JPH06207206A - Sintering method for titanium or titanium alloy and ceramic used in this method - Google Patents

Sintering method for titanium or titanium alloy and ceramic used in this method

Info

Publication number
JPH06207206A
JPH06207206A JP5015893A JP1589393A JPH06207206A JP H06207206 A JPH06207206 A JP H06207206A JP 5015893 A JP5015893 A JP 5015893A JP 1589393 A JP1589393 A JP 1589393A JP H06207206 A JPH06207206 A JP H06207206A
Authority
JP
Japan
Prior art keywords
titanium
sintering
titanium alloy
sintered body
ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5015893A
Other languages
Japanese (ja)
Inventor
Masakazu Enboku
正和 遠北
Akihito Otsuka
昭仁 大塚
Itaru Nanjo
至 南條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP5015893A priority Critical patent/JPH06207206A/en
Publication of JPH06207206A publication Critical patent/JPH06207206A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the nonoxidative sintered body of a titanium powder green compact by using ceramics for sintering having a specific chemical compsn. CONSTITUTION:The ceramics for sintering consisting of 0.5 to 90wt.% CaO and the balance ZrO2 is used as an intra-furnace jig. The content of the CaO needs to be 0.5 to 90wt.% at this time. An effect of preventing the oxidation of the titanium and titanium alloy or reducing effect of the titanium and titanium alloy is insufficient if the content. thereof is below 0.5wt.%. The ceramics turns to tetragonal crystals even at ordinary temp. and high temp. and its thermal impact property and heat resistance are improved if the content exceeds the above-mentioned range. As a result, the sintered body is not oxidized at the time of the sintering treatment of the powder green compact of the titanium and titanium alloy and the sintered body of the titanium and titanium alloy having excellent mechanical characteristics is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】チタン又はチタン合金の焼結方法
及びそれに用いるセラミックに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for sintering titanium or a titanium alloy and a ceramic used therefor.

【0002】[0002]

【従来の技術】チタン又はチタン合金の粉末焼結体はプ
レス成形法、押出し成形法及び射出成形法等により作ら
れる。即ち、チタン粉末、チタン合金粉末、添加元素粉
末等とバインダーとの混練物を成形した圧粉体を脱バイ
ンダー焼結した後に、温度950〜1400℃で焼結し
て得られる。しかし、該焼結体の酸素含有量が高いと焼
結体の機械的特性、特に延性が著しく悪くなる。
2. Description of the Related Art A powder sintered body of titanium or a titanium alloy is produced by a press molding method, an extrusion molding method, an injection molding method or the like. That is, it is obtained by subjecting a green compact obtained by molding a kneaded material of titanium powder, titanium alloy powder, additive element powder, etc. and a binder to binder removal sintering and then sintering at a temperature of 950 to 1400 ° C. However, if the oxygen content of the sintered body is high, the mechanical properties of the sintered body, especially the ductility, are significantly deteriorated.

【0003】そのため、脱バインダー加熱処理を不活性
ガス雰囲気中或いは真空中で行うことによりチタンの酸
化を低減させることが行われる。更に焼結時には、焼結
を高真空雰囲気中で行なったり、処理体の近傍に金属カ
ルシウム等の酸素捕捉材を置いて、酸化を防ぐことが行
われる。ところが、セッターやトレー等の炉内治具に関
しては全く注意が払われておらず、一般的なアルミナや
マグネシアの焼結セラミックが使用される。しかし、高
温ではこれらセラミックから処理体に酸素が移行してし
まい、優れた機械的性質を有する焼結体が得られなかっ
た。
Therefore, the oxidation of titanium is reduced by performing the binder removal heat treatment in an inert gas atmosphere or in a vacuum. Further, at the time of sintering, the sintering is performed in a high vacuum atmosphere, or an oxygen scavenger such as metallic calcium is placed in the vicinity of the treated body to prevent oxidation. However, no attention has been paid to jigs in the furnace such as setters and trays, and general sintered ceramics of alumina and magnesia are used. However, at high temperatures, oxygen was transferred from these ceramics to the treated body, and a sintered body having excellent mechanical properties could not be obtained.

【0004】炉内治具としてアルミナより分解しにくい
カルシアの焼結セラミックを使用することも考えられ
る。しかし、カルシアは水分を吸収し易く、水分を含ん
だカルシアを使用すると炉内雰囲気の露点が悪くなり、
逆に処理物が酸化してしまう。従って水分を吸収を避け
るため、使用しない時は真空中でカルシアを保管する必
要があり、取り扱いが不便である問題がある。
It is also conceivable to use calcia sintered ceramic, which is less likely to be decomposed than alumina, as a jig in the furnace. However, calcia easily absorbs water, and if calcia containing water is used, the dew point of the atmosphere in the furnace deteriorates,
On the contrary, the processed product is oxidized. Therefore, in order to avoid absorption of water, it is necessary to store the calcia in a vacuum when it is not used, and there is a problem that it is inconvenient to handle.

【0005】[0005]

【発明が解決しようとする課題】チタン及びチタン合金
の粉末圧粉体の焼結処理時に焼結体が酸化しない焼結用
セラミックにより、機械的特性の優れたチタン又はチタ
ン合金の焼結方法を提供することにある。
A method of sintering titanium or titanium alloy having excellent mechanical properties by using a sintering ceramic that does not oxidize the sintered body during the sintering process of powder compacts of titanium and titanium alloy. To provide.

【0006】[0006]

【課題を解決するための手段】上記課題は、CaOが
0.5〜90重量%と残部がZrO2とからなるチタン
又はチタン合金の焼結用セラミックにより解決される。
Means for Solving the Problems The above problems can be solved by a sintering ceramic of titanium or a titanium alloy containing 0.5 to 90% by weight of CaO and the balance ZrO 2 .

【0007】[0007]

【作用】本発明は、チタン元素より安定な酸化物を形成
するカルシウム元素と、チタン元素よりは劣るが安定な
酸化物を形成するジルコニウム元素との酸化物よりなる
セラミックにより、チタン又はチタン合金の粉末圧粉体
の焼結処理時に焼結体が酸化されず、水分を吸収しにく
く取り扱い易いことに特徴がある。
The present invention provides a titanium or titanium alloy, which is made of a ceramic composed of an oxide of calcium which forms a more stable oxide than titanium and an element of zirconium which forms an oxide which is inferior to titanium and is more stable. The sintered compact is characterized in that it is not oxidized during the sintering process of the powder compact, it is difficult to absorb water and it is easy to handle.

【0008】本発明のセラミックは通常の方法、例えば
カルシア粉末とジルコニア粉末とを混合し、プレス成形
し、大気中で温度1300〜1400℃で焼結すればで
きる。カルシア粉末とジルコニア粉末の平均粒径はそれ
ぞれ0.1〜1μmであるのが好ましい。
The ceramic of the present invention can be prepared by a usual method, for example, by mixing calcia powder and zirconia powder, press-molding and sintering in air at a temperature of 1300 to 1400 ° C. The average particle size of each of the calcia powder and the zirconia powder is preferably 0.1 to 1 μm.

【0009】CaOは0.5〜90重量%でなければな
らない。0.5重量%未満であるとチタン及びチタン合
金の酸化防止或いは還元効果が不十分となる。又更に、
前記セラミックは常温で斜方晶であり、温度1100℃
付近で正方晶に転移するため、使用中に前記転移時の膨
張収縮によりクラックが生じる、熱衝撃性及び耐熱性が
劣る。しかし0.5重量%以上のカルシアが含まれると
常温でも高温でも正方晶となり、熱衝撃性及び耐熱性が
改善される。一方、90重量%を越えると水分吸収し易
くなり過ぎ、不使用時には真空容器中で保管する等の保
管管理を行わないと、焼結体は酸化してしまい機械的強
度及び熱衝撃性が劣ってしまう。
CaO should be 0.5 to 90% by weight. If it is less than 0.5% by weight, the antioxidation or reduction effect of titanium and titanium alloy becomes insufficient. Furthermore,
The ceramic is orthorhombic at room temperature and the temperature is 1100 ° C.
Since it transforms into a tetragonal crystal in the vicinity, cracks are generated during use due to expansion and contraction during the transition, and thermal shock resistance and heat resistance are poor. However, when 0.5% by weight or more of calcia is contained, tetragonal crystals are formed at room temperature and high temperature, and thermal shock resistance and heat resistance are improved. On the other hand, if it exceeds 90% by weight, it tends to absorb water too much, and if it is not used, such as storing it in a vacuum container, the sintered body will oxidize and the mechanical strength and thermal shock resistance will deteriorate. Will end up.

【0010】[0010]

【実施例】平均粒径45μmの純度99.5重量%のチ
タン粉末又は平均粒径45μmのTi−6重量%Al−
4重量%Vのチタン合金粉末を用いてプレス成形法、押
し出し成形法及び射出成形法により成形体を作成した。
EXAMPLE Titanium powder having an average particle size of 45 μm and a purity of 99.5% by weight or Ti-6% by weight Al—having an average particle size of 45 μm
Using 4% by weight V titanium alloy powder, a molded body was prepared by a press molding method, an extrusion molding method and an injection molding method.

【0011】プレス成形法では該粉末と、融点55℃の
パラフィンワックスを2重量%とを混練し、JIS 6
号引張り試験片(JIS Z2201)相当形状の金型
に充填し、2000kgf/cm2の圧縮力でプレスし
て成形体を作成した。
In the press molding method, the powder is kneaded with 2% by weight of paraffin wax having a melting point of 55 ° C. to obtain JIS 6
A mold having a shape corresponding to the No. tensile test piece (JIS Z2201) was filled and pressed with a compressive force of 2000 kgf / cm 2 to prepare a molded body.

【0012】プレス成形法では該粉末と、該パラフィン
ワックスを5重量%と、比重0.91g/cm3のアク
リル樹脂1重量%とを混練し、押し出し機により直径4
mmの線を押し出した。
In the press molding method, the powder, 5% by weight of the paraffin wax, and 1% by weight of an acrylic resin having a specific gravity of 0.91 g / cm 3 were kneaded, and a diameter of 4 was obtained by an extruder.
A line of mm was extruded.

【0013】射出成形法では該粉末と、該パラフィンワ
ックスを3.2重量%と、前記のアクリル樹脂3.2重
量%と、試薬1級のステアリン酸3.2重量%とを混練
し、射出成型機で射出温度100℃且つ射出圧力100
kgf/cm2で前記引っ張り試験片相当形状の金型に
射出成型した。
In the injection molding method, the powder, 3.2 wt% of the paraffin wax, 3.2 wt% of the acrylic resin, and 3.2 wt% of reagent grade stearic acid are kneaded and injected. Injection temperature 100 ° C and injection pressure 100 with molding machine
It was injection-molded into a mold having a shape corresponding to the tensile test piece at kgf / cm 2 .

【0014】これら成形体を表1に示す種々の平板状セ
ッター上に置き、アルゴン気流中で温度500℃で加熱
して脱バインダーをし、続いて真空炉中で圧力10-5
orr且つ1250℃で90分間焼結した。
These compacts were placed on various flat plate setters shown in Table 1 and heated in an argon stream at a temperature of 500 ° C. to remove the binder, and subsequently in a vacuum furnace at a pressure of 10 -5 T.
Sintered at orr and 1250 ° C. for 90 minutes.

【0015】なお、該セッター材のカルシアージルコニ
アセラミックは純度99.9重量%で平均粒径1μmの
カルシア粉末と平均粒径0.15μmの高純度マグネシ
ア粉末(株式会社東ソー、商品名TZ−0)とをVブレ
ンダーで混合し、プレス圧1ton/cm2で成形した
後に、大気中で温度1300℃で焼結して作製した。カ
ルシアは前記カルシア粉末を同様にして成形、焼結して
作製した。アルミナは三井金属株式会社製、商品名アロ
ンスーパーを、マグネシアは三井金属株式会社製、商品
名マグスーパーを、モリブデンは純度99.9重量%で
寸法2mm×50mm×50mmの板を使用した。
The calcia-zirconia ceramic of the setter material is a calcia powder having a purity of 99.9% by weight and an average particle size of 1 μm and a high-purity magnesia powder having an average particle size of 0.15 μm (Toso Co., Ltd., trade name TZ-0). ) Was mixed with a V blender with a V blender, molded at a pressing pressure of 1 ton / cm 2 , and then sintered at a temperature of 1300 ° C. in the atmosphere. Calcia was produced by molding and sintering the above calcia powder in the same manner. Alumina was manufactured by Mitsui Kinzoku Co., Ltd., trade name Aron Super, magnesia was manufactured by Mitsui Metal Co., Ltd., trade name Mag Super, and molybdenum was a plate having a purity of 99.9% by weight and dimensions of 2 mm × 50 mm × 50 mm.

【0016】[0016]

【表1】 [Table 1]

【0017】該焼結体を引張り試験し、引張り強さ及び
破断伸び測定した。また該引張り試験片の掴み部から分
析試料を切り出し酸素含有量を測定した。結果を表1に
合わせて示す。
The sintered body was subjected to a tensile test, and tensile strength and elongation at break were measured. An analysis sample was cut out from the grip of the tensile test piece to measure the oxygen content. The results are also shown in Table 1.

【0018】また焼結処理後の実験番号1及び13には
クラックが発生していた。実験番号15には焼結体中に
0.8重量%のアルミニウムが検出された。実験番号1
7はチタンとモリブデンが反応して、焼結体とセッター
が固着してしまった。実験番号14は焼結体中に0.3
重量%のカルシウムが検出された。本実施例のほとんど
が酸素を含まないモリブデン(実験番号17)より酸素
含有量が改善されており、本発明のセラミックは該焼結
体の脱酸素の効果も有している。
Further, cracks were generated in Experiment Nos. 1 and 13 after the sintering treatment. In Experiment No. 15, 0.8% by weight of aluminum was detected in the sintered body. Experiment number 1
In No. 7, titanium and molybdenum reacted, and the sintered body and the setter were fixed. Experiment number 14 is 0.3 in the sintered body
Weight percent calcium was detected. Most of the present examples have an improved oxygen content compared to molybdenum (Experiment No. 17), and the ceramic of the present invention also has the effect of deoxidizing the sintered body.

【0019】[0019]

【発明の効果】上述したように本発明によれば、炉内治
具としてCaOが0.5〜90重量%と残部がZrO2
とからなる焼結用セラミックを使用することにより、チ
タン及びチタン合金の粉末圧粉体の焼結処理時に焼結体
が酸化せず、機械的特性の優れたチタン及びチタン合金
の焼結体を得ることができる。
As described above, according to the present invention, CaO is 0.5 to 90% by weight and the balance is ZrO 2 as a jig in the furnace.
By using the sintering ceramics consisting of and, the sintered body does not oxidize during the sintering process of the powder compact of titanium and titanium alloy, and the sintered body of titanium and titanium alloy with excellent mechanical properties is obtained. Obtainable.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 チタン又はチタン合金とバインダーとを
混練、成形、脱バインダーした成形体を、CaOが0.
5〜90重量%と残部がZrO2であるセラミックに載
せ、又必要により該セラミックで覆って焼結に供するこ
とを特徴とするチタン又はチタン合金の焼結方法。
1. A molded body obtained by kneading, molding, and debinding a titanium or titanium alloy and a binder has a CaO value of 0.
A method for sintering titanium or a titanium alloy, which comprises placing the mixture on a ceramic containing 5 to 90% by weight and the balance ZrO 2 , and optionally covering the ceramic with the ceramic for sintering.
【請求項2】 CaOが0.5〜90重量%と残部がZ
rO2とからなるチタン又はチタン合金の焼結用セラミ
ック。
2. CaO is 0.5 to 90% by weight and the balance is Z
Ceramics for sintering titanium or titanium alloys consisting of rO 2 .
JP5015893A 1993-01-06 1993-01-06 Sintering method for titanium or titanium alloy and ceramic used in this method Pending JPH06207206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5015893A JPH06207206A (en) 1993-01-06 1993-01-06 Sintering method for titanium or titanium alloy and ceramic used in this method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5015893A JPH06207206A (en) 1993-01-06 1993-01-06 Sintering method for titanium or titanium alloy and ceramic used in this method

Publications (1)

Publication Number Publication Date
JPH06207206A true JPH06207206A (en) 1994-07-26

Family

ID=11901471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5015893A Pending JPH06207206A (en) 1993-01-06 1993-01-06 Sintering method for titanium or titanium alloy and ceramic used in this method

Country Status (1)

Country Link
JP (1) JPH06207206A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014522452A (en) * 2011-06-13 2014-09-04 チャールズ マルコム ワード‐クローズ Production of metal or alloy objects
DE112012003472B4 (en) 2011-08-23 2021-08-19 Toyota Jidosha Kabushiki Kaisha Process for the manufacture of rare earth magnets

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014522452A (en) * 2011-06-13 2014-09-04 チャールズ マルコム ワード‐クローズ Production of metal or alloy objects
DE112012003472B4 (en) 2011-08-23 2021-08-19 Toyota Jidosha Kabushiki Kaisha Process for the manufacture of rare earth magnets

Similar Documents

Publication Publication Date Title
KR20170047016A (en) Powder forming method of aluminum and its alloys
JPH0244785B2 (en)
CN114574732B (en) Particle reinforced aluminum-based composite material and preparation method thereof
JPH06207206A (en) Sintering method for titanium or titanium alloy and ceramic used in this method
JP4721947B2 (en) Corrosion-resistant magnesia sintered body, heat treatment member comprising the same, and method for producing the sintered body
JP2002316866A (en) Member for heat treatment consisting of alumina sintered compact having excellent durability
EP1767885A1 (en) Kiln furniture for use in a non-oxidizing atmosphere
TW200948744A (en) Refractory ceramic product and associated moulding
JP2531701B2 (en) Manufacturing method of dispersion strengthened copper alloy
CN114717465A (en) Method for improving rare earth yield in vacuum induction melting process
KR100506633B1 (en) Method for preparing reinforced platinum material
JP2007112670A (en) Firing vessel
US4710481A (en) Method for melting Ti or a high-Ti alloy in CaO refractories
JP2004169064A (en) Copper-tungsten alloy, and method of producing the same
JPH10253259A (en) Material of roller for roller hearth furnace and manufacture thereof
JPH07157362A (en) Aluminum oxide-based ceramic having high strength and high toughness
JPH11171656A (en) Castable refractory for dipping lance
JP4906228B2 (en) Alumina sintered body excellent in thermal shock resistance and corrosion resistance and heat treatment member using the same
JPH07300648A (en) High strength sintered w-base alloy and its production
JP2001114555A (en) Thermal shock-resistant alumina sintered compact and member for heat treatment composed of the same
JP2961389B2 (en) High strength magnesia sintered body and method for producing the same
Carreno-Morelli et al. Powder injection moulding of titanium from TiH2 powders
JPH1192230A (en) Composite sintered product from boron nitride and spinel
JPH04260655A (en) Graphite-containing refractory having high strength
JPH0348536Y2 (en)