolled steel sheet was pickled, subjected to primary cold rolling to have a thickness of 1.0 mm, then subjected to intermediate annealing at 1000 ° C. for 1 minute, and further subjected to secondary cold rolling to a product sheet thickness of 0.20 mm. After decarburization annealing at 820 ℃ for 2 minutes,
After applying an annealing separator containing O 2 as a main component, a final annealing process was performed at 1180 ° C. for 4 hours for the purpose of secondary recrystallization and purification to obtain a final product. Table 9 shows the results of examining surface defects and magnetic properties of the thus obtained product.
For comparison, Table 9 also shows an example in which carbon was not applied to the slab surface.

【0049】[0049]

【表9】 [Table 9]

【0050】同表から明らかなように、カーボンもしく
は、カーボンと浸炭促進材とを塗布して実施例は表面外
観が向上している。
As is apparent from the table, the surface appearance is improved in the examples by applying carbon or carbon and a carburizing accelerator.

【0051】[0051]

【発明の効果】かくしてこの発明によれば、方向性けい
素鋼板の表面外観を向上させたうえで磁気特性も従来材
と同等以上の製品を製造することができる。
As described above, according to the present invention, it is possible to improve the surface appearance of the grain-oriented silicon steel sheet and manufacture a product having magnetic characteristics equal to or higher than those of conventional materials.

【図面の簡単な説明】[Brief description of drawings]

【図1】けい素鋼板断面の金属組織を示す顕微鏡写真で
ある。
FIG. 1 is a micrograph showing a metal structure of a cross section of a silicon steel plate.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 含けい素鋼スラブを加熱した後、熱間圧
延を施し、次いで1回又は中間焼鈍をはさむ2回の冷間
圧延を施して最終板厚とした後、脱炭・一次再結晶焼鈍
を施し、次いで鋼板表面に焼鈍分離剤を塗布してから仕
上焼鈍を施す一連の工程による方向性けい素鋼板の製造
方法において、 上記熱間圧延に先立つスラブ加熱に際し、あらかじめス
ラブの表面にカーボンを含有する物質を塗布し、しかる
後に加熱することを特徴とする表面性状の優れた方向性
けい素鋼板の製造方法。
1. After heating a silicon steel slab, it is hot-rolled and then cold-rolled once or twice with intermediate annealing to obtain a final plate thickness, followed by decarburization and primary re-rolling. In the method for producing a grain-oriented silicon steel sheet by a series of steps of performing crystal annealing, then applying an annealing separator to the steel sheet surface and then applying finish annealing, during slab heating prior to the hot rolling, the surface of the slab is previously prepared. A method for manufacturing a grain-oriented silicon steel sheet having excellent surface properties, which comprises applying a substance containing carbon and then heating it.
【請求項2】 含けい素鋼スラブを加熱した後、熱間圧
延を施し、次いで1回又は中間焼鈍をはさむ2回の冷間
圧延を施して最終板厚とした後、脱炭・一次再結晶焼鈍
を施し、次いで鋼板表面に焼鈍分離剤を塗布してから仕
上焼鈍を施す一連の工程による方向性けい素鋼板の製造
方法において、 上記熱間圧延に先立つスラブ加熱に際し、あらかじめス
ラブの表面にカーボンを含有する物質並びにアルカリ金
属又はアルカリ土類金属の炭酸塩を塗布し、しかる後に
加熱することを特徴とする表面性状の優れた方向性けい
素鋼板の製造方法。
2. After heating a silicon steel slab, it is hot-rolled and then cold-rolled once or twice with intermediate annealing to obtain a final plate thickness, followed by decarburization and primary re-rolling. In the method for producing a grain-oriented silicon steel sheet by a series of steps of performing crystal annealing, then applying an annealing separator to the steel sheet surface and then applying finish annealing, during slab heating prior to the hot rolling, the surface of the slab is previously prepared. A method for producing a grain-oriented silicon steel sheet having an excellent surface property, which comprises applying a carbon-containing substance and an alkali metal or alkaline earth metal carbonate and then heating.
JP1707293A 1993-01-07 1993-01-07 Production of grain-oriented silicon steel sheet excellent in surface characteristic Pending JPH06207221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1707293A JPH06207221A (en) 1993-01-07 1993-01-07 Production of grain-oriented silicon steel sheet excellent in surface characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1707293A JPH06207221A (en) 1993-01-07 1993-01-07 Production of grain-oriented silicon steel sheet excellent in surface characteristic

Publications (1)

Publication Number Publication Date
JPH06207221A true JPH06207221A (en) 1994-07-26

Family

ID=11933788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1707293A Pending JPH06207221A (en) 1993-01-07 1993-01-07 Production of grain-oriented silicon steel sheet excellent in surface characteristic

Country Status (1)

Country Link
JP (1) JPH06207221A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022250158A1 (en) * 2021-05-28 2022-12-01 Jfeスチール株式会社 Method for producing grain-oriented electromagnetic steel sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022250158A1 (en) * 2021-05-28 2022-12-01 Jfeスチール株式会社 Method for producing grain-oriented electromagnetic steel sheet
JP7264322B1 (en) * 2021-05-28 2023-04-25 Jfeスチール株式会社 Manufacturing method of grain-oriented electrical steel sheet

Similar Documents

Publication Publication Date Title
WO2007102282A1 (en) Process for producing grain-oriented magnetic steel sheet with excellent magnetic property
EP3561103A1 (en) Grain-oriented electrical steel sheet and manufacturing method therefor
EP3561104B1 (en) Grain-oriented electrical steel sheet and manufacturing method therefor
JPH0756048B2 (en) Method for manufacturing thin grain oriented silicon steel sheet with excellent coating and magnetic properties
JP3456352B2 (en) Grain-oriented electrical steel sheet with excellent iron loss characteristics and method of manufacturing the same
JP3357578B2 (en) Grain-oriented electrical steel sheet with extremely low iron loss and method for producing the same
JPH07122096B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent magnetic and film properties
JPH07252532A (en) Production of grain oriented electrical steel sheet having excellent magnetic characteristic
JP2004332071A (en) Method for producing high magnetic flux density grain-oriented magnetic steel sheet
JP3081118B2 (en) Grain-oriented electrical steel sheet with extremely low iron loss
JP3312000B2 (en) Method for producing grain-oriented silicon steel sheet with excellent coating and magnetic properties
JP3369443B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JP2787776B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP3236684B2 (en) Oriented silicon steel sheet with excellent bending properties and iron loss properties
JPH02294428A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density
JPH06207221A (en) Production of grain-oriented silicon steel sheet excellent in surface characteristic
JP2002194445A (en) Method for manufacturing grain-oriented electrical steel sheet having high magnetic flux density and excellent film characteristic
JPH02228425A (en) Production of grain-oriented silicon steel sheet with high magnetic flux density
JP2735896B2 (en) High temperature heating method for silicon steel slab.
JPH0726156B2 (en) Method for producing grain-oriented electrical steel sheet with excellent magnetic properties and surface properties
JP2002105537A (en) Method for manufacturing grain oriented silicon steel sheet hardly causing edge crack and having satisfactory film characteristic, excellent magnetic property and high magnetic flux density
JP2001049351A (en) Production of grain-oriented silicon steel sheet high in magnetic flux density
JP3314844B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent magnetic properties and coating properties
JP3443151B2 (en) Method for producing grain-oriented silicon steel sheet
JP3133855B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties