JPH06206065A - Removal of halogenated hydrocarbon - Google Patents

Removal of halogenated hydrocarbon

Info

Publication number
JPH06206065A
JPH06206065A JP3236593A JP3236593A JPH06206065A JP H06206065 A JPH06206065 A JP H06206065A JP 3236593 A JP3236593 A JP 3236593A JP 3236593 A JP3236593 A JP 3236593A JP H06206065 A JPH06206065 A JP H06206065A
Authority
JP
Japan
Prior art keywords
water
activated carbon
cathode
trihalomethane
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3236593A
Other languages
Japanese (ja)
Inventor
Akihisa Kinoshita
彰久 木下
Sachiko Ishiguro
祥子 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP3236593A priority Critical patent/JPH06206065A/en
Publication of JPH06206065A publication Critical patent/JPH06206065A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the removal ratio of trihalomethane and to decompose trihalomethane by active oxygen generated from an, anode at the time of the electrolysis of water to prevent the re-dissolution thereof by applying positive charge to activated carbon and adsorption removing halogenated hydrocarbon. CONSTITUTION:In the removal of halogenated hydrocarbon, at first, a usual activated carbon water purifier 1, an anode 5 and a cathode 6 are inserted and the cathode 6 is covered with a cloth diaphragm 7 to be insulated. Activated carbon 4 is well received in the water purifier 1 so that the particles thereof come into contact with the anode 5 directly and indirectly. In this case, since the cathode 6 is insulated, the activated carbon in the water purifier 1 entirely becomes a form charged with positive electricity. When water is injected from a water inlet 2, water is distributed by a fluffy polymer 8 to pass the activated carbon bed of positive potential and trihalomethane or bacteria of negative potential is adsorbed. In this case, since cathode water is also mixed to be issued, pH or redox potential does not change as the whole of water.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水特に水道水中のハロ
ゲン化炭化水素(トリハロメタン)の除去方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing halogenated hydrocarbons (trihalomethanes) in water, especially tap water.

【0002】[0002]

【従来の技術】水道水の浄化は活性炭,中空糸膜,セラ
ミックフィルターなどで行われているが、遊離塩素の除
去が主体でハロゲン化炭化水素(トリハロメタン)を完
全に除去する方法はなかった。又半導体廃水にはハロゲ
ン化炭化水素が混入してくるが適切な除去方法がなかっ
た。
2. Description of the Related Art Although tap water is purified with activated carbon, hollow fiber membranes, ceramic filters, etc., it mainly removes free chlorine, but there has been no method for completely removing halogenated hydrocarbons (trihalomethane). In addition, halogenated hydrocarbons are mixed in the semiconductor wastewater, but there is no suitable removal method.

【0003】[0003]

【発明が解決しようとする課題】本発明は従来、完全除
去が難しいとされたハロゲン化炭化水素(トリハロメタ
ン)を活性炭にプラス電荷を与えることによりマイナス
に荷電し易いハロゲン化炭化水素を活性炭に吸着し易い
形にして除去率をあげ、安全な水を提供するものであ
る。
DISCLOSURE OF THE INVENTION According to the present invention, a halogenated hydrocarbon (trihalomethane), which has hitherto been considered to be difficult to completely remove, is given a positive charge to the activated carbon to adsorb a halogenated hydrocarbon which is easily negatively charged to the activated carbon. It provides a safe water by increasing the removal rate in a form that is easy to handle.

【0004】[0004]

【課題を解決するための手段】活性炭はハロゲン化炭化
水素(一般名トリハロメタン)を一部吸着するが、充分
でなく吸着率は60〜80%位にとどまっている。本発
明は電気化学的方法を使ってこの吸着率を95〜100
%に近づける方法である。ハロゲン化炭化水素(今後は
トリハロメタンと呼ぶ)は一般にマイナスの電位をとる
ことが、知られているので、活性炭にプラスの電位を持
たせるとハロゲン化炭化水素は活性炭に吸着する。この
方法は陽極をポーラスな電極にしてその中を通水しても
同じであるが、只その電極の中の炭層に細かい穴があい
ていて活性炭層となっている必要がある。純水の電解の
場合、陽極ではOHが放電して2OH→HO+Oの
反応が起こり、活性酸素が発生する。この時吸着したト
リハロメタンは、発生した活性酸素により酸化分解する
ので再溶解の危険性はなくなるが、普通の活性炭だけの
場合には吸着率も悪く、吸着したトリハロメタンも吸着
したままなので水温の変化によって再溶解する危険性を
はらんでいる。
[Means for Solving the Problems] Activated carbon partially adsorbs halogenated hydrocarbons (generic name: trihalomethane), but this is not sufficient and the adsorption rate remains at about 60 to 80%. The present invention uses an electrochemical method to increase this adsorption rate to 95-100.
It is a method of approaching to%. It is known that halogenated hydrocarbons (hereinafter referred to as trihalomethanes) generally have a negative potential. Therefore, when a positive potential is applied to activated carbon, the halogenated hydrocarbon is adsorbed on the activated carbon. This method is the same when the anode is made a porous electrode and water is passed through it. However, it is necessary that the carbon layer in the electrode has fine holes to form an activated carbon layer. In the case of electrolysis of pure water, OH is discharged at the anode, a reaction of 2OH → H 2 O + O occurs, and active oxygen is generated. At this time, the adsorbed trihalomethane is oxidatively decomposed by the generated active oxygen, so there is no danger of redissolving, but the adsorption rate is poor with ordinary activated carbon only, and the adsorbed trihalomethane remains adsorbed, so the temperature of the water may change. There is a risk of redissolving.

【0005】又、細菌類は水中に存在するとゼータ電位
によってマイナス電位をもっている。そのため細菌類も
プラス電位をもった活性炭に吸着され易い。しかもOH
も放電してOHとなり活性酸素が発生するので、細菌
類も殺菌される。一方陰極ではHイオンが放電し、H
原子となり液が還元性となる。若し陽極を通してトリハ
ロメタンや殺菌を除去した水を陰極を通して出せばP
H,ORP共原水とほぼ同じで、トリハロメタンが除去
された、クラスターの小さい、身体に良い水が得られる
筈である。
Bacteria, when present in water, have a negative potential due to the zeta potential. Therefore, bacteria are also easily adsorbed on activated carbon having a positive potential. Besides, OH
-Is also discharged to become OH and active oxygen is generated, so bacteria are also sterilized. On the other hand, H + ions are discharged at the cathode,
It becomes an atom and the liquid becomes reducible. If water with trihalomethane and sterilization removed through the anode is discharged through the cathode, P
It should be similar to H, ORP raw water, and should have trihalomethane removed, small clusters and good body water.

【0006】[0006]

【作用】本発明の方法を図面により詳述すると先づ通常
の活性炭浄水器に図1の如く陽極5及び陰極6を挿入す
る。陽極には布製隔膜7を被らせて絶縁する。活性炭4
は良く充填し各活性炭の粒子が陽極と直接間接に接する
様にする。この場合陰極6は布製隔膜7で絶縁されてい
るので浄水器内の活性炭はすべて陽電気を帯びる形とな
る。この様にして水入口2より水を注入すると綿状高分
子8で分配されて、プラス電位をもつ活性炭層を通りな
がらマイナス電位をもつトリハロメタンや殺菌類が吸着
される。浄化された水は綿状高分子8を通って水出口3
より出る。この場合陰極水も混合されて出てくるので、
水全体としてはPHや酸化還元電位は変わらない。しか
し通常の活性炭に比べて、電気的吸引力がプラスされた
形となりトリハロメタン除去率が向上する。
The method of the present invention will be described in detail with reference to the drawings. First, an anode 5 and a cathode 6 are inserted into an ordinary activated carbon water purifier as shown in FIG. The anode is covered with a cloth diaphragm 7 for insulation. Activated carbon 4
Is filled well so that the particles of each activated carbon come into direct and indirect contact with the anode. In this case, since the cathode 6 is insulated by the cloth diaphragm 7, the activated carbon in the water purifier is all positively charged. When water is injected from the water inlet 2 in this way, it is distributed by the cotton-like polymer 8 and adsorbs trihalomethane or sterilizer having a negative potential while passing through the activated carbon layer having a positive potential. The purified water passes through the cotton-like polymer 8 and the water outlet 3
Get out more. In this case, the cathode water also comes out as a mixture,
The pH and redox potential of the water as a whole do not change. However, compared to ordinary activated carbon, the electric attraction force is added and the trihalomethane removal rate is improved.
Na

【0007】図2は図1の方法を改良したもので、電解
槽が陽極槽11と陰極槽12に分かれている。間に隔膜
13がありイオンは通すが水は殆ど通さない。水は入口
9より入り陽極14と導電性繊維(活性炭繊維など)1
8で電気的に結ばれ、プラス電位をもった粒状活性炭1
7に吸着される。この時導電性繊維(活性炭繊維など)
を用いたのは陽極と粒状活性炭の接触を良くする為であ
る。プラス電位をもつ活性炭にマイナス電位のトリハロ
メタンが吸着し易いが、水中に含まれる細菌類もゼータ
電位の関係でマイナスに帯電しており、同じく活性炭に
吸着する。しかも水は微量HとOHに電離してお
り、マイナスイオンのOHはプラス電位の活性炭の表
面で放電し、活性酸素が生成する。この活性酸素は非常
に酸化力が強く、活性炭に吸着した細菌類やトリハロメ
タンを酸化分解する。
FIG. 2 shows a modification of the method of FIG. 1, in which the electrolytic cell is divided into an anode cell 11 and a cathode cell 12. There is a diaphragm 13 between them, which allows ions to pass but hardly water. Water enters through the inlet 9 and the anode 14 and conductive fibers (activated carbon fibers, etc.) 1
Granular activated carbon that is electrically connected at 8 and has a positive potential 1
Adsorbed on 7. At this time, conductive fibers (such as activated carbon fibers)
Is used to improve the contact between the anode and the granular activated carbon. Trihalomethane with a negative potential is easily adsorbed on activated carbon with a positive potential, but bacteria contained in water are also negatively charged due to the zeta potential, and they are also adsorbed on activated carbon. Moreover, water is ionized into a small amount of H + and OH , and the negative ion OH is discharged on the surface of the activated carbon having a positive potential to generate active oxygen. This active oxygen has a very strong oxidizing power and oxidizes and decomposes bacteria and trihalomethane adsorbed on the activated carbon.

【0008】陽極槽を出た水は本質的には酸性イオン水
としての性質をもっているが、生成した活性酸素はトリ
ハロメタンの酸化分解,細菌類の酸化分解,活性炭との
反応によるCOの生成等に使用され、又時間経過と共
に活性酸素同志の結合により酸素分子が生成するので、
活性酸素の量は減少し酸性イオン水としての特性はかな
り薄れて出てくる。この水に乳酸カルシウムなどを加え
て陰極槽へ送ると陰極槽ではカルシウムイオン水が生成
すると共に活性酸素は完全に消滅し、アルカリイオン水
としての特性をもった水が得られる。同じ電解槽で陽極
と陰極が同居する図1の装置では得られる水のPH,O
RPは本質的に変わらないが、図2の装置では陽極槽と
陰極槽は隔膜で分断されており、陽極槽での反応を終了
した時点で酸性イオン水としての性質をかなり失ってお
り、それを陰極槽で処理すれば処理水はアルカリイオン
水としての性質をもった水が得られる。
The water exiting the anode tank essentially has the property of acidic ionized water, but the active oxygen produced is oxidative decomposition of trihalomethanes, oxidative decomposition of bacteria, and the production of CO 2 by reaction with activated carbon. Is used, and as time passes, oxygen molecules are generated by the binding of active oxygens, so
The amount of active oxygen decreases, and the properties of acidic ionized water become considerably weaker. When calcium lactate or the like is added to this water and sent to the cathode tank, calcium ion water is generated in the cathode tank and active oxygen is completely disappeared, and water having characteristics as alkaline ion water is obtained. In the device of FIG. 1 in which the anode and the cathode coexist in the same electrolytic cell, the PH and O of the water obtained
The RP is essentially unchanged, but in the device of FIG. 2, the anode tank and the cathode tank are separated by a diaphragm, and when the reaction in the anode tank is completed, the property as acidic ionized water is considerably lost. Is treated in a cathode tank, the treated water has the property of alkaline ionized water.

【0009】本発明の方法は、活性炭にプラス電位を与
え、マイナス電位をもつトリハロメタンを活性炭に電気
的吸着を起こさせる方法である。更に水電解の陽極反応
により吸着したトリハロメタンを酸化分解させ、活性炭
吸着での問題点であるトリハロメタンの再溶解を防ぐ作
用もある。この方法は通常の活性炭として遊離塩素の吸
着や通常の電解による水クラスターを小さくする作用も
ある。トリハロメタンはクロロホルム,ブロモジクロロ
メタン,ジブロモクロロメタン,ブロモホルムという有
機塩素,ブロム化合物の総称であるが、いずれもメタン
の分子の水素3個を塩素又はブロムで置換した形をして
いる。塩素やブロムは一番外側の電子を7個持ってお
り、電子1個を取込んで安定化の8個に近づける傾向が
ある。従って電位的にはマイナス電位をもつ様になり、
プラス電位をもつ活性炭に吸い寄せられる為、トリハロ
メタンの吸着能が上昇する。この場合、陰極槽にも活性
炭を加えて吸着させる事も出来るが、むしろアルカリイ
オン水を作るために単に電極面積を増加させるためカー
ボン繊維など吸着能力のない導電性物質を加える方が良
い。又容積も陽極槽より小さくし、効率化を計ることも
出来る。実際の使用に当たっては水を流す時に電解電圧
を3〜12Vに上げ、反応を速やかに行わせるが、水を
止めた時は1〜3Vに落とし雑菌の発生を押さえる程度
で止めれば、再スタートの時有利である。
The method of the present invention is a method in which a positive potential is applied to activated carbon and trihalomethane having a negative potential is electro-adsorbed on the activated carbon. Further, it also has an action of oxidatively decomposing the trihalomethane adsorbed by the anodic reaction of water electrolysis to prevent redissolution of trihalomethane, which is a problem in adsorbing activated carbon. This method also has an effect of adsorbing free chlorine as an ordinary activated carbon and reducing water clusters by an ordinary electrolysis. Trihalomethane is a general term for organic chlorine and bromine compounds such as chloroform, bromodichloromethane, dibromochloromethane, and bromoform, and each has a form in which three hydrogen atoms in the methane molecule are replaced with chlorine or bromine. Chlorine and bromine have seven outermost electrons, and they tend to capture one electron and bring it closer to eight stabilizing electrons. Therefore, in terms of potential, it will have a negative potential,
As it is attracted to the activated carbon with a positive potential, the trihalomethane adsorption capacity increases. In this case, activated carbon can be added to and adsorbed in the cathode tank, but rather, it is better to add a conductive substance such as carbon fiber having no adsorption ability in order to simply increase the electrode area in order to produce alkaline ionized water. In addition, the volume can be made smaller than that of the anode tank to improve efficiency. In actual use, when flowing water, the electrolysis voltage is raised to 3 to 12 V to cause the reaction to proceed quickly, but when water is stopped, it is reduced to 1 to 3 V to stop the generation of germs and restart. It is a time advantage.

【0010】[0010]

【実施例】【Example】

(実施例1)図1の装置を用い、活性炭194gを加え
電圧9Vで流速2l/分でクロロホルム10ppmの水
60lを流した。水温6.5℃であった。比較のため同
じ装置で電圧をかけずに同じ条件で吸着させた。結果を
次に示す。 尚、分析方法はピリジン−苛性ソーダによる366μm
の比色法で行った。
(Example 1) Using the apparatus shown in FIG. 1, 194 g of activated carbon was added, and 60 l of water containing 10 ppm of chloroform was flown at a voltage of 9 V and a flow rate of 2 l / min. The water temperature was 6.5 ° C. For comparison, the same device was used for adsorption under the same conditions without applying voltage. The results are shown below. The analysis method was 366 μm using pyridine-caustic soda.
Colorimetric method.

【0011】(実施例2)図2の装置を用い粒状活性炭
346gを加え、電圧9V,6V,0Vの試験を行っ
た。結果を次に示す。
(Example 2) Using the apparatus shown in FIG. 2, 346 g of granular activated carbon was added, and a test of voltage 9V, 6V, 0V was conducted. The results are shown below.

【0012】(実施例3)実施例2の処理水0.2pp
mを更に図2の装置に導入し、2回目の処理を行った。 尚、分析方法はピリジン−苛性ソーダによる比色法を行
ったが、検出限界(0.05ppm)以下であった。
(Example 3) 0.2 pp of treated water of Example 2
m was further introduced into the apparatus of FIG. 2 and the second treatment was performed. The analytical method was a colorimetric method using pyridine-caustic soda, but it was below the detection limit (0.05 ppm).

【0013】[0013]

【発明の効果】トリハロメタンの除去については従来適
当な方法がなく、活性炭吸着でも60〜80%程度であ
った。本発明の方法は活性炭にプラスの電位を与えマイ
ナスに帯電し易いトリハロメタンなどを吸着させる。こ
れは従来の活性炭の吸着能に電気的吸着を加味したもの
で、しかも水電解の際に陽極に発生する活性酸素により
トリハロメタンが分解し再溶解を防止する方法である。
この方法はトリハロメタンの他細菌類も殺菌されるメリ
ットもあり、更に陰極を通すことによりアルカリイオン
水としても使用出来る。
EFFECTS OF THE INVENTION There has been no suitable method for removing trihalomethanes, and it was about 60 to 80% by activated carbon adsorption. According to the method of the present invention, a positive potential is applied to activated carbon to adsorb trihalomethane or the like, which tends to be negatively charged. This is a method in which electric adsorption is added to the adsorption capacity of conventional activated carbon, and trihalomethane is decomposed by active oxygen generated at the anode during water electrolysis to prevent redissolution.
This method has an advantage that bacteria other than trihalomethane are sterilized, and can be used as alkaline ionized water by passing it through a cathode.

【図面の簡単な説明】[Brief description of drawings]

【第1図】本発明による浄水器Aの説明図である。FIG. 1 is an explanatory diagram of a water purifier A according to the present invention.

【第2図】本発明による浄水器Bの説明図である。FIG. 2 is an explanatory diagram of a water purifier B according to the present invention.

【符号の説明】[Explanation of symbols]

1.浄水器 2.水入口
3.水出口 4.活性炭 5.陽極
6.陰極 7.布製隔膜 8.綿状高分子
9.水入口 10.水出口 11.陽極槽 1
2.陰極槽 13.隔膜 14.陽極 1
5.陰極 16.三方コック 17.粒状活性炭 1
8.活性炭繊維 19.導電性繊維
1. Water purifier 2. Water inlet
3. Water outlet 4. Activated carbon 5. anode
6. Cathode 7. Fabric diaphragm 8. Cotton-like polymer
9. Water inlet 10. Water outlet 11. Anode tank 1
2. Cathode tank 13. Diaphragm 14. Anode 1
5. Cathode 16. Three-way cock 17. Granular activated carbon 1
8. Activated carbon fiber 19. Conductive fiber

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 活性炭に正電荷を与え、ハロゲン化
炭化水素を吸着除去することを特徴とするハロゲン化炭
化水素の除去方法。
1. A method for removing a halogenated hydrocarbon, which comprises applying a positive charge to activated carbon to adsorb and remove the halogenated hydrocarbon.
【請求項2】 水電解槽に活性炭を加え、活性炭同
志の接触又は炭素繊維などでプラス電極と活性炭とを導
通させることを特徴とする請求項1記載のハロゲン化炭
化水素の除去方法。
2. The method for removing halogenated hydrocarbon according to claim 1, wherein activated carbon is added to the water electrolysis tank, and the positive electrode and activated carbon are brought into conduction with each other by contacting activated carbons or by carbon fibers.
【請求項3】 水電解の陽極槽に粒状活性炭を加
え、カーボン繊維又は活性炭繊維や導電性繊維により活
性炭にプラス電位を与えて通水した後、陰極槽へ通水す
ることを特徴とする請求項1記載のハロゲン化炭化水素
の除去方法。
3. A method of adding granular activated carbon to an anode cell for water electrolysis, supplying a positive potential to the activated carbon with carbon fiber or activated carbon fiber or conductive fiber to pass water, and then passing water to the cathode cell. Item 2. A method for removing a halogenated hydrocarbon according to Item 1.
JP3236593A 1993-01-11 1993-01-11 Removal of halogenated hydrocarbon Pending JPH06206065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3236593A JPH06206065A (en) 1993-01-11 1993-01-11 Removal of halogenated hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3236593A JPH06206065A (en) 1993-01-11 1993-01-11 Removal of halogenated hydrocarbon

Publications (1)

Publication Number Publication Date
JPH06206065A true JPH06206065A (en) 1994-07-26

Family

ID=12356930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3236593A Pending JPH06206065A (en) 1993-01-11 1993-01-11 Removal of halogenated hydrocarbon

Country Status (1)

Country Link
JP (1) JPH06206065A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010000418A (en) * 2008-06-18 2010-01-07 Sekisui Chem Co Ltd Device and system for desalinating seawater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010000418A (en) * 2008-06-18 2010-01-07 Sekisui Chem Co Ltd Device and system for desalinating seawater

Similar Documents

Publication Publication Date Title
JP2568617B2 (en) Method for decomposing organic substances and bacteria in water supply
JP4392354B2 (en) High electrolysis cell
US3793173A (en) Wastewater treatment using electrolysis with activated carbon cathode
WO2016138858A1 (en) Electrochemical waste water treatment method that simultaneously removes salts and organic compounds that are hard to biodegrade
JP2001104995A (en) Electrolytic ozone forming method, electrolytic ozone forming apparatus and ozone water making apparatus
CN113173626A (en) Three-dimensional electrochemical-ozone-passing coupling treatment device and method for wastewater difficult to treat
CN111943408B (en) Device and method for removing organic pollutants in water through electro-catalytic ozone adsorption membrane filtration
KR101946029B1 (en) wastewater treatment, desalination and chemical production complex system
JP3227921B2 (en) Apparatus and method for treating wastewater containing oil composed of ester
Amikam et al. Separation of ions from water and wastewater using micro-scale capacitive-faradaic fuel cells (CFFCs), powered by H2 (g) and air
JP2003126861A (en) Method and apparatus for water treatment
JPH10130876A (en) Electrolytic ozonized water producing unit and its regenerating method
JPH06206065A (en) Removal of halogenated hydrocarbon
JP5285135B2 (en) Water treatment system and water treatment method
JP2004181364A (en) Ultrapure water making method and apparatus therefor
JP2010036173A (en) Water treatment system and water treatment method
JPS59127691A (en) Advanced treatment of secondary treated water of night soil
WO2018020761A1 (en) Method of cleaning dialysate production apparatus
JPS6244995B2 (en)
JPS6036835B2 (en) How to purify human waste water
JPH09150159A (en) Cod-related component removing method for the component containing water
KR100490561B1 (en) Water purifier having sterilizer using electrolysis
JP3040549B2 (en) High purity water production method
JPH0631278A (en) Ion-exchanged water preparation device
TANAKA et al. Electrochemical Removal of Ammonium lon and Organic Substances from Landfill Leachate