JPH0620685A - Battery electrode and its manufacture - Google Patents

Battery electrode and its manufacture

Info

Publication number
JPH0620685A
JPH0620685A JP3248119A JP24811991A JPH0620685A JP H0620685 A JPH0620685 A JP H0620685A JP 3248119 A JP3248119 A JP 3248119A JP 24811991 A JP24811991 A JP 24811991A JP H0620685 A JPH0620685 A JP H0620685A
Authority
JP
Japan
Prior art keywords
electrode
fluororesin
active material
brush
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3248119A
Other languages
Japanese (ja)
Inventor
Toshiaki Konuki
利明 小貫
Koutarou Kobayashi
康太朗 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP3248119A priority Critical patent/JPH0620685A/en
Publication of JPH0620685A publication Critical patent/JPH0620685A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To prevent the dropping out of an electrode active material by providing a filamented fluorine resin layer on the surface of a battery electrode having a three-dimensional base as an electrode base. CONSTITUTION:An electrode formed by charging an active material 6 in a foamed nickel having a porosity of 96% followed by drying and pressure molding is continuously moved in one direction while heating to 60-80 deg.C. A first brush is fixed orthogonally to the moving direction, and a fluorine resin suspension is applied to the electrode surface while being penetrated from a tank above the brush. Simultaneously with the application, the filamenting of the fluorine resin is realized by the friction with the contact surface of the brush, and the filamenting is complicated by a second brush operated orthogonally to the moving direction of the electrode. The dropping out of the active material 6 in the electrode can be prevented by a complicatedly intertwined filamented fluorine resin 8 layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、発泡金属を代表とす三
次元基体を電極基体とする、例えばニッケル・カドミュ
ウム電池,ニッケル・水素電池の電極に関する物で、特
に活物質の電極基体からの脱落防止に関する物である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode of a three-dimensional substrate typified by foam metal as an electrode substrate, for example, an electrode of a nickel-cadmium battery or a nickel-hydrogen battery. It is related to falling prevention.

【0002】[0002]

【従来の技術】従来、ニッケル極では三次元基体である
スポンジ状ニッケルを電極基体とし、これに活物質であ
る水酸化ニッケル粉末を含むペースト状混合物を充填し
て成るアルカリ電池用電極では、これら活物質の脱落防
止のために、例えば特願昭53−40837では、活物
質を多孔度97%のスポンジ状ニッケル多孔体中に塗着
充填した後、約150kg/cm2の圧力で加圧成型し、乾
燥後、1〜15wt%のフッ素樹脂微粉末懸濁液を含浸し
て乾燥し、このフッ素樹脂微粉末の連なった、あるいは
凝集した多孔層を電極内部に設けていた。
2. Description of the Related Art Conventionally, in a nickel electrode, a sponge-like nickel, which is a three-dimensional substrate, is used as an electrode substrate, and a paste mixture containing nickel hydroxide powder, which is an active material, is filled in the electrode. To prevent the active material from falling off, for example, in Japanese Patent Application No. 53-40837, the active material is applied and filled in a sponge-like nickel porous body having a porosity of 97%, and then pressure molding is performed at a pressure of about 150 kg / cm 2. After drying, it was impregnated with a fluororesin fine powder suspension of 1 to 15 wt% and dried, and a continuous or agglomerated porous layer of this fluororesin fine powder was provided inside the electrode.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、活物質
粉末中に上記フッ素樹脂微粉末等の結着剤を混入する
と、その量が多くなるほど利用率、効率放電、電池寿命
等の特性劣化につながる。この事を改善するための特開
昭54−97739号公報では、ポリエチレン等の熱可
塑性樹脂を電極表面上で溶融させて網状とし、この網状
のポリエチレンがスポンジ状ニッケル多孔体の表面骨格
部分と溶着して活物質の脱落防止を図っている。また、
網状のポリエチレンを形成した後にフッ素樹脂微粉末等
の結着剤を少量含浸するとその効果は大きくなり、か
つ、その結着剤の総量を従来の方策(特開昭53−40
837号公報)より少なくする事ができると提案してい
る。
However, if the binder such as the above-mentioned fluororesin fine powder is mixed in the active material powder, the larger the amount thereof, the more the characteristics such as utilization factor, efficient discharge and battery life deteriorate. In JP-A-54-97739 for improving this, a thermoplastic resin such as polyethylene is melted on the electrode surface to form a net, and the net-like polyethylene is welded to the surface skeleton portion of the sponge-like nickel porous body. To prevent the active material from falling off. Also,
If a small amount of a binder such as a fine powder of fluororesin is impregnated after forming the reticulated polyethylene, the effect is enhanced, and the total amount of the binder is adjusted according to the conventional method (Japanese Patent Laid-Open No. 53-40.
No. 837 gazette).

【0004】しかし、ポリエチレンを溶融する温度が1
20℃となり、この温度長時間保つと活物質である水酸
化ニッケル粉末自身の結晶水が分解する恐れがあり、け
っして良い影響を与えない。また、網状に溶融したホリ
エチレンの骨格全体を水酸化ニッケル粉末の粒径(平均
粒径50μm)よりも小さくする事は非常に難しい、そ
のため網状ポリエチレンの空間部分からの脱落を防ぐに
は、網状ポリエチレンを形成した後に、この電極をフッ
素樹脂微粉末懸濁液に浸漬し、再び乾燥すると言う、従
来の作業工程を追加しなければならないという問題点が
あった。
However, the melting temperature of polyethylene is 1
The temperature becomes 20 ° C., and if this temperature is kept for a long time, the water of crystallization of the nickel hydroxide powder itself, which is the active material, may be decomposed, and this never gives a good effect. Also, it is extremely difficult to make the entire skeleton of polyethylene melted into a mesh smaller than the particle size of nickel hydroxide powder (average particle size 50 μm). Therefore, to prevent the mesh of polyethylene from falling out from the space, After forming the polyethylene, there has been a problem that the conventional working process of adding the electrode to the fluororesin fine powder suspension and drying it again has to be added.

【0005】本発明の目的は、利用率、高率放電、電池
寿命等の特性劣化につながる活物質粉末中のフッ素樹脂
微粉末等の結着剤の混入量を減らし、かつ、活物質であ
る水酸化ニッケル粉末に悪影響を及ぼさない温度で処理
し、さらには、従来方策より活物質の脱落防止に効果が
現れる脱落防止層を備えた、電池用電極を提供すること
にある。
An object of the present invention is to reduce the mixing amount of a binder such as a fluororesin fine powder in the active material powder, which leads to deterioration of characteristics such as utilization rate, high rate discharge and battery life, and to be an active material. An object of the present invention is to provide a battery electrode that is treated at a temperature that does not adversely affect the nickel hydroxide powder, and that is further provided with a fall prevention layer that is more effective in preventing the fall of the active material than conventional measures.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、発泡金属等の三次元基体に活物質を充填
した後に、電極表面にフッ素樹脂を塗着し、かつ、この
時、塗着面に摩擦する様な外力を加えて、フッ素樹脂末
を糸状化させる。このフッ素樹脂は低分子量の四フッ化
エチレン樹脂微粉末、あるいは、ディスパージョンと呼
ばれる四フッ化エチレン樹脂粉末や四フッ化エチレン−
六フッ化プロピレン共重合樹脂微粉末を含んだ懸濁液で
あっても、摩擦,振動等の機械的力によって糸状化する
ものであれば構わない。通常、前記したフッ素樹脂粉末
の糸状化は機械的力だけでなく加熱によっても発現する
が、その温度はその樹脂自身の軟化点であるため高温で
ある。
In order to solve the above-mentioned problems, according to the present invention, a three-dimensional substrate such as foam metal is filled with an active material, and then a fluororesin is applied to the electrode surface, and at this time, , Fluorine resin powder is made into a filament by applying an external force such as friction to the coated surface. This fluororesin is a low-molecular weight tetrafluoroethylene resin fine powder, or a tetrafluoroethylene resin powder called dispersion or tetrafluoroethylene-
Even a suspension containing fine powder of propylene hexafluoride copolymer resin may be used as long as it is formed into a filament by mechanical force such as friction and vibration. Normally, the above-mentioned filamentation of the fluororesin powder is caused not only by mechanical force but also by heating, but the temperature is high because it is the softening point of the resin itself.

【0007】これらフッ素樹脂は、前記した特開昭53
−40837号公報、特開昭54−97739号公報で
提案されているように、活物質粉末の粒子間あるいは活
物質粉末の粒子層の表面に球形のまま凝集または連なっ
て層を形成しても結着性を有するが、糸状化させると、
その結着力は強化する。そのため、含浸して、乾燥させ
るだけの方策より、使用されるフッ素樹脂量を少なくす
る事ができる。また、これらフッ素樹脂の糸状化は、外
力を受ける方向と同一方向に形成するため、二方向以上
の外力をフッ素樹脂に与えると結着力をより強化させる
事ができる。
These fluororesins are the same as those described in JP-A-5353.
As proposed in JP-A-40837 and JP-A-54-97739, even if a layer is formed between the particles of the active material powder or on the surface of the particle layer of the active material powder by aggregating or connecting in a spherical shape. It has a binding property, but when made into a thread,
Its cohesive strength is strengthened. Therefore, it is possible to reduce the amount of the fluororesin used, as compared with the method of only impregnating and drying. Moreover, since the fluororesin is formed in the same direction as the direction in which the external force is applied, the binding force can be further strengthened by applying external force in two or more directions to the fluororesin.

【0008】この糸状化するフッ素樹脂が懸濁液状であ
り、かつ、この懸濁液が浸透性を有している場合、あら
かじめ電極を60〜80℃に加熱した状態で懸濁液を塗
装し、塗着と同時に懸濁液の水分を蒸発させて、電極表
面にのみフッ素樹脂が存在するようにする。また、この
電極が一方向に連続的に移動して製造される工程におい
て、電極の移動方向と直交するような位置に固定し、こ
のブラシの上部にはフッ素樹脂懸濁液を貯蓄するタンク
を設け、ブラシの毛細間を利用してタンク内のフッ素樹
脂懸濁液を電極表面まで落下させて塗着を実現させれ
ば、塗着と同時にこのブラシと電極表面の摩擦力にて塗
着されたフッ素樹脂が糸状と化し、さらに、この電極の
移動方向と直交するよう稼働するブラシにて糸の方向を
複雑化させる。
When the filamentous fluororesin is in the form of a suspension and the suspension is permeable, the suspension is coated in advance with the electrode heated to 60 to 80 ° C. At the same time as the coating, the water content of the suspension is evaporated so that the fluororesin is present only on the electrode surface. Also, in the process in which this electrode is continuously moved in one direction to be manufactured, the electrode is fixed at a position orthogonal to the moving direction of the electrode, and a tank for storing the fluororesin suspension is provided above the brush. If the fluororesin suspension in the tank is dropped to the surface of the electrode using the capillaries of the brush to realize the coating, the brush and the surface of the electrode are simultaneously coated by the friction force. The fluororesin is made into a thread shape, and the direction of the thread is made complicated by a brush which operates so as to be orthogonal to the moving direction of the electrode.

【0009】[0009]

【作用】上記方策によれば電極表面だけに糸状化したフ
ッ素樹脂層を設ける事ができるので、活物質層にフッ素
樹脂等の結着剤の混入量の増加に伴って起こる、利用
率、効率放電,電池寿命等の特性劣化を防ぎ、さらに
は、その方策が活物質に影響を及ぼさない温度で処理す
ることが可能となる。図1に本発明からなる電極の表面
のSEM写真の模式図を示す。この図から分るように、
線径が0.2μm以下の糸状フッ素樹脂により、活物質
粒子が強固に固定されている事が確認できる。
According to the above measures, since the filamentous fluororesin layer can be provided only on the electrode surface, the utilization rate and the efficiency, which are caused by the increase in the amount of the binder such as fluororesin mixed in the active material layer, can be improved. It becomes possible to prevent deterioration of characteristics such as discharge and battery life, and further, it is possible to perform treatment at a temperature at which the measures do not affect the active material. FIG. 1 shows a schematic view of a SEM photograph of the surface of the electrode according to the present invention. As you can see from this figure,
It can be confirmed that the active material particles are firmly fixed by the filamentous fluororesin having a wire diameter of 0.2 μm or less.

【0010】[0010]

【実施例】本発明の一実施例をニッケル・水素電池用の
ニッケル極について説明する。活物質に水酸化ニッケル
粉末(平均粒径15μm )、これに活物質の活性化剤と
してコバルトを5wt%加え、これら混合粉末に対して
0.4の割合(重量比)いで水を加え、これに増粘剤と
してカルボキシメチルセルロースナトリウムを混合粉末
に対して0.004の割合(重量比)いで加えたスラリ
を、三次元基体である多孔度96%の発泡ニッケルに圧
入する。このスラリが充填された電極を80℃の気流中
を通過させて水分を蒸発させ、その後150kg/cm2
圧力で加圧成型する。この加圧成型された電極を図2に
示す製造装置にて、電極表面に糸状フッ素樹脂層を形成
させる。この製造装置は電極1を加熱するヒータ4部と
フッソ樹脂を塗着および糸状化させる固定ブラシ2と電
極の移動方向と直交するよう稼働する稼働ブラシ3とで
構成されている。ヒータ4の温度は、電極表面温度が8
0℃を越えないように80℃以下に設定する。また、ヒ
ータ4と電極1は接触の有無は限定しない。ヒータ4に
て60〜80℃に熱せられた電極1は、フッ素樹脂懸濁
液を貯蓄しているタンク5を上部に備え、かつ、タンク
5内より浸透してきたフッ素樹脂懸濁液を含んだ固定ブ
ラシ2の下を、塗着ならびに摩擦を同時に受けながら矢
印方向に移動する。さらに、この移動方向と直交するよ
う稼働する稼働ブラシ3にて、前記固定ブラシ2による
糸方向と交わるように糸状化を複雑化させた後、再び8
0℃の気流中を通過させて乾燥する。前記フッ素樹脂懸
濁液はダイキン工業製の四フッ化エチレン樹脂微粉末懸
濁液(製品名ポリフロンディスパージョンD−1)に水
を加えて、フッ素樹脂濃度を3wt%まで希釈したもので
ある。本実施例では、四フッ化エチレン樹脂微粉末懸濁
液を使用したが、四フッ化エチレン−六フッ化プロピレ
ン共重合樹脂微粉末懸濁液あるいは低分子量四フッ化エ
チレン樹脂微粉末等の外力にて糸状化する物であればか
まわない。また、上記製造装置のブラシの材質、堅さ等
は電極の移動速度あるいはブラシの電極を押付ける強さ
を変化させて調節できるので、特に限定はしない。
EXAMPLE One example of the present invention will be described for a nickel electrode for a nickel-hydrogen battery. Nickel hydroxide powder (average particle size 15 μm) was added to the active material, 5 wt% of cobalt was added to it as an activator of the active material, and water was added at a ratio of 0.4 (weight ratio) to these mixed powders. Then, a slurry prepared by adding sodium carboxymethyl cellulose as a thickener at a ratio (weight ratio) of 0.004 to the mixed powder is pressed into nickel foam having a porosity of 96%, which is a three-dimensional substrate. The electrode filled with this slurry is passed through an air stream at 80 ° C. to evaporate the water content, and then pressure-molded at a pressure of 150 kg / cm 2 . A filamentous fluororesin layer is formed on the surface of the pressure-molded electrode using the manufacturing apparatus shown in FIG. This manufacturing apparatus is composed of a heater 4 part for heating the electrode 1, a fixed brush 2 for coating and thread-forming the fluororesin, and an operating brush 3 which operates so as to be orthogonal to the moving direction of the electrode. As for the temperature of the heater 4, the electrode surface temperature is 8
Set it to 80 ° C or lower so that it does not exceed 0 ° C. Further, the presence or absence of contact between the heater 4 and the electrode 1 is not limited. The electrode 1 heated to 60 to 80 ° C. by the heater 4 was provided with a tank 5 storing the fluororesin suspension in the upper part, and contained the fluororesin suspension permeated from the tank 5. The fixed brush 2 is moved in the direction of the arrow while simultaneously receiving the coating and the friction. Further, in the operating brush 3 which operates so as to be orthogonal to this moving direction, after making the filamentation complicated so as to intersect with the yarn direction by the fixed brush 2, it is again 8
Dry in a stream of 0 ° C. The fluororesin suspension is obtained by adding water to a tetrafluoroethylene resin fine powder suspension (product name: Polyflon Dispersion D-1) manufactured by Daikin Industries, and diluting the fluororesin concentration to 3 wt%. . In this example, a tetrafluoroethylene resin fine powder suspension was used, but an external force such as tetrafluoroethylene-hexafluoropropylene copolymer resin fine powder suspension or low molecular weight tetrafluoroethylene resin fine powder was applied. It does not matter if it is a thread-like material. Further, the material, hardness, etc. of the brush of the above manufacturing apparatus can be adjusted by changing the moving speed of the electrode or the pressing force of the electrode of the brush, and is not particularly limited.

【0011】上記方策にて得られたニッケル極と、ミッ
シュメタル系水素吸蔵合金を主成分とする水素極を組合
わせて、設計容量1050mAhのAA型ニッケル・水素
電池を作成し、0.2Cで15時間充電した後、0.2
Cで放電するサイクル試験を実施した。その結果を図3
に示す。aは本発明からなるニッケル極、bは電極表面
が糸状になっていないフッ素樹脂層(PTFE)にて覆
われたニッケル極を用いた設計容量1050mAhのAA
型ニッケル・水素電池・cは電極表面にポリエチレン層
を設け、かつ、フッ素樹脂(PTFE)を含浸したニッ
ケル極を用いた設計容量1050mAhのAA型ニッケル
・水素電池である。この図から分るように、本発明から
なるニッケル極を用いた電池aの容量が最も高く、か
つ、サイクル試験による容量低下が最も少ない。糸状に
なっていないニッケル極を用いた電池bの容量は本発明
品と同程度であるが、サイクルが進につれ活物質の脱落
が原因と思われる容量低下が大きかった。電極表面にポ
リエチレン層を設けた電池cのサイクル試験での容量低
下の割合いはaについで低いが、ポリエチレン層を設け
る際の熱処理が原因と思われる活物質の性能劣化によ
り、初期容量が最も低かった。
By combining the nickel electrode obtained by the above-mentioned method and the hydrogen electrode whose main component is a misch metal-based hydrogen storage alloy, an AA type nickel-hydrogen battery having a design capacity of 1050 mAh was prepared, and at 0.2 C 0.2 after charging for 15 hours
A cycle test of discharging at C was performed. The result is shown in Figure 3.
Shown in. a is a nickel electrode according to the present invention, and b is an AA with a design capacity of 1050 mAh using a nickel electrode whose electrode surface is covered with a fluororesin layer (PTFE) which is not thread-shaped.
The type nickel-hydrogen battery c is an AA type nickel-hydrogen battery having a design capacity of 1050 mAh which uses a nickel electrode impregnated with a polyethylene resin on the electrode surface and is impregnated with fluororesin (PTFE). As can be seen from this figure, the battery a using the nickel electrode according to the present invention has the highest capacity, and the capacity decrease due to the cycle test is the smallest. The capacity of the battery b using the non-filamentary nickel electrode was about the same as that of the product of the present invention, but as the cycle progressed, the capacity decrease, which is thought to be caused by the active material falling off, was large. The rate of capacity decrease in the cycle test of battery c having a polyethylene layer provided on the electrode surface was the lowest after a, but the initial capacity was most likely to be due to the performance deterioration of the active material, which is thought to be caused by heat treatment when providing the polyethylene layer. It was low.

【0012】[0012]

【発明の効果】上述したように、本発明からなる電極
は、その表面だけにフッ素樹脂層を設ける事ができ、か
つ、そのフッ素樹脂層が糸状化し、さらには、この糸が
複雑に絡み合うようになる。また、これらの処理をフッ
素樹脂の塗着と同時に発現でき、活物質である水酸化ニ
ッケルに悪影響を及ぼさない温度で処理できるため、従
来の単にフッ素樹脂を含浸する方法、あるいは、ポリエ
チレン等の熱可塑性樹脂を溶融して網状化した層を電極
表面に設け、かつ、フッ素樹脂を含浸する方法に比べ、
製造工程を簡略化でき、さらには、活物質の結着力を強
化でき、また、電極内のフッ素樹脂量を減らす事ができ
る点で優れている。
As described above, in the electrode of the present invention, the fluororesin layer can be provided only on the surface of the electrode, and the fluororesin layer is formed into a thread shape, and further, the threads are intricately entangled with each other. become. Further, since these treatments can be expressed simultaneously with the coating of the fluororesin and can be conducted at a temperature that does not adversely affect the nickel hydroxide as the active material, the conventional method of simply impregnating the fluororesin or heat treatment of polyethylene or the like Compared with the method in which a layer formed by melting a plastic resin and forming a mesh is provided on the electrode surface, and impregnated with a fluororesin,
It is excellent in that the manufacturing process can be simplified, the binding force of the active material can be strengthened, and the amount of fluororesin in the electrode can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明からなるニッケル・水素電池のニッケル
極の表面のSEM写真の模式図である。
FIG. 1 is a schematic view of an SEM photograph of the surface of a nickel electrode of a nickel-hydrogen battery according to the present invention.

【図2】本発明からなる製造装置である。FIG. 2 is a manufacturing apparatus according to the present invention.

【符号の説明】[Explanation of symbols]

1は電極、2は固定ブラシ、3は稼働ブラシ、4はヒー
タ、5はタンク
1 is an electrode, 2 is a fixed brush, 3 is a working brush, 4 is a heater, 5 is a tank

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年8月20日[Submission date] August 20, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図3[Name of item to be corrected] Figure 3

【補正方法】追加[Correction method] Added

【補正内容】[Correction content]

【図3】ニッケル・水素電池の充放電回数と電池容量と
の関係を示す曲線図である。
FIG. 3 is a curve diagram showing the relationship between the number of times charging and discharging a nickel-hydrogen battery and the battery capacity.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】三次元基体に活物質が充填された電極にお
いて、、電極表面層に糸状化したフッ素樹脂層を有する
事を特徴とする電池用電極。
1. An electrode in which a three-dimensional substrate is filled with an active material, wherein the electrode surface layer has a thread-like fluororesin layer, and the electrode for a battery.
【請求項2】フッ素樹脂の糸状化を機械的外力にてなさ
れる請求項1に記載の電池用電極。
2. The battery electrode according to claim 1, wherein the fluororesin is formed into a filament by a mechanical external force.
【請求項3】電極におけるフッ素樹脂の糸状化を、電極
表面層にフッ素樹脂を塗着すると同時に行う事を特徴と
する請求項1に記載の電池用電極の製造方法。
3. The method for producing a battery electrode according to claim 1, wherein the fluororesin in the electrode is formed into a filament shape at the same time as the fluororesin is applied to the electrode surface layer.
【請求項4】電極が一方向に連続的に移動してなる製造
工程において、フッ素樹脂の糸状化を前記電極の移動方
向に直交するよう固定されたブラシと移動方向に直交稼
働するブラシとで行う請求項3に記載の電池用電極の製
造方法。
4. In a manufacturing process in which an electrode is continuously moved in one direction, a filament-shaped fluororesin is fixed so as to be orthogonal to the moving direction of the electrode, and a brush which is operated orthogonally to the moving direction. The method for manufacturing a battery electrode according to claim 3, which is performed.
【請求項5】一方向に移動している電極が少なくともフ
ッ素樹脂を塗着する間だけ加熱されている請求項4に記
載の電池用電極の製造方法。
5. The method for manufacturing a battery electrode according to claim 4, wherein the electrode moving in one direction is heated at least while the fluororesin is applied.
JP3248119A 1991-09-27 1991-09-27 Battery electrode and its manufacture Pending JPH0620685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3248119A JPH0620685A (en) 1991-09-27 1991-09-27 Battery electrode and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3248119A JPH0620685A (en) 1991-09-27 1991-09-27 Battery electrode and its manufacture

Publications (1)

Publication Number Publication Date
JPH0620685A true JPH0620685A (en) 1994-01-28

Family

ID=17173516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3248119A Pending JPH0620685A (en) 1991-09-27 1991-09-27 Battery electrode and its manufacture

Country Status (1)

Country Link
JP (1) JPH0620685A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3711701A1 (en) * 1987-04-07 1988-10-27 Kempf Georg Ulrich ELECTROPHOTOGRAPHIC COPIER
US4891517A (en) * 1987-07-22 1990-01-02 Fuji Photo Film Co., Ltd. Heat sensitive copying machine
JP2005038730A (en) * 2003-07-16 2005-02-10 Yuasa Corp Non-sintered nickel electrode and alkaline storage battery
JP2008123770A (en) * 2006-11-10 2008-05-29 Gs Yuasa Corporation:Kk Battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3711701A1 (en) * 1987-04-07 1988-10-27 Kempf Georg Ulrich ELECTROPHOTOGRAPHIC COPIER
US4891517A (en) * 1987-07-22 1990-01-02 Fuji Photo Film Co., Ltd. Heat sensitive copying machine
JP2005038730A (en) * 2003-07-16 2005-02-10 Yuasa Corp Non-sintered nickel electrode and alkaline storage battery
JP2008123770A (en) * 2006-11-10 2008-05-29 Gs Yuasa Corporation:Kk Battery

Similar Documents

Publication Publication Date Title
JP5114203B2 (en) Porous solid zinc electrode and method for producing the same
US2627531A (en) Porous electrode
RU2671836C2 (en) Alkaline secondary battery
JP2009212092A (en) Method of manufacturing paste type thin electrode for battery
JPH0620685A (en) Battery electrode and its manufacture
JPH10255790A (en) Positive active material of nickel electrode for alkaline storage battery
US3099586A (en) Storage battery electrodes and method of making the same
US5940946A (en) Alkali storage cell employing a spongelike metal substrate
JPH06203819A (en) Alkaline zinc secondary battery
JP2003249215A (en) Manufacturing method of positive active material for alkaline storage battery and alkaline storage battery using the positive active material obtained by the manufacturing method
JPS64787B2 (en)
JPS5956361A (en) Manufacture of substrate for alkaline storage battery
JP2000285922A (en) Alkaline storage battery, and manufacture of its electrode
CN113658744B (en) Flexible conductive composite cotton thread and preparation method thereof
JPH113704A (en) Manufacture of alkaline secondary battery positive electrode
JPS5866267A (en) Manufacture of substrate for alkaline storage battery
JPS61110966A (en) Electrode for cell
JPH05221601A (en) Hydrogen occluding porous material and its production
JPH02256162A (en) Paste type nickel positive electrode for alkaline battery
JP3851180B2 (en) Nickel electrode for alkaline storage battery and alkaline storage battery provided with the nickel electrode
JP2019073757A (en) Hydrogen storing alloy particle
JP2942637B2 (en) Method for producing paste-type nickel electrode
JPH01137562A (en) Manufacture of electrode for cell
JPH02177254A (en) Carbon fluoride-lithium cell
JPH04296453A (en) Nickel sintered substrate for alkaline secondary battery